New strong dynamics beyond the standard model

Lecture 2

9 November 2017

Last time

- The SM is an EFT valid up to some UV scale Λ_{SM}
- Dimensional analysis suggests high UV scales $\Lambda_i \gtrsim 10^{13} \text{ GeV}$

for rare processes like lepton and baryon number violation Dimensional analysis suggests a low UV scale $\Lambda_{SM} \sim 1-10$ TeV for EWSB

- A new strong interaction can dynamically generate the EW scale v = 246 GeV, and produce a natural hierarchy via near-conformality and dim'l transmutation
- A "scaled-up" copy of $N_F = 2$ QCD with chiral symm. breaking at f = 246 GeV predicts EWSB with correct $M_W = M_Z \cos \theta_W$ (due to SU(2) custodial symmetry)
- Scaled-up QCD has three big problems:
 - —Expect a scalar Higgs boson mass $m_{\sigma} \sim 5f \sim 1$ TeV
 - —Fermion masses from higher-dimensional operators $\sim \frac{1}{\Lambda_{UV}^2} (\overline{q}_R q_L) (\overline{Q}_R Q_L)$

in tension with flavor-changing neutral currents $\sim \frac{1}{\Lambda_{UV}^2} (\bar{q}_R q_L) (\bar{q}_R q_L)$

—Electroweak precision observables (especially the S parameter)...

A few more details about the S parameter

 \bullet Consider transverse vacuum polarization functions of W^a and photon

$$\int d^4x \ e^{-iq \cdot x} \left\langle J_X^{\mu}(x) J_Y^{\nu}(0) \right\rangle = i \Pi_{XY}^{\mu\nu}(q) = i \eta^{\mu\nu} \Pi_{XY}(q^2) + (q^{\mu}q^{\nu} \text{ terms})$$

• Expand four independent $\Pi_{XY}(q^2)$ for $q^2 \ll M_Z \ll \Lambda$ (using EM Ward identity):

$$\Pi_{ee}(q^2) = q^2 \Pi'_{ee}(0) + \mathcal{O}(q^4/\Lambda^2)$$

$$\Pi_{3e}(q^2) = q^2 \Pi'_{3e}(0) + \mathcal{O}(q^4/\Lambda^2)$$

$$\Pi_{11}(q^2) = \Pi_{11}(0) + q^2 \Pi'_{11}(0) + \mathcal{O}(q^4/\Lambda^2)$$

$$\Pi_{33}(q^2) = \Pi_{33}(0) + q^2 \Pi'_{33}(0) + \mathcal{O}(q^4/\Lambda^2)$$

Fix three of six parameters through α_{em} , G_F and M_Z (equivalently g_1, g_2 and v) • Traditional parameterization of remaining three is

$$S = 16\pi \left[\Pi'_{33}(0) - \Pi'_{3e}(0) \right]_{\text{new}}$$
$$T = \frac{4\pi}{\sin^2 \theta_W \cos^2 \theta_W M_Z^2} \left[\Pi_{11}(0) - \Pi_{33}(0) \right]_{\text{new}}$$
$$U = 16\pi \left[\Pi'_{33}(0) - \Pi'_{11}(0) \right]_{\text{new}}$$

• Subtract SM contributions so that non-zero values \longleftrightarrow BSM physics

A few more details about the S parameter (continued)

• Caveat: Some $\Pi''(0)$ combinations (Y and W) can be more important than $\Pi'(0)$ In SM-like EFTs, $\{S, T, Y, W\}$ correspond to dimension-6 operators

$$S \sim \frac{1}{\Lambda_{SM}^2} \left(H^{\dagger} \sigma_a H \right) W_{\mu\nu}^a B_{\mu\nu} \qquad \qquad T \sim \frac{1}{\Lambda_{SM}^2} \left| H^{\dagger} D_{\mu} H \right|^2$$
$$Y \sim \frac{1}{\Lambda_{SM}^2} \left(\partial_{\rho} B_{\mu\nu} \right)^2 \qquad \qquad \qquad W \sim \frac{1}{\Lambda_{SM}^2} \left(D_{\rho} W_{\mu\nu}^a \right)^2$$

The dimension-8 operator $U \sim \frac{1}{\Lambda_{SM}^4} \left(H^{\dagger} W^a_{\mu\nu} H \right)^2$ is generally much smaller

