
MATH327: Statistical Physics, Spring 2023

Tutorial activity — Lattices

In the lectures we are focusing on simple cubic lattices with periodic bound-
ary conditions, but other lattice structures play important roles in both nature and
mathematics. Some of the remarkable electronic properties of graphene, for ex-
ample, are due to its two-dimensional honeycomb lattice structure, while more
elaborate three-dimensional lattices play central roles in the search for materials
exhibiting high-temperature superconductivity.

The figure below shows three simple two-dimensional lattices, each of which
has a different coordination number — the number of nearest neighbours for
each site (with periodic boundary conditions). We have already seen that the
square lattice has coordination number C = 2d = 4, and generalizes to simple
cubic and hyper-cubic lattices in higher dimensions.

The honeycomb lattice of graphene has a smaller coordination number C =
d + 1 = 3, and generalizes to ‘hyper-diamond’ lattices in higher dimensions. Fi-
nally, the triangular lattice essentially fills in the middle of each honeycomb cell,
leading to coordination number C = 2(d + 1) = 6. Its higher-dimensional gener-
alizations are known as A∗d lattices, of which the simplest example is the three-
dimensional body-centered cubic lattice shown below. Also shown below is the
‘kagome’ lattice, which has the same C = 4 as the square lattice, illustrating that
the coordination number is insufficient to completely characterize a lattice.
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We can define versions of the Ising model with nearest neighbours (jk)
given by any of the two-dimensional {square, honeycomb, hexagonal} lattices
shown above. We can further generalize the Ising model to have energy

E = −J
∑
(jk)

sjsk −H
N∑

n=1

sn,

where J sets the interaction strength. While any positive J > 0 can be rescaled to
our usual J = 1 without loss of generality, the case of a constant negative J < 0
is qualitatively different. Setting H = 0, consider the following conceptual ques-
tions without doing detailed calculations: What are the minimum-energy ground
states for each case J > 0 and J < 0, for each of the square, honeycomb and
triangular lattices? What sort of order parameter could distinguish these ground
states from the disordered micro-states that dominate at high temperatures?

Generalizing the Ising model in this way opens up a vast landscape of pos-
sible applications. As one example (with both practical and abstract relevance), a
spin glass can be modeled by allowing the interaction strength to vary from link
to link,

ESG = −
∑
(jk)

Jjksjsk.

Giorgio Parisi was awarded part of the 2021 Nobel Prize in Physics for his work
studying the mathematics of such spin glass systems. In particular, he was able to
solve the system for which (1) the values Jjk are randomly drawn from a gaussian
distribution around some mean J0, and (2) every site j is a nearest neighbour of
every other site k 6= j, giving a fully connected lattice (or complete graph). The
pictures on the next page illustrate complete graphs with N = 1, 2, · · · , 12 sites,
for which the sum over links turns into a sum over all 1 ≤ j < k ≤ N . How many
links are there for N sites in this case?

Spin glasses are too complicated to tackle here so let’s return to a simpler
Ising model with constant interaction strength, while still considering the fully con-
nected lattice:

E = − J

N

∑
j<k

sjsk −H
N∑

n=1

sn = − J

2N

∑
j 6=k

sjsk −H
N∑

n=1

sn.

We normalize the interaction strength by N so that the system retains a finite
energy per spin in the N →∞ thermodynamic limit.

The challenge is to solve this Ising model on the fully connected lattice —
that is, to compute a closed-form expression for its partition function Z. This is
tricky, but can be done by writing Z as a sum over the N+1 possible values of the
magnetization −1 ≤ m ≤ 1, and counting how many micro-states there are for
each magnetization. The energy above also needs to expressed in terms of the
magnetization, which is easier to do by considering the sum over all j 6= k. Finally,
for large N we can approximate the N + 1 possible values of m as continuously
varying, and integrate

Z =

∫ 1

−1
(· · · ) dm.
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