Thu 2 Mar
Total $M=\sum_{e_{1}} M_{e_{1}}^{(1)} M_{E-e_{1}}^{(2)}$
Sharp bounds on M
Let "max" be the largest of N terms $\geqslant 1$ in sum

$$
\begin{gathered}
\max \leq M \leq N_{\text {terms }} \cdot \max \\
\log (\max) \leq S \leq \log \left(N_{\text {terms }} \cdot \max \right)
\end{gathered}
$$

Reassunble illustration:
Suppose $N_{\text {terms }} \sim N$, $\quad \max \sim e^{N}$
(spin system $M=2^{N}=e^{\text {Moog } 2 \text {) }}$

$$
\begin{gathered}
N \lesssim S \lesssim N+\log (N) \\
N \sim 10^{23}=10^{23} \leftrightharpoons S \lesssim 10^{232}+50
\end{gathered}
$$

$\rightarrow S=10^{23}$ for all practical purposes

$$
N_{1}=N_{2}=10 \quad E=-10
$$

$$
E=-(2 n+-N)^{10}=-10,-8,-6, \ldots, 10
$$

$$
\log (5400)=0.895
$$

$\frac{5400}{252} \sim 20 \times \rightarrow$ expect to see even distribe of spins "arrow of time"

MATH327: Statistical Physics, Spring 2023
 Tutorial activity - Entropy bounds

We met the second law of thermodynamics by considering what happens when two subsystems are brought into thermal contact - allowed to exchange energy but not particles. Conservation of energy means that if subsystem Ω_{1} has energy e_{1}, the other subsystem Ω_{2} must have energy $E-e_{1}$, where E is the total energy of the overall micro-canonical system Ω. We found (in Eq. 21 on page 33 of the lecture notes) that the total number of micro-states of the overall system is

$$
M=\sum_{e_{1}} M_{e_{1}}^{(1)} M_{E-e_{1}}^{(2)}
$$

where $M_{e}^{(S)}$ is the number of micro-states of subsystem $S \in\{1,2\}$ with energy e.
Because M is a sum of strictly positive terms, we can easily set bounds on it. Say the sum over e_{1} has $N_{\text {terms }} \geq 1$ terms $M_{e_{1}}^{(1)} M_{E-e_{1}}^{(2)}$, and define max be the largest of those terms. Then $\max \leq M$, with equality only when $N_{\text {terms }}=1$. Similarly, $M \leq N_{\text {terms }} \cdot \max$, with equality when every term in the sum is the same. All together, we have

$$
\max \leq M \leq N_{\text {terms }} \cdot \max
$$

This can be more powerful than it may initially appear, thanks to the large numbers involved in statistical physics. For illustration, suppose $\max \sim e^{N}$ and $N_{\text {terms }} \sim N$ for a system with N degrees of freedom. (We have already seen $M=2^{N}=e^{N \log 2}$ for a system of N spins with $H=0$, while $H>0$ introduces factors of N ! that Stirling's formula can recast in terms of $N^{N}=e^{N \log N}$.) Then

$$
e^{N} \lesssim M \lesssim N e^{N} .
$$

If we take the logarithm and recall $\log M=S$ is the entropy, this gives us

$$
N \lesssim S \lesssim N+\log N .
$$

With our characteristic $N \sim 10^{23}$, we have $\log N \sim 50$ and $10^{23} \lesssim S \lesssim 10^{23}+50$, a very tight range in relative terms, with the upper bound only $\sim 10^{-20 \%}$ larger than the lower bound.

To see how this works in practice, let each of Ω_{1} and Ω_{2} be a spin system with $N_{1}=N_{2}=10$ spins and $H=1$. Fix $E=-10$ for the combined system and numerically compute the bounds on its entropy,

$$
\log (\max) \leq S \leq \log \left(N_{\text {terms }} \cdot \max \right)
$$

What fraction of the true entropy S is accounted for by $\log (\max)$? How do these answers change for $N_{1}=N_{2}=20,30,40, \cdots$, still with fixed $E=-10$?

By considering the sort of spin configurations that produce max, you can see the emergence of an 'arrow of time'!

