
MATH327: Statistical Physics, Spring 2023

Computer Project

Overview and instructions

In this computer project you will numerically analyze two types of diffusive
behaviour in one-dimensional random walks. After warm-up exercises on pseudo-
random numbers and inverse transform sampling, analyzing ordinary diffusion will
allow you to verify your numerical results by comparing them with exact analytic
predictions based on the law of large numbers and central limit theorem. You will
then adapt these verified numerical methods to consider anomalous diffusion,
where exact analytic predictions are not available.

There are five exercises below, four of which provide relevant background in-
formation in addition to the tasks for you to complete. While the exercises mention
some syntax specific to Python, you may use a different programming language if
you prefer. This demo illustrates all the Python programming tools needed for the
project. For any reasonable programming language, the numerical computations
for each exercise should complete in a few minutes or less.

This project is due Tuesday, 21 February. Submit your work by file upload
on Canvas.1 Both your answers to the questions below and the code that pro-
duces your results must be submitted. These can be uploaded in multiple files or
in a tar/zip archive, as you prefer. With the exception of Mathematica .nb files, it
will be quicker for me to check code submitted in its native format (for example,
a .py file for Python code or a .m file for MATLAB code). Anonymous marking is
turned on, and I will aim to return feedback by 3 March.

Exercise 1: Pseudo-random numbers

Background

We have discussed how statistical physics is based on considering systems
that involve some element of randomness. Because computer programs are de-
terministic, it is not possible to use them to generate a truly random sequence
of numbers.2 Instead, computer algorithms generate pseudo-random numbers,
which are entirely sufficient for our purposes.

A sequence of pseudo-random numbers appears random in the sense that
knowing the first N − 1 elements in the sequence does not suffice to predict

1By submitting solutions to this assessment you affirm that you have read and understood
the Academic Integrity Policy detailed in Appendix L of the Code of Practice on Assessment and
have successfully passed the Academic Integrity Tutorial and Quiz. The marks achieved on this
assessment remain provisional until they are ratified by the Board of Examiners in June 2023.

2New quantum technologies are being developed as a way to produce truly random numbers.
This is part of the motivation for large investments in quantum technologies around the world.

MATH327 Project 1 Last modified 7 Feb. 2023

https://tinyurl.com/math327demo
https://canvas.liverpool.ac.uk/courses/60601/assignments/226598
https://www.liverpool.ac.uk/media/livacuk/tqsd/code-of-practice-on-assessment/appendix_L_cop_assess.pdf
https://uknqt.ukri.org

the N th element with a high probability of correctness. Equivalently, it takes a
very large number of elements for the sequence to start repeating itself. Such
repetition will eventually happen, because computers encode numbers in a finite
set of bits, which can represent only a finite set of numbers. For example, 32 bits
can represent all integers from 0 through 232 − 1 ∼ 109, while 64 bits increase the
upper bound to 264 − 1 ∼ 1019. Python uses the Mersenne Twister algorithm as
its default pseudo-random number generator (PRNG). This algorithm can provide
219937 − 1 ∼ 106001 numbers before its sequence repeats.

We can view the absence of true randomness as an advantage rather than
a limitation. Deterministic pseudo-random numbers allow our computer programs
to be reproducible up to the (very high) precision of the computer. Each exercise
below starts by initializing the PRNG with a “seed”. Given the same seed, the
PRNG will subsequently generate the same sequence of pseudo-random num-
bers. In Python, as shown in the demo, this initialization is done by calling the
function random.seed(s), where s is the seed we specify.

Task

The Python function random.random() generates a pseudo-random number
u with the uniform probability distribution

p(u) =

{
1 for 0 ≤ u < 1
0 otherwise . (1)

Clearly
∫
p(u) du =

∫ 1

0
du = 1, as required. What are the exact mean µ and

standard deviation σ of this probability distribution?
[2 marks]

Initialize the PRNG with seed s = 271828. For each of the five R = 10, 100,
1000 10,000 and 100,000, generate a sequence of R pseudo-random numbers ur
distributed according to p(u). Don’t re-initialize the PRNG when changing R, or
else these sequences will partially duplicate each other. Use each sequence to
estimate the mean and standard deviation via the law of large numbers,

uR =
1

R

R∑
r=1

ur σR ≡

√√√√(1

R

R∑
r=1

u2r

)
− u2R. (2)

How do your numerical results compare to your exact analytic predictions above?
Four significant figures should suffice for these comparisons.

