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Ising model analyses: Mean-field & maybe more

Tuesday 28 April



Plan
Today: Complete Chapter 9, with some additions

This Friday, 1 May: Lecture loose ends, tutorial on sample exam

Next Tuesday, 5 May: Course review for exam revision
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Plan
Today: Complete Chapter 9, with some additions

This Friday, 1 May: Lecture loose ends, tutorial on sample exam

Next Tuesday, 5 May: Course review for exam revision

Monday, 11 May: Optional exam revision (if no conflicting exams...)

Friday, 29 May: Exam available 9AM, due in 24 hours

Questions?
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Recap

Interacting theories can exhibit phase transitions

Interacting means AE; from change in ith DoF depends on other DoF k # i
— much more complicated than non-interacting systems we’ve studied so far

Famous (simple) example: Ising model in d dimensions
System of N spins arranged in a lattice with nearest-neighbour interaction

E=-) ss5—H) s
(i) i

Wikipedia
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Recap

L M n.—n_ . ) ,
Magnetization |m| = M = Ine =n-| characterizes Ising model’s phases
N ny+n_
High-temperature disordered phase with magnetization |/m| =0

Low-temperature ordered phase with magnetization |m| =1

d = 1: Smooth crossover (not transition) between phases
d > 2: Rapid second-order transition between phases (in limit N — oo)

Magnetization continuous but first derivative Zi;’ discontinuous

Questions?
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Preparation for mean-field approximation (page 142)

Mea culpa: Last week’s preview was more ambitious than it had to be

Only need to consider ‘local magnetic field’ at single site i

—‘ @ * ‘—

Zs,sk—HZsk—s, Z sk — H-s;

(Jk)Zi ki ke(ik)
— Y s HY s (h
(k)i k#i

Wikipedia
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Preparation for mean-field approximation (page 142)

Only need to consider ‘local magnetic field’ at single site i

— ZSjSk—HZSk—(h/+H)S,

(k)i ki

Z(8,N,H) =) exp[-fE]

{si}
= > (F(Sk) > expBlhi+ H)s,-]) ‘? ? T—
o Y Wikipedia

Z F(sk) = c(8,N,H) ~ modified partition function for portion of system
{sk.k#i} that doesn't interact with jith DoF
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Preparation for mean-field approximation (page 142)

Only need to consider ‘local magnetic field’ at single site i

E=—> ssc—HY sc—(hi+H)s R

(k)i ki

Z(B,N,H) = exp[-BE]

{si}
= Z (F(Sk) Z exp [B(hi + H)S,-]>
{Sk.k#i} Si==£1 Wikipedia

Still complicated since h; depends on 2d s, nearest neighbours of s;
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Mean-field approximation (pages 142—143)

Z(B.N,H)y= Y (F(sk) > exp[B(hi+ H)s,-])

{sK,k#i} si==%1

Assume h; = Z s« doesn’t fluctuate much on average

ke(ik) —> approximate h; ~ (h) = ) (sx) =2d (m)

ke (ik)
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Mean-field approximation (pages 142—143)

Z(B.N,H)y= Y (F(sk) > exp[B(hi+ H)s,-]>

{sK,k#i} si==%1

Assume h; = Z s« doesn’t fluctuate much on average

ke(ik) —> approximate h; ~ (h) = ) (sx) =2d (m)
)

ke(ik

Depends on constant expectation value of magnetization

M —n_
m:N: d —NZS, {Zs:mexp[ BE]

— independent of spin configuration!
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Mean-field approximation (pages 142—143)
26N H) = 3 (Fls) X ewlithi+ Hsi )
{sK,k#i} si==%1
Assume h; = Z Sk doesn’t fluctuate much on average

ke(ik) —> approximate h; ~ (h) = Y (sx) =2d (m)

Now s; is decoupled from all other DoF k # i:

25N H) = Zie(5 N H) = (X Flsd) 35 eols(2d (m) + H)s]
{sk.k#i} si=+1

= c¢(8,N, H) -2cosh [3(2d (m) + H)]
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Mean-field partition function (page 143)

We have the N-spin partition function Zyr
expressed in terms of the (N — 1)-spin modified partition function ¢

Zur(B,N, H) =2c(3, N, H) cosh [5(2d (m) + H)]

Conjecture that iterating will produce

Zue(B, N, H) o (2 cosh [3(2d (m) + H)])"

Let’s derive this explicitly...