Stirling's Formula

$$
\frac{\operatorname{logn} s \text { Formula }}{\log (N!) \approx N \log N-N} \underset{N \gg 1}{\rightarrow} N!=\exp (N \log N-N)=N^{N} e^{-N}=\left(\frac{N}{e}\right)^{N}
$$

More precise

$$
N^{\text {precise }}=\sqrt{2 \pi N}\left(\frac{N}{e}\right)^{N}\left(1+\frac{A}{N}+\frac{B}{N^{2}} \times \frac{C}{N^{3}}+\ldots\right)
$$

1) Simple bounds

$$
N \log N-N<\log (N!)<1 \text { gog te } N \log N
$$

2)

$$
N!\approx \sqrt{2 \pi N}\left(\frac{N}{e}\right)^{N}
$$

by showing $N!=\int_{0}^{\infty} x^{N} e^{-x} d x$
Lapprovimate by gaussian
3) Compute A, B, ...
by comparing N ! rs. $(N+1)!=(N+1) N$!

MATH327: Statistical Physics, Spring 2023
 Tutorial activity - Stirling's formula

We have already made use of Stirling's formula in the following form:

$$
\log (N!)=N \log N-N+\mathcal{O}(\log N) \approx N \log N-N \quad \text { for } N \gg 1
$$

which implies

$$
N!\approx \exp [N \log N-N]=\left(\frac{N}{e}\right)^{N}
$$

This can be made more precise:

$$
\begin{equation*}
N!=\sqrt{2 \pi N}\left(\frac{N}{e}\right)^{N}\left(1+\frac{A}{N}+\frac{B}{N^{2}}+\frac{C}{N^{3}}+\cdots\right) \tag{1}
\end{equation*}
$$

with calculable coefficients A, B, C, etc. ${ }^{1}$ By performing a sequence of analyses of increasing complexity, we can build up these results.

First analysis: Derive the bounds

$$
\begin{equation*}
N \log N-N<\log (N!)<N \log N \tag{2}
\end{equation*}
$$

for $N \gg 1$. The second bound is the easier one. There are multiple ways to obtain the first bound. One pleasant approach is to consider the series expansion for e^{x}. Together, these bounds establish

$$
1-\frac{1}{\log N}<\frac{\log (N!)}{N \log N}<1 \quad \Longrightarrow \quad \log (N!) \sim N \log N
$$

Second analysis: Compute the first term in Eq. $1, N!\approx \sqrt{2 \pi N}\left(\frac{N}{e}\right)^{N}$. This requires several steps, the first of which is to consider the gamma function

$$
\Gamma(N+1) \equiv \int_{0}^{\infty} x^{N} e^{-x} d x
$$

Show that $\Gamma(N+1)=N$! for integer $N \geq 0$. In other words, derive the Euler integral (of the second kind)

$$
\begin{equation*}
N!=\int_{0}^{\infty} x^{N} e^{-x} d x \tag{3}
\end{equation*}
$$

Again, this can be done in multiple ways, including induction with integration by parts or by taking derivatives of

$$
\int_{0}^{\infty} e^{-a x} d x=a^{-1}
$$

and then setting $a=1$.

[^0]The next step in this second analysis is to approximate the gamma function as a gaussian integral. Show that the integrand $x^{N} e^{-x}=\exp [N \log x-x]$ of Eq. 3 is maximized at $x=N$.

For $N \gg 1$, the integrand is sharply peaked around this maximum at $x=N$. You can check this for yourself or take it as given. We can therefore focus on a small region around this peak by changing variables to $y \equiv x-N$ and considering $\left|\frac{y}{N}\right| \ll 1$. Expand the $\log x$ in the integrand, up to and including terms quadratic in $\frac{y}{N}$. You should be left with the desired result, except for the following factor, which can be approximated by a gaussian integral (note the lower bound of integration):

$$
\int_{-N}^{\infty} e^{-y^{2} /(2 N)} d y \approx \int_{-\infty}^{\infty} e^{-y^{2} /(2 N)}=\sqrt{2 \pi N}
$$

The error introduced by extending the integration from $(-N, \infty)$ to $(-\infty, \infty)$ is exponentially small and could be captured by computing the series of corrections suppressed by powers of $\frac{1}{N}$ in Eq. 1.

This leads us to the third analysis: Compute some of the leading powersuppressed corrections in Eq. 1. That is, determine the coefficients A, B, etc. Again, there are many ways to achieve this, including higher-order expansions of the $\log x$ considered above. One pleasant approach is to compare N ! and ($N+1$)!, now that we have derived the series prefactor $\sqrt{2 \pi N}\left(\frac{N}{e}\right)^{N}$.

[^0]: ${ }^{1}$ James Stirling computed the $\sqrt{2 \pi}$ while Abraham de Moivre derived the expansion in powers of $1 / N$. An interesting aspect of this expansion is that it is asymptotic - it has a vanishing radius of convergence but can provide precise approximations if truncated at an appropriate power.