[5 marks]

In class (and on page 15 of the lecture notes) we saw
〈
(uR − µ)2

〉
∝ 1/R.

Let’s test this numerically by repeating the above computation of uR another 99
times, ignoring σR for simplicity. Together with the result you reported above, this
gives a total of 100 estimates of the random variable (uR − µ)2, which we can use
to approximate the expectation value as

(uR − µ)2 ≡ 1

100

100∑
i=1

(uR − µ)2i . (3)

MATH327 Project 2 Last modified 7 Feb. 2023

https://en.wikipedia.org/wiki/4,294,967,295
https://docs.python.org/3/library/random.html

Rather than reporting your results as numerical values, plot R × (uR − µ)2

vs. R and see whether the five points appear approximately constant. If so, is the
size of this constant roughly what you would expect?

Hints: Include 0 on the y-axis of your plot to maintain a sense of scale.
The Matplotlib Python plotting library provides (via its pyplot module) the op-
tion xscale(‘log’) that sets a logarithmic scale for the x-axis, to produce even
spacing between these five R.

[8 marks]

Exercise 2: Inverse transform sampling

Background

The uniform distribution is a bit boring. Inverse transform sampling is a
technique that allows us to consider more interesting probability distributions,
while still generating pseudo-random numbers using the random.random() func-
tion. The idea is illustrated by the sketch below.

In words, we take our uniformly distributed ur and act on them with some
invertible transformation F (u) to define xr = F (ur) that follow the distribution of
interest, p(x). We require p(u)du = p(x)dx, which allows us to relate p(x) and the
inverse transformation F−1(x):

p(x) = p(u)
du

dx
= p(u)

d

dx
F−1(x),

hence the name “inverse transform sampling”. This relation lets us either engi-
neer an appropriate transformation F (u) to produce a desired distribution p(x), or
determine the distribution that results from a given transformation.

MATH327 Project 3 Last modified 7 Feb. 2023

Task

Based on the uniformly distributed pseudo-random numbers u generated by
random.random(), define

x = F (u) = arccos (1− 2u) . (4)

What is the probability distribution p(x) of these random numbers x? What
are the minimum and maximum possible values that x can take? What are the
resulting exact mean µ and standard deviation σ of p(x)?

[5 marks]

Reset by initializing the random number generator with seed 271828. Now,
using the arccos function provided by Numerical Python (NumPy), generate R =
1,000,000 pseudo-random numbers xr via Eq. 4. Use these to numerically esti-
mate the mean and standard deviation of p(x), analogously to Eq. 2 in the pre-
vious exercise. How do your numerical results compare to your exact µ and σ
above? Four significant figures should suffice for these comparisons.

[5 marks]

In a single plot, compare the histogram of the 1,000,000 {xr} to the analytic
p(x) you found above. Do your numerical results match your prediction? Roughly
51 bins in the histogram should suffice for this comparison.

Hint: The demo shows how Matplotlib can plot a function p(x) on top of a
histogram produced using its hist routine.

[5 marks]

MATH327 Project 4 Last modified 7 Feb. 2023

Exercise 3: Random walks

(a) Central limit theorem

Now consider a random walk that consists of N steps, with the length of
each step being a pseudo-random number xi obtained using Eq. 4. By inde-
pendently generating R different N -step random walks you can analyze the final
positions of the walks,

Xr(N) =
N∑
i=1

xi r = 1, 2, · · · , R.

Based on the central limit theorem, what are the analytic predictions for 〈X(N)〉
and the diffusion length

`2(N) ≡
√〈

[X(N)]2
〉
− 〈X(N)〉2,

each as a function of N? (Hint: `2(N) would be called ∆X(N) in the lecture
notes; the new terminology will be useful for Exercise 5.)

