The Z Mar 980032
Total
$$M = \underset{e_1}{z} M_{e_1}^{(1)} M_{E-e_1}^{(2)}$$

Sharp bounds on M
Let "max" be the largest of Nterms > 1 in sum
max $\leq M \leq N_{terms} \cdot max$
 $\log(max) \leq S \leq \log(N_{terms} \cdot max)$
Reasonable illustration:
Suppose Nterms ~N, $\max \sim e^{N}$
 $(s_{prin}, system, M = 2^{N} = e^{Nlog2})$
 $N \leq S \leq N + \log(N)$
 $N \sim 10^{13} \cdot 10^{23} \leq S \leq 10^{13} + 50$
 $\gg S = 10^{13}$ for all practical purposes
 $N = N_{n} = 10$ $E = -10$
 $E = -(2m + -N)^{12} - 10, -8, -6, ---, 10$

 $\frac{109(5400) = 0.895}{252 - 20x} \Rightarrow expect to see even distrib. of spins$ appear of time"

MATH327: Statistical Physics, Spring 2023 Tutorial activity — Entropy bounds

We met the second law of thermodynamics by considering what happens when two subsystems are brought into thermal contact — allowed to exchange energy but not particles. Conservation of energy means that if subsystem Ω_1 has energy e_1 , the other subsystem Ω_2 must have energy $E - e_1$, where E is the total energy of the overall micro-canonical system Ω . We found (in Eq. 21 on page 33 of the lecture notes) that the total number of micro-states of the overall system is

$$M = \sum_{e_1} M_{e_1}^{(1)} M_{E-e_1}^{(2)}$$

where $M_e^{(S)}$ is the number of micro-states of subsystem $S \in \{1, 2\}$ with energy e.

Because M is a sum of strictly positive terms, we can easily set bounds on it. Say the sum over e_1 has $N_{\text{terms}} \ge 1$ terms $M_{e_1}^{(1)} M_{E-e_1}^{(2)}$, and define max be the largest of those terms. Then max $\le M$, with equality only when $N_{\text{terms}} = 1$. Similarly, $M \le N_{\text{terms}} \cdot \max$, with equality when every term in the sum is the same. All together, we have

$$\max \le M \le N_{\text{terms}} \cdot \max$$
.

This can be more powerful than it may initially appear, thanks to the large numbers involved in statistical physics. For illustration, suppose $\max \sim e^N$ and $N_{\text{terms}} \sim N$ for a system with N degrees of freedom. (We have already seen $M = 2^N = e^{N \log 2}$ for a system of N spins with H = 0, while H > 0 introduces factors of N! that Stirling's formula can recast in terms of $N^N = e^{N \log N}$.) Then

$$e^N \lesssim M \lesssim N e^N.$$

If we take the logarithm and recall $\log M = S$ is the entropy, this gives us

$$N \lesssim S \lesssim N + \log N.$$

With our characteristic $N \sim 10^{23}$, we have $\log N \sim 50$ and $10^{23} \leq S \leq 10^{23} + 50$, a very tight range in relative terms, with the upper bound only $\sim 10^{-20}\%$ larger than the lower bound.

To see how this works in practice, let each of Ω_1 and Ω_2 be a spin system with $N_1 = N_2 = 10$ spins and H = 1. Fix E = -10 for the combined system and numerically compute the bounds on its entropy,

$$\log(\max) \le S \le \log(N_{\text{terms}} \cdot \max).$$

What fraction of the true entropy S is accounted for by $\log (\max)$? How do these answers change for $N_1 = N_2 = 20, 30, 40, \cdots$, still with fixed E = -10?

By considering the sort of spin configurations that produce \max , you can see the emergence of an 'arrow of time'!