.

Wikipedia
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Mean-field approximation alternate derivation (D. Tong section 5.2)
Rewrite interaction s;s; in terms of fluctuations about average (m)
sisj = [(si — (m)) +{m) | x [(s; — (m)) + (m)]
= (s = (m))(s; — (M) + (si = {m)) (m) + (8 = (m)) {m) + (m)*

Assume small fluctuations |s; — (m) | < 1 on average
— approximate by neglecting quadratic term

E = —ZS;SJ'—HZS,'
(i) i
— Ewr=-Y [(s,-+s,-) (m) — (mﬂ ~HY s

(i)
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Mean-field approximation alternate derivation (D. Tong section 5.2)

Eve == [(si+ ) (m) — (m)?] - HY s

(i)

Nearest-neighbour sum runs over d-N links

Includes both (s;+s;) — each spin appears 2d times in sum:

N
Eve = d-N(m)® — (2d (m) + H) > _s;

You can check Eyr is non-interacting — significant simplifications
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Mean-field approximation alternate derivation (D. Tong section 5.2)

Evr = d-N(m)? — (2d(m) + H) ) _s;

Repeating the derivation of Eq. 32 on pages 54-55 confirms our conjecture:
Zue(B8,N, H) = exp [~ BE]
{si}
:exp[ 3d-N{m } S Y epls2d (m) + H)(s1+ -+ sw)]

S1==41 sy==1

6/16



Mean-field approximation alternate derivation (D. Tong section 5.2)

Evr = d-N{(m)® — (2d (m) + H) > _s;

Repeating the derivation of Eq. 32 on pages 54-55 confirms our conjecture:

Z Z exp[B(2d (M) + H)(s1 + - - - + Sn)]

S1==41 sy==1

= ( > ep[s(2d (m) + H)S1]) X oo X ( > ep[s(2d (m) + H)SN])

s1=+1 sy==+1
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Mean-field approximation alternate derivation (D. Tong section 5.2)
Eve = d-N{(m)® — (2d (m) + H) > _s;
i
Repeating the derivation of Eq. 32 on pages 54-55 confirms our conjecture:

Zue(B, N, H) = exp | ~Bd-N (m ](Zexpw (2d (m >+H>s1>

s==+1

= exp [—ﬁdN(m)Z] (2cosh [B(2d (m) + H)] )N v

6/16



Magnetization in mean-field approximation (pages 143—144)
The mean-field partition function depends on the magnetization:

Zue(8) = exp | ~Ad-N (m)? ] (2cosh [3(2d (m) + H))"

What can we say about (m)?

7116



Magnetization in mean-field approximation (pages 143—144)
The mean-field partition function depends on the magnetization:

Zue(8) = exp | ~Bd-N ()] (2cosh [8(2d (m) + H)])"
What can we say about (m)?

N
1) Observe M =n, —n_= s; appears in full Ising model energy
i=1

E:—ZS/SI'—HZS/:—ZS/S]'—H-M

(i) i (i)

7116



Magnetization in mean-field approximation (pages 143—144)

1) E=-> ss—HM
(i)

’
2) Expectation value (M) = — > M exp[-BE]
{si}

L 0
related to derivative —- exp

°H ﬁZsisj+ﬁH-M

()

= BMexp BZS/Sj—I-ﬁH-M

()
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Magnetization in mean-field approximation (pages 143—144)

0
2) a—Hexp BZS,S,+5HM = BMexp

(i)

B sisi+ BH-M
(i)

3) Pull derivative outside sum over configurations:

1 11 0
M>:?ZMexp BZS;S,-—FBH-M Bz—HZexp |:BZS,S,+BHM
{si} (i) {si} (i)
11 0 10InZ 0
“GzoH "G oH ~ aH"
InZ

in terms of Helmholtz free energy F = ———

B
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Magnetization in mean-field approximation (pages 143—144)

We have (m) = <—%> = NiﬁaalLHZ

Apply the mean-field approximation

InZ — InZuyr = Nlincosh [5(2d (m) + H)] + { H-independent terms}
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Magnetization in mean-field approximation (pages 143—144)

We have (m>:<—M>—L8|nZ

N ~ NG oH

Apply the mean-field approximation

InZ — InZuyr = Nlincosh [5(2d (m) + H)] + { H-independent terms}

Result: 1 1 0
(m) = 5 cosh [3(2d (m) + H)] 0H cosh [5(2d (m) + H)]

— tanh [3(2d (m) + H)]

7116



Self-consistency condition for mean-field (m) (pages 144—145)

Find solutions of (m) = tanh [5(2d (m) + H)]
by plotting intersections of f(x) = x and g(x) = tanh[3(2d-x + H)]

(m) - - =
tanh((m))

First recall how tanh [(m)] looks: PSRN RN A _
Corresponds to

d=2 ’

_ _1
B=72=13 ~
H=0 —(m)=0 B B ]
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Self-consistency condition for mean-field (m) (pages 144—145)

Find solutions of (m) = tanh [5(2d (m) + H)]
by plotting intersections of f(x) = x and g(x) = tanh[3(2d-x + H)]

Positive H > 0 shifts tanh to left:

Corresponds to
d=2

1 _ 1
B=33=13

H=42  — (m)=+0.88
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Self-consistency condition for mean-field (m) (pages 144—145)

Find solutions of (m) = tanh [5(2d (m) + H)]
by plotting intersections of f(x) = x and g(x) = tanh[3(2d-x + H)]

Increasing 5 makes tanh steeper: ]

Corresponds to
d=2 0

_ 2 _ 1
b=33=3

H=+2 — (m) ~ +1 - ~ i T — -
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Self-consistency condition for mean-field (m) (pages 144—145)

Increasing 5 makes tanh steeper: 1

Corresponds to

d=2 0
5:%:%
H=+2 — (M) ~ +1 -l

(my - - -
tanh, H > 0
tanh, H < 0

Sufficiently large |H| — single solution to self-consistency condition:
ordered (m) ~ sign(H) in alignment with external field

8/16



Mean-field (m) temperature dependence (pages 145—146)

Consider H =0 for various temperatures

Disordered (m) =0 s
is always possible solution '~ T

Steeper tanh at lower temperature
— additional solutions (m) = +my

Approach ordered my —1 as T — 0

Not hard to see (m) = 0 solution unstable at low temperatures
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Mean-field (m) solution stability (page 146)

Not hard to see (m) =0 solution unstable

Start with (m) =0 !

Small positive fluctuation .

produces (m) < tanh

— (m) must increase further »
until it reaches (m) = my

at low temperatures

(my - - -
tanh, 7' = 2
tanh, 7' = 4

..................................................

.................................................
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Mean-field (m) solution stability (page 146)

Not hard to see (m) = 0 solution unstable at low temperatures

tanh — (m) ;zi
Start with (m) =0 -
Small iti ion
positive fluctuatio N N N
produces (m) < tanh < P2 X

= (m) must increase further
until it reaches (m) = my

Equivalentto tanh — (m) > 0 for small (m) >0
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Mean-field critical temperature (page 146)
Conclusion: Rapid change from disordered (m) = 0 to ordered |(m)| = my >0

Around (m) =

tanh(u) = u+ O (U°)

—

d
d(m)

tanh slope 2d-5 =1
1
predicts critical T, = 7 =2d

0,

tanh [2d- 8 (m)]

(m)=0

when tanh steeper than (m) around (m) =0

=2d-3

c

...................