[2 marks]

(b) Fixed number of steps

Reset by initializing the random number generator with seed 271828. With
fixed N = 100, generate R 100-step random walks for each of R = 10, 100, 1000,
10,000 and 100,000. Use the five resulting sets {Xr} to numerically estimate both

X(N)R ≡
1

R

R∑
r=1

Xr(N) `2(N)R ≈

√√√√(1

R

R∑
r=1

[Xr(N)]2
)
−X(N)

2

R.

How do your numerical results compare to your exact analytic predictions
for N = 100? Five significant figures should suffice for this comparison.

[8 marks]

(c) Diffusion constant

Reset by initializing the random number generator with seed 271828. Then
fix R = 10,000 and compute `2(N)R for every N = 1, 2, · · · , 500. Rather than
reporting results as numerical values, plot `2(N)R vs. N . (Hint: You can ignore
potential correlations between `2(N)R for different values of N .)

[4 marks]

Now fit your numerical results to the function

`2(N)R = C +D
√
N.

Include your fit in your plot of `2(N)R vs. N . How do your fit results for C and D
compare to the exact analytic predictions from the central limit theorem? (Hint:
NumPy’s polyfit routine can handle fits linear in

√
N .)

[6 marks]

MATH327 Project 5 Last modified 7 Feb. 2023

Exercise 4: Cauchy–Lorentz distribution

Background

So far we have been able to verify our numerical results by using the central
limit theorem. We now turn to a case in which the central limit theorem will not be
applicable, by considering

pC(x) =

(
1

bπ

)
1

1 + (x/b)2
x ∈ R, (5)

which is known as the Cauchy–Lorentz (or just Cauchy) distribution. Here b is a
constant parameter that controls the width of the peak around x = 0. The figure
below illustrates this by plotting pC(x) for each of b = 1/2, b = 1 and b = 2,

comparing them to the normal (gaussian) distribution
1√
2π
e−x

2/2.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−4 −2 0 2 4

p(x)

x

Cauchy, b = 0.5
Cauchy, b = 1.0
Cauchy, b = 2.0
Gaussian, σ = 1

The figure shows how the peak of the Cauchy–Lorentz distribution around
x = 0 becomes higher and narrower as b decreases. Even when its peak is
very narrow, as |x| increases pC(x) again becomes larger than the gaussian dis-
tribution, simply because the latter decreases exponentially quickly while pC(x)
decreases only ∼ 1/x2. These “fat tails” at large |x| make the Cauchy–Lorentz
distribution both interesting and challenging to analyze.

Task

Fix b = 1/π in the Cauchy–Lorentz distribution, so that Eq. 5 becomes

pC(x) =
1

1 + π2x2
x ∈ R. (6)

MATH327 Project 6 Last modified 7 Feb. 2023

What is the integral of this distribution over its full range,

I ≡
∫ ∞
−∞

pC(x) dx =

∫ ∞
−∞

1

1 + π2x2
dx?

The usual starting point to analyze a probability distribution is finding its mean
and standard deviation, by evaluating

〈x〉 =

∫
x p(x) dx

〈
x2
〉

=

∫
x2 p(x) dx.

For the Cauchy–Lorentz distribution in Eq. 6, consider instead the functions

f(a) =

∫ a

−a
x pC(x) dx =

∫ a

−a

x

1 + π2x2
dx

g(a) =

∫ a

−a
x2 pC(x) dx =

∫ a

−a

x2

1 + π2x2
dx.

How do f(a) and g(a) behave in the limit a→∞?
[6 marks]

Turning to a numerical analysis of the Cauchy–Lorentz distribution, the first
step is to determine the transform F (u) that will map the uniformly distributed
pseudo-random numbers u (Eq. 1) to x = F (u) ∈ R. What is the transform F that
provides x = F (u) distributed according to pC(x) in Eq. 6?

Hints: Guided by the relation

pC(x) = p(u)
d

dx
F−1(x),

it will suffice to propose an ansatz for F (u) based on integrating pC(x), and then
follow the steps in Exercise 2 to confirm that this ansatz produces the desired
distribution. Integrating will introduce a constant of integration, which can be
chosen so that x→ −∞ as u→ 0 and x→∞ as u→ 1.

[6 marks]

Now initialize the random number generator with seed s = 271828. Gener-
ate R = 1,000,000 pseudo-random numbers xr = F (ur) using the transform you
found. Plot the histogram of these million {xr} and check whether it agrees with
the Cauchy–Lorentz distribution shown above.

