
Statistical Physics 2019/20
MATH327
Kurt Langfeld & David Schaich

Ising model analyses: Mean-field & maybe more

Tuesday 28 April



Plan

Today: Complete Chapter 9, with some additions

This Friday, 1 May: Lecture loose ends, tutorial on sample exam

Next Tuesday, 5 May: Course review for exam revision

Monday, 11 May: Optional exam revision (if no conflicting exams...)

Friday, 29 May: Exam available 9AM, due in 24 hours

Questions?
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Recap

Interacting theories can exhibit phase transitions

Interacting means ∆Ei from change in i th DoF depends on other DoF k 6= i
−→ much more complicated than non-interacting systems we’ve studied so far

Famous (simple) example: Ising model in d dimensions
System of N spins arranged in a lattice with nearest-neighbour interaction

E = −
∑
(ij)

sisj − H
∑

i

si
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Recap

Magnetization |m| =
|M|
N

=
|n+ − n−|
n+ + n−

characterizes Ising model’s phases

High-temperature disordered phase with magnetization |m| = 0
Low-temperature ordered phase with magnetization |m| = 1

d = 1: Smooth crossover (not transition) between phases
d ≥ 2: Rapid second-order transition between phases (in limit N →∞)

Magnetization continuous but first derivative dM
dT discontinuous

Questions?
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Preparation for mean-field approximation (page 142)

Mea culpa: Last week’s preview was more ambitious than it had to be

Only need to consider ‘local magnetic field’ at single site i

E = −
∑
(jk)63i

sjsk − H
∑
k 6=i

sk − si

∑
k∈(ik)

sk − H ·si

= −
∑
(jk)63i

sjsk − H
∑
k 6=i

sk − (hi + H)si
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Preparation for mean-field approximation (page 142)

Only need to consider ‘local magnetic field’ at single site i

E = −
∑
(jk)63i

sjsk − H
∑
k 6=i

sk − (hi + H)si

Z (β,N,H) =
∑
{si}

exp [−βE ]

=
∑
{sk ,k 6=i}

(
F (sk )

∑
si=±1

exp [β(hi + H)si ]

)
∑
{sk ,k 6=i}

F (sk ) ≡ c(β,N,H) ∼ modified partition function for portion of system
that doesn’t interact with i th DoF
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Preparation for mean-field approximation (page 142)

Only need to consider ‘local magnetic field’ at single site i

E = −
∑
(jk)63i

sjsk − H
∑
k 6=i

sk − (hi + H)si

Z (β,N,H) =
∑
{si}

exp [−βE ]

=
∑
{sk ,k 6=i}

(
F (sk )

∑
si=±1

exp [β(hi + H)si ]

)

Still complicated since hi depends on 2d sk nearest neighbours of si
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Mean-field approximation (pages 142–143)

Z (β,N,H) =
∑
{sk ,k 6=i}

(
F (sk )

∑
si=±1

exp [β(hi + H)si ]

)

Assume hi =
∑

k∈(ik)

sk doesn’t fluctuate much on average

−→ approximate hi ≈ 〈hi〉 =
∑

k∈(ik)

〈sk〉 = 2d 〈m〉

Depends on constant expectation value of magnetization

m =
M
N

=
n+ − n−

N
=

1
N

N∑
i=1

si 〈m〉 =
1
Z

∑
{si}

m exp [−βE ]

−→ independent of spin configuration!
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Mean-field approximation (pages 142–143)

Z (β,N,H) =
∑
{sk ,k 6=i}

(
F (sk )

∑
si=±1

exp [β(hi + H)si ]

)

Assume hi =
∑

k∈(ik)

sk doesn’t fluctuate much on average

−→ approximate hi ≈ 〈hi〉 =
∑

k∈(ik)

〈sk〉 = 2d 〈m〉

Now si is decoupled from all other DoF k 6= i :

Z (β,N,H) ≈ ZMF(β,N,H) =

( ∑
{sk ,k 6=i}

F (sk )

) ∑
si=±1

exp [β(2d 〈m〉+ H)si ]

= c(β,N,H) · 2 cosh [β(2d 〈m〉+ H)]
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Mean-field partition function (page 143)

We have the N-spin partition function ZMF

expressed in terms of the (N − 1)-spin modified partition function c

ZMF(β,N,H) = 2c(β,N,H) cosh [β(2d 〈m〉+ H)]

Conjecture that iterating will produce

ZMF(β,N,H) ∝ (2 cosh [β(2d 〈m〉+ H)])N

Let’s derive this explicitly...
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Mean-field approximation alternate derivation (D. Tong section 5.2)