- Global EW fit with fixed U = 0 gives S = 0.07(8) and T = 0.10(7)
- Can rewrite $T \propto \left[\frac{\Pi_{WW}(0)}{M_W^2} \frac{\Pi_{ZZ}(0)}{M_Z^2}\right]_{\text{new}} \longrightarrow$ measures custodial symmetry violation
- S measures 'size' of EWSB sector. Rewrite as $S = 4\pi \left[\Pi'_{VV}(0) \Pi'_{AA}(0)\right]$

$$\implies S = 4 \int \frac{ds}{s} \operatorname{Im} \left[\Pi'_{VV}(s) - \Pi'_{AA}(s) \right] = \frac{1}{3\pi} \int \frac{ds}{s} \left[R_V(s) - R_A(s) \right]$$

Can compute QCD $R_V(s)$ and $R_A(s)$ from $e^+e^- \rightarrow$ hadrons data Appropriately 'scaling up' the results gives $S \simeq 0.4$, strongly ruled out

• Note added: Need to subtract $\Delta S \sim \log \left(M_H^2 / M_\pi^2 \right)$ from eaten $M_\pi = 0$ NGBs Can be made more systematic through SU(2) chiral perturbation theory, $S = \frac{1}{12\pi} \left[-192\pi^2 \ell_5^r(\mu) + \log \left(\mu^2 / m_H^2 \right) - \frac{1}{6} \right]$ with μ rescaled by v_{EW} / f_π

The FLAG review reports $\ell_5^r(M_\rho) \approx -0.005 \Longrightarrow S \approx 0.4$

Pseudo-NGB composite Higgs

- SM does not suffer from these problems
 ⇒ It should help to keep composite Higgs light while making all else heavier
- In principle we can obtain such a hierarchy by making the composite Higgs a pseudo-NGB of an approximate symmetry
- Won't discuss case of 'dilaton' Higgs from approximate conformal symmetry A focus of my current lattice research, but harder to handle analytically
- Instead focus on composite Higgs as PNGB of *internal* global symmetry

Effective lagrangians for PNGBs (CCWZ construction)

- Callan, Coleman, Wess and Zumino (1969 & 1969) give general construction of effective lagrangians for (P)NGBs from $\mathcal{G} \to \mathcal{H}$ symmetry breaking at scale f
- NGBs Π^a contained in the coset \mathcal{G}/\mathcal{H} , transform in reps of \mathcal{H} Parameterize as fluctuations around symmetry-breaking vacuum Σ_0 , $\Sigma = \exp\left[i\sqrt{2}T_a\Pi^a(x)/f\right]\Sigma_0$ where T_a are **broken** generators of \mathcal{G}
- For scaled-up QCD, $\mathcal{G} = \mathrm{SU}(2)_L \times \mathrm{SU}(2)_R \times \mathrm{U}(1)_B \longrightarrow \mathcal{H} = \mathrm{SU}(2)_V \times \mathrm{U}(1)_B$ Since we identify weak $\mathrm{SU}(2)_L \subset \mathcal{G}$ while $\mathrm{U}(1)_Y \subset \mathrm{SU}(2)_R$ and $\mathrm{U}(1)_{em} \subset \mathrm{SU}(2)_V$ $G \to H$ breaks electroweak symmetry with f = v and $m_\sigma/f \simeq 5$
- The alternative is for the **strong** dynamics to preserve $SU(2)_L \times U(1)_Y \subseteq \mathcal{H}$ To protect T = 0, helps to preserve larger custodial $SU(2)_L \times SU(2)_R \subseteq \mathcal{H}$
- We want the NBGs in \mathcal{G}/\mathcal{H} to include a SM-like Higgs doublet Complex Higgs doublet in $2_{1/2}$ rep of $\mathrm{SU}(2)_L \times \mathrm{U}(1)_Y$ corresponds to real $(H, i\sigma_2 H^*)$ in **bidoublet** (2, 2) rep of $\mathrm{SU}(2)_L \times \mathrm{SU}(2)_R$
- $\Longrightarrow \mathcal{G}$ has at least four more generators than \mathcal{H} \Longrightarrow Gauging only $\mathrm{SU}(2)_L \times \mathrm{U}(1)_Y \subseteq \mathcal{H}$ explicitly (but **weakly**) breaks \mathcal{G} \Longrightarrow