Hints: You will need to set an appropriate range for the x-axis of this his-
togram. A range −3 ≤ x ≤ 3 with roughly 200 bins should suffice to show all the
interesting features. In Python this can be done by providing

bins = np.arange(-3.0, 3.0, 6.0/201.0)
to the Matplotlib hist function used previously. In this exercise it is optional to
plot pC(x) itself on top of this histogram. If you choose to do so, you may need to
adjust its normalization (and you should think about why this is needed).

[8 marks]

MATH327 Project 7 Last modified 7 Feb. 2023

https://en.wikipedia.org/wiki/Constant_of_integration

Exercise 5: Anomalous diffusion

Background

The “fat tails” of the Cauchy–Lorentz distribution mean that pC(x) provides
larger probabilities for rare events with large |x| to occur, compared to the gaus-
sian distribution. This is illustrated in the figures below, each of which shows a
thousand-step random walk in two dimensions — randomly selecting both the
size of each step and the direction 0 ≤ φ < 2π in which to step. The walk on the
left uses step sizes drawn from a gaussian distribution. Even in two dimensions,
random walks of this sort obey the law of diffusion, with a diffusion length growing
proportionally to the square root of the number of steps, `2(N) ∝

√
N .

The walk on the right instead uses step sizes drawn from a Cauchy–Lorentz
distribution. Note that the axes for this figure cover a much larger range! The
fat tails of the Cauchy–Lorentz distribution result in occasional very large jumps,
leading to random walks that do not obey the law of diffusion.

Returning to one-dimensional random walks, some of the results from Exer-
cise 4 motivate defining the generalized diffusion length

`θ(N) =
〈
|X(N)|θ

〉1/θ
, (7)

which depends on a positive real parameter θ > 0. Since θ is not necessarily
an integer, the absolute value is needed to ensure `θ ∈ R, rather than becoming
complex valued. If 〈X(N)〉 = 0 and `θ is well-defined with θ = 2, then this gener-
alized diffusion length could reproduce the standard deviation `2 and exhibit the
ordinary law of diffusion, `2 ∝ N1/2.

For the Cauchy–Lorentz distribution, `θ is ill-defined for any θ ≥ 1. This
parameter θ can take only values 0 < θ < 1. The resulting `θ exhibits anomalous
diffusion,

`θ(N) ∝ Nα,

where the exponent is either α > 1
2

(called super-diffusion) or 0 < α < 1
2

(called
sub-diffusion). This exercise investigates the exponent α for the distribution pC(x)
in Eq. 6, and explores whether or not α depends on θ.

MATH327 Project 8 Last modified 7 Feb. 2023

Task a: Fixed number of steps

Reset by initializing the random number generator with seed 271828. With
fixed N = 100, generate R 100-step random walks,

Xr(N) =
N∑
i=1

xi r = 1, 2, · · · , R,

for each of the five R = 10, 100, 1000, 10,000 and 100,000. Use the five resulting
sets {Xr} to numerically estimate

`θ(N)R ≈

[
1

R

R∑
r=1

|Xr(N)|θ
]1/θ

for three values of θ = 0.1, 0.5 and 0.9. (Hint: NumPy provides both an abs
function to take the absolute value, and a power function to compute non-integer
powers.)

[12 marks]

Task b: Anomalous diffusive exponent

Reset by initializing the random number generator with seed 271828. Then
fix R = 10,000 and estimate `θ(N)R for every N = 1, 2, · · · , 500, again consid-
ering θ = 0.1, 0.5 and 0.9. Instead of reporting your numerical results, plot all
three `θ(N)R vs. N in a single figure. (Hint: You can ignore potential correlations
between `θ(N)R for different values of N .)

[8 marks]

Now fit your numerical results for each θ = 0.1, 0.5 and 0.9 to the function

`θ(N)R = DNα.

Report your results for D and α, and comment on their sensitivity to the value of
θ. (Hint: Optionally testing different values of R, N or θ may help to distinguish
between real sensitivity vs. statistical fluctuations, if you are unsure whether or
not an observed effect is significant.)

[10 marks]

MATH327 Project 9 Last modified 7 Feb. 2023