....................
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Mean-field phase transition (pages 146—147)

Conclusion: Rapid change from disordered (m) = 0 to ordered |[(m)| =my >0

1

around f; = 5

Question: Is this rapid change a true phase transition?
Is there a discontinuity in the order parameter (m) or its derivative(s)?
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Mean-field phase transition (pages 146—147)

Conclusion: Rapid change from disordered (m) = 0 to ordered |[(m)| =my >0

1

around f; = 5

Question: Is this rapid change a true phase transition?

Is there a discontinuity in the order parameter (m) or its derivative(s)?

For 5 above but close to 5. we have 0 < |(m)| <« 1
and can expand the self-conistency equation,

(m) = tanh [2d-5 (m)) ~ 205 (m) ~ 1 (2d-5 (m))°
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Mean-field phase transition (pages 146—147)

Self-consistency equation: 2d-3—1= %(Zd-ﬁ)3 (m)?

Interms of T = % close to but lower than T, = 2d,

., 1(T\° .
T_1_§(7) i
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Mean-field phase transition (pages 146—147)

Self-consistency equation: 2d-3—1= %(Zd-ﬁ)3 (m)?

Intermsof T = % close to but lower than T, = 2d,
., 1(T\° .
7-1=5(%) m

3 2
Rearranging, (m?=3 <?T) <TC = T) = % (%) (Te—T)
(o] (o] (o]
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Mean-field phase transition (pages 146—147)

Self-consistency equation: 2d-3—1= %(Zdﬂ)3 (m)?

Intermsof T = % close to but lower than T, = 2d,
T, 1T, 2
To1=3(7) @
. o ST\ (T.—T\ 3 (T\°
Rearranging, (m*=3 <?C) 7 =% (T,—T)

2
with (L) ~1 we have (m) =+ i(TC— T2 for T< T,
Te 2d
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Mean-field phase transition (pages 146—147)

Conclusion: (m) = + % (Te—T)"2 for T<T,

The coefficient on page 147 is correct in d = 6 dimensions ;)

What matters is the critical exponent 1/2: op

(Te—T)2 forT<T.

Near the transition, (m)
0 forT> T,

psuciedu/~cya Lo T
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Mean-field phase transition (pages 146—147)

Conclusion: (m) = + % (Te—T)"2 for T<T,

The coefficient on page 147 is correct in d = 6 dimensions ;)

What matters is the critical exponent 1/2: op

(Te—T)2 forT<T.

Near the transition, (m)
0 forT> T,

psuciedu/~cya Lo T

The order parameter (m) is continuousat T = T,

d{m)

1
hil . : i -
while a7 & (7.~ T)1/2 diverges — predict second-order transition
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Accuracy of mean-field approximation (page 147)

Recap: Mean-field approximation predicts
* Second-order transition at critical 5, = oG
* Order parameter (m) oc (T, — T)'/? just below transition

Question: How accurate are these results?
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Accuracy of mean-field approximation (page 147)

Question: How accurate are these results?

For d =2 we have Onsager’s 1944 exact solution:
Second-order transition v

. In(1 . .
Critical f; = n(+\/§) ~ 0.44 almost twice mean-field 8, = o~ = 1

(m) oc (T, — T)'® — critical exponent 1/8
four times smaller than mean-field 1/2

So mean-field approximation predicts right qualitative behaviour
with significant quantitative shortcomings
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Accuracy of mean-field approximation (page 147)

Question: How accurate are these results?

For d =1 we have Ising’s 1925 exact solution:
No phase transition — mean-field approximation fails badly

If time permits, let’s solve the one-dimensional Ising model ourselves. ..
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d =1 Ising model exact solution (D. V. Schroeder section 8.2)

As before H = 0 is most interesting case, Z(B,N.H)=> exp {B > s,s,]
{si} (i)

Simplify by ‘unrolling’ spin chain:

Wikipedia

arXiv:0903.4881

Miss 1 of N links — accurate for large N
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d =1 Ising model exact solution (D. V. Schroeder section 8.2)