Rewrite interaction sisj in terms of fluctuations about average 〈m〉

sisj =
[
(si − 〈m〉) + 〈m〉

]
×
[
(si − 〈m〉) + 〈m〉

]
= (si − 〈m〉)(sj − 〈m〉) + (si − 〈m〉) 〈m〉+ (sj − 〈m〉) 〈m〉+ 〈m〉2

Assume small fluctuations |si − 〈m〉 | � 1 on average
−→ approximate by neglecting quadratic term

E = −
∑
(ij)

sisj − H
∑

i

si

−→ EMF = −
∑
(ij)

[
(si + sj) 〈m〉 − 〈m〉2

]
− H

∑
i

si
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Mean-field approximation alternate derivation (D. Tong section 5.2)

EMF = −
∑
(ij)

[
(si + sj) 〈m〉 − 〈m〉2

]
− H

∑
i

si

Nearest-neighbour sum runs over d ·N links

Includes both (si + sj) −→ each spin appears 2d times in sum:

EMF = d ·N 〈m〉2 − (2d 〈m〉+ H)
N∑

i=1

si

You can check EMF is non-interacting −→ significant simplifications
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Mean-field approximation alternate derivation (D. Tong section 5.2)

EMF = d ·N 〈m〉2 − (2d 〈m〉+ H)
∑

i

si

Repeating the derivation of Eq. 32 on pages 54–55 confirms our conjecture:

ZMF(β,N,H) =
∑
{si}

exp [−βE ]

= exp
[
−βd ·N 〈m〉2

] ∑
s1=±1

· · ·
∑

sN=±1

exp [β(2d 〈m〉+ H)(s1 + · · ·+ sN)]
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Mean-field approximation alternate derivation (D. Tong section 5.2)

EMF = d ·N 〈m〉2 − (2d 〈m〉+ H)
∑

i

si

Repeating the derivation of Eq. 32 on pages 54–55 confirms our conjecture:

ZMF(β,N,H) = exp
[
−βd ·N 〈m〉2

](∑
s=±1

exp [β(2d 〈m〉+ H)s]

)N

= exp
[
−βd ·N 〈m〉2

] (
2 cosh [β(2d 〈m〉+ H)]

)N
X
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Magnetization in mean-field approximation (pages 143–144)

The mean-field partition function depends on the magnetization:

ZMF(β) = exp
[
−βd ·N 〈m〉2

]
(2 cosh [β(2d 〈m〉+ H)])N

What can we say about 〈m〉?

1) Observe M = n+ − n− =
N∑

i=1

si appears in full Ising model energy

E = −
∑
(ij)

sisj − H
∑

i

si = −
∑
(ij)

sisj − H ·M
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Magnetization in mean-field approximation (pages 143–144)

1) E = −
∑
(ij)

sisj − H ·M

2) Expectation value 〈M〉 =
1
Z

∑
{si}

M exp [−βE ]

related to derivative
∂

∂H
exp

β∑
(ij)

sisj + βH ·M

 = βM exp

β∑
(ij)

sisj + βH ·M
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Magnetization in mean-field approximation (pages 143–144)

2)
∂

∂H
exp

β∑
(ij)

sisj + βH ·M

 = βM exp

β∑
(ij)

sisj + βH ·M



3) Pull derivative outside sum over configurations:

〈M〉 =
1
Z

∑
{si}

M exp

β∑
(ij)

sisj + βH ·M

 =
1
β

1
Z

∂

∂H

∑
{si}

exp

β∑
(ij)

sisj + βH ·M


=

1
β

1
Z

∂

∂H
Z =

1
β

∂ ln Z
∂H

= − ∂

∂H
F

in terms of Helmholtz free energy F = − ln Z
β

April 28, 2020 7 / 16



Magnetization in mean-field approximation (pages 143–144)

We have 〈m〉 =
〈M〉
N

=
1

Nβ
∂ ln Z
∂H

Apply the mean-field approximation

ln Z −→ ln ZMF = N ln cosh [β(2d 〈m〉+ H)] + {H-independent terms}

Result: 〈m〉 =
1
β

1
cosh [β(2d 〈m〉+ H)]

∂

∂H
cosh [β(2d 〈m〉+ H)]

= tanh [β(2d 〈m〉+ H)]
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Self-consistency condition for mean-field 〈m〉 (pages 144–145)

Find solutions of 〈m〉 = tanh [β(2d 〈m〉+ H)]

by plotting intersections of f (x) = x and g(x) = tanh [β(2d ·x + H)]

First recall how tanh [〈m〉] looks:

Corresponds to
d = 2

β = 1
2d = 1

4

H = 0 −→ 〈m〉 = 0 −1

0

1

〈m〉

tanh(〈m〉)
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Self-consistency condition for mean-field 〈m〉 (pages 144–145)

Find solutions of 〈m〉 = tanh [β(2d 〈m〉+ H)]

by plotting intersections of f (x) = x and g(x) = tanh [β(2d ·x + H)]