MATH327 Tutorial (Entropy)

$$\frac{\text{Stirling's Formula}}{\log(N!) \approx N\log N - N \implies N! = \exp(N\log N - N) = N^N e^{-N} = \left(\frac{N}{2}\right)^N}{N \gg 1}$$

$$M_{\text{ore precise}} = N^{1} = N^{2} \pi N \left(\frac{N}{e}\right)^N \left(1 + \frac{A}{N} + \frac{B}{N^2} + \frac{C}{N^3} + \dots\right)$$

$$N! = N^{2} \pi N \left(\frac{N}{e}\right)^N \left(1 + \frac{A}{N} + \frac{B}{N^2} + \frac{C}{N^3} + \dots\right)$$

$$(asymptotic)$$

1) Simple bounds

$$N \log N - N < \log(N!) < Mapping N \log N$$

2) $N! \approx N 2\pi N \left(\frac{N}{2}\right)^N$
 $L_Y = howing N! = \int_0^\infty x^{nN} e^{-x} dx$
Lapproximate by gaussian

3) Compute A, B, ...
by comparing N! vs.
$$(N(1))! = (N(1))!$$

MATH327: Statistical Physics, Spring 2023 Tutorial activity — Stirling's formula

We have already made use of Stirling's formula in the following form:

$$\log(N!) = N \log N - N + \mathcal{O}(\log N) \approx N \log N - N \qquad \text{for } N \gg 1,$$

which implies

$$N! \approx \exp\left[N\log N - N\right] = \left(\frac{N}{e}\right)^N$$

This can be made more precise:

$$N! = \sqrt{2\pi N} \left(\frac{N}{e}\right)^N \left(1 + \frac{A}{N} + \frac{B}{N^2} + \frac{C}{N^3} + \cdots\right)$$
(1)

with calculable coefficients A, B, C, etc.¹ By performing a sequence of analyses of increasing complexity, we can build up these results.

First analysis: Derive the bounds

$$N\log N - N < \log(N!) < N\log N \tag{2}$$

for $N \gg 1$. The second bound is the easier one. There are multiple ways to obtain the first bound. One pleasant approach is to consider the series expansion for e^x . Together, these bounds establish

$$1 - \frac{1}{\log N} < \frac{\log(N!)}{N \log N} < 1 \qquad \Longrightarrow \qquad \log(N!) \sim N \log N$$

Second analysis: Compute the first term in Eq. 1, $N! \approx \sqrt{2\pi N} \left(\frac{N}{e}\right)^N$. This requires several steps, the first of which is to consider the **gamma function**

$$\Gamma(N+1) \equiv \int_0^\infty x^N e^{-x} \, dx.$$

Show that $\Gamma(N+1) = N!$ for integer $N \ge 0$. In other words, derive the Euler integral (of the second kind)

$$N! = \int_0^\infty x^N e^{-x} \, dx. \tag{3}$$

Again, this can be done in multiple ways, including induction with integration by parts or by taking derivatives of

$$\int_0^\infty e^{-ax} \, dx = a^{-1}$$

and then setting a = 1.

¹James Stirling computed the $\sqrt{2\pi}$ while Abraham de Moivre derived the expansion in powers of 1/N. An interesting aspect of this expansion is that it is **asymptotic** — it has a vanishing radius of convergence but can provide precise approximations if truncated at an appropriate power.

The next step in this second analysis is to approximate the gamma function as a gaussian integral. Show that the integrand $x^N e^{-x} = \exp[N \log x - x]$ of Eq. 3 is maximized at x = N.

For $N \gg 1$, the integrand is sharply peaked around this maximum at x = N. You can check this for yourself or take it as given. We can therefore focus on a small region around this peak by changing variables to $y \equiv x - N$ and considering $\left|\frac{y}{N}\right| \ll 1$. Expand the $\log x$ in the integrand, up to and including terms quadratic in $\frac{y}{N}$. You should be left with the desired result, except for the following factor, which can be approximated by a gaussian integral (note the lower bound of integration):

$$\int_{-N}^{\infty} e^{-y^2/(2N)} \, dy \approx \int_{-\infty}^{\infty} e^{-y^2/(2N)} = \sqrt{2\pi N}.$$

The error introduced by extending the integration from $(-N,\infty)$ to $(-\infty,\infty)$ is exponentially small and could be captured by computing the series of corrections suppressed by powers of $\frac{1}{N}$ in Eq. 1.

This leads us to the **third analysis**: Compute some of the leading powersuppressed corrections in Eq. 1. That is, determine the coefficients *A*, *B*, etc. Again, there are many ways to achieve this, including higher-order expansions of the $\log x$ considered above. One pleasant approach is to compare *N*! and (N+1)!, now that we have derived the series prefactor $\sqrt{2\pi N} \left(\frac{N}{e}\right)^N$.