E=—(s15+ 5283+ -+ Sn_1Sn)
o—0O0—-~0------
Wikipedia
N, A Z Z Bs152gfs2Ss . .. gBSn-15N
sy==+1
Only last factor depends on sy:
If syoq = +1 ZSN:ﬂ gbsn-1sv — @b 4 =B
= 2cosh 3
If SN—1 g —1 ZSN::I:‘] e,BSN—1SN — efﬁ + eﬁ
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d =1 Ising model exact solution (D. V. Schroeder section 8.2)

E=—(515+ 8283+ -+ Sn_15n)
o—0O0—-~0------
Wikipedia
N, A Z Z Bs152gfs2Ss . .. gBSn-15N
sy==+1
Only last factor depends on sy:
If syoq = +1 ZSN:ﬂ gbsn-1sv — @b 4 =B
= 2cosh 3
If SN—1 g —1 ZSN::I:‘] e,BSN—1SN — efﬁ + eﬁ

Now Z = (2cosh ) 3° - 3 efoimeinss ... ghonasn

==+1 _q1==+1
g SN and we can repeat for sy_1
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d =1 Ising model exact solution (D. V. Schroeder section 8.2)
Result:

Wikipedia Z= Z (2 cosh B)N 2N (cosh B)N~

==+1

Restoring omitted link adds Nth cosh factor —s Z = (2cosh )"
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d =1 Ising model exact solution (D. V. Schroeder section 8.2)
Result:

Wikipedia Z= Z (2 cosh B)N 2N (cosh B)N~

==+1
Restoring omitted link adds Nth cosh factor —s Z = (2cosh )"

Internal energy: (E) = —% InZ = —Ntanh

Low temperatures 5 — oo give (E) — —N in ordered ground state
High temperatures 5 — 0 give (E) — 0 in disordered phase Vv

v
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d =1 Ising model exact solution (D. V. Schroeder section 8.2)
Result:

Wikipedia Z= Z (2 cosh B)N 2N (cosh B)N~

==+1
Restoring omitted link adds Nth cosh factor —s Z = (2cosh )"

Internal energy: (E) = _9 InZ = —Ntanh

9p

Low temperatures 5 — oo give (E) — —N in ordered ground state v
High temperatures 5 — 0 give (E) — 0 in disordered phase Vv

No discontinuity in (E) or its derivatives for T > 0 — smooth crossover
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Reuvisit accuracy of mean-field approximation

For d =1 mean-field approximation fails badly

For d =2 it predicts right qualitative behaviour
with significant quantitative shortcomings

Conjecture mean-field approximation more accurate as d increases
Justification: 2d neighbours — better averaging for larger d
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Reuvisit accuracy of mean-field approximation

For d =1 mean-field approximation fails badly

For d =2 it predicts right qualitative behaviour
with significant quantitative shortcomings

Conjecture mean-field approximation more accurate as d increases
Justification: 2d neighbours — better averaging for larger d

Conjecture turns out to be correct
Mean-field predicts correct critical exponents for d > 4
Mean-field exact reproduces Ising model in formal limit d — oo
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Reuvisit accuracy of mean-field approximation

For d =1 mean-field approximation fails badly

For d =2 it predicts right qualitative behaviour
with significant quantitative shortcomings

Conjecture mean-field approximation more accurate as d increases

Conjecture turns out to be correct
Mean-field predicts correct critical exponents for d > 4
Mean-field reproduces exact theory in formal limit d — oo

Numerical methods required to analyze d > 3...
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Wrap up

Mean-field approximation assumes small fluctuations on average
— omit interactions in Ising model

Produces self-consistency condition for magnetization order parameter

Predicts second-order transition at critical . = og

where (m) oc (T, — T)'/? with critical exponent 1/2

Accuracy of approximation improves as dimension d increases
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Wrap up

Mean-field approximation assumes small fluctuations on average
— omit interactions in Ising model

Predicts second-order transition at critical g, = oG

where (m) oc (T, — T)'/2 with critical exponent 1/2

Accuracy of approximation improves as dimension d increases
Fails badly compared to exact d =1 solution
Qualitatively but not quantitatively correct compared to exact d = 2 solution
Exactly reproduces Ising model in formal limit d — oo

Numerical methods required to analyze d > 3 Ising model
16/16