Positive H > 0 shifts tanh to left:

Corresponds to
d = 2

β = 1
2d = 1

4

H = ±2 −→ 〈m〉 = ±0.88 −1

0

1

〈m〉

tanh, H > 0

tanh, H < 0

April 28, 2020 8 / 16



Self-consistency condition for mean-field 〈m〉 (pages 144–145)

Find solutions of 〈m〉 = tanh [β(2d 〈m〉+ H)]

by plotting intersections of f (x) = x and g(x) = tanh [β(2d ·x + H)]

Increasing β makes tanh steeper:

Corresponds to
d = 2

β = 2
2d = 1

2

H = ±2 −→ 〈m〉 ≈ ±1 −1

0

1

〈m〉

tanh, H > 0

tanh, H < 0
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Self-consistency condition for mean-field 〈m〉 (pages 144–145)

Increasing β makes tanh steeper:

Corresponds to
d = 2

β = 2
2d = 1

2

H = ±2 −→ 〈m〉 ≈ ±1 −1

0

1

〈m〉

tanh, H > 0

tanh, H < 0

Sufficiently large |H| −→ single solution to self-consistency condition:
ordered 〈m〉 ≈ sign(H) in alignment with external field
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Mean-field 〈m〉 temperature dependence (pages 145–146)

Consider H = 0 for various temperatures

Disordered 〈m〉 = 0
is always possible solution

Steeper tanh at lower temperature
−→ additional solutions 〈m〉 = ±m0

Approach ordered m0 → 1 as T → 0
−1

0

1

〈m〉

tanh, T = 2

tanh, T = 4

tanh, T = 8

Not hard to see 〈m〉 = 0 solution unstable at low temperatures
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Mean-field 〈m〉 solution stability (page 146)

Not hard to see 〈m〉 = 0 solution unstable at low temperatures

Start with 〈m〉 = 0

Small positive fluctuation
produces 〈m〉 < tanh

=⇒ 〈m〉 must increase further
until it reaches 〈m〉 = m0

−1

0

1

〈m〉

tanh, T = 2

tanh, T = 4

tanh, T = 8

Equivalent to tanh−〈m〉 > 0 for small 〈m〉 > 0
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Not hard to see 〈m〉 = 0 solution unstable at low temperatures

Start with 〈m〉 = 0

Small positive fluctuation
produces 〈m〉 < tanh

=⇒ 〈m〉 must increase further
until it reaches 〈m〉 = m0

Equivalent to tanh−〈m〉 > 0 for small 〈m〉 > 0
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Mean-field critical temperature (page 146)
Conclusion: Rapid change from disordered 〈m〉 = 0 to ordered |〈m〉| = m0 > 0

when tanh steeper than 〈m〉 around 〈m〉 = 0

Around 〈m〉 = 0,

tanh(u) = u +O
(
u3)

=⇒ d
d 〈m〉

tanh [2d ·β 〈m〉]
∣∣∣∣
〈m〉=0

= 2d ·β

tanh slope 2d ·β = 1

predicts critical Tc =
1
βc

= 2d

−1

0

1

〈m〉

tanh, T = 2

tanh, T = 4

tanh, T = 8
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Mean-field phase transition (pages 146–147)

Conclusion: Rapid change from disordered 〈m〉 = 0 to ordered |〈m〉| = m0 > 0

around βc =
1

2d

Question: Is this rapid change a true phase transition?

Question: Is there a discontinuity in the order parameter 〈m〉 or its derivative(s)?

For β above but close to βc we have 0 < |〈m〉| � 1
and can expand the self-conistency equation,

〈m〉 = tanh [2d ·β 〈m〉] ≈ 2d ·β 〈m〉 − 1
3

(2d ·β 〈m〉)3
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Mean-field phase transition (pages 146–147)

Self-consistency equation: 2d ·β − 1 =
1
3

(2d ·β)3 〈m〉2

In terms of T =
1
β

close to but lower than Tc = 2d ,

Tc

T
− 1 =

1
3

(
Tc

T

)3

〈m〉2

Rearranging, 〈m〉2 = 3
(

T
Tc

)3(Tc − T
T

)
=

3
Tc

(
T
Tc

)2

(Tc − T )

With
(

T
Tc

)2

≈ 1 we have 〈m〉 = ±
√

3
2d

(Tc − T )1/2 for T < Tc
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Mean-field phase transition (pages 146–147)

Conclusion: 〈m〉 = ±
√

3
2d

(Tc − T )1/2 for T < Tc

The coefficient on page 147 is correct in d = 6 dimensions ;)

What matters is the critical exponent 1/2:

Near the transition, 〈m〉 ∝

{
(Tc − T )1/2 for T ≤ Tc

0 for T ≥ Tc

The order parameter 〈m〉 is continuous at T = Tc

while
d 〈m〉

dT
∝ 1

(Tc − T )1/2 diverges −→ predict second-order transition
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Accuracy of mean-field approximation (page 147)

Recap: Mean-field approximation predicts

Recap: * Second-order transition at critical βc =
1

2d
Recap: * Order parameter 〈m〉 ∝ (Tc − T )1/2 just below transition

Question: How accurate are these results?
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Accuracy of mean-field approximation (page 147)

Question: How accurate are these results?

For d = 2 we have Onsager’s 1944 exact solution:

Second-order transition X

Critical βc =
ln(1 +

√
2)

2
≈ 0.44 almost twice mean-field βc = 1

2d = 1
4

〈m〉 ∝ (Tc − T )1/8 −→ critical exponent 1/8
four times smaller than mean-field 1/2

So mean-field approximation predicts right qualitative behaviour
with significant quantitative shortcomings
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Accuracy of mean-field approximation (page 147)

Question: How accurate are these results?

For d = 1 we have Ising’s 1925 exact solution:

No phase transition −→ mean-field approximation fails badly

If time permits, let’s solve the one-dimensional Ising model ourselves. . .
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d = 1 Ising model exact solution (D. V. Schroeder section 8.2)

As before H = 0 is most interesting case, Z (β,N,H) =
∑
{si}

exp

β∑
(ij)

sisj


Simplify by ‘unrolling’ spin chain:

 

Miss 1 of N links −→ accurate for large N
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d = 1 Ising model exact solution (D. V. Schroeder section 8.2)

E = − (s1s2 + s2s3 + · · ·+ sN−1sN)

−→ Z =
∑

s1=±1

· · ·
∑

sN=±1

eβs1s2eβs2s3 · · · eβsN−1sN

Only last factor depends on sN :

If sN−1 = +1
∑

sN=±1 eβsN−1sN = eβ + e−β

If sN−1 = −1
∑

sN=±1 eβsN−1sN = e−β + eβ

}
= 2 cosh β

Now Z = (2 cosh β)
∑

s1=±1

· · ·
∑

sN−1=±1

eβs1s2eβs2s3 · · · eβsN−2sN−1

and we can repeat for sN−1
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d = 1 Ising model exact solution (D. V. Schroeder section 8.2)
Result:

Z =
∑

s1=±1

(2 cosh β)N−1 = 2N (cosh β)N−1

Restoring omitted link adds Nth cosh factor −→ Z = (2 cosh β)N

Internal energy: 〈E〉 = − ∂

∂β
ln Z = −N tanh β

Low temperatures β →∞ give 〈E〉 → −N in ordered ground state X

High temperatures β → 0 give 〈E〉 → 0 in disordered phase X

No discontinuity in 〈E〉 or its derivatives for T > 0 −→ smooth crossover
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No discontinuity in 〈E〉 or its derivatives for T > 0 −→ smooth crossover
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d = 1 Ising model exact solution (D. V. Schroeder section 8.2)
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Revisit accuracy of mean-field approximation

For d = 1 mean-field approximation fails badly

For d = 2 it predicts right qualitative behaviour
with significant quantitative shortcomings

Conjecture mean-field approximation more accurate as d increases

Justification: 2d neighbours −→ better averaging for larger d

Conjecture turns out to be correct

Mean-field predicts correct critical exponents for d ≥ 4

Mean-field exact reproduces Ising model in formal limit d →∞
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For d = 1 mean-field approximation fails badly

For d = 2 it predicts right qualitative behaviour
with significant quantitative shortcomings

Conjecture mean-field approximation more accurate as d increases

Conjecture turns out to be correct

Mean-field predicts correct critical exponents for d ≥ 4

Mean-field reproduces exact theory in formal limit d →∞

Numerical methods required to analyze d ≥ 3...
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Wrap up

Mean-field approximation assumes small fluctuations on average
−→ omit interactions in Ising model

Produces self-consistency condition for magnetization order parameter

Predicts second-order transition at critical βc =
1

2d
where 〈m〉 ∝ (Tc − T )1/2 with critical exponent 1/2

Accuracy of approximation improves as dimension d increases
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Mean-field approximation assumes small fluctuations on average
−→ omit interactions in Ising model

Predicts second-order transition at critical βc =
1

2d
where 〈m〉 ∝ (Tc − T )1/2 with critical exponent 1/2

Accuracy of approximation improves as dimension d increases

Fails badly compared to exact d = 1 solution

Qualitatively but not quantitatively correct compared to exact d = 2 solution

Exactly reproduces Ising model in formal limit d →∞
Numerical methods required to analyze d ≥ 3 Ising model
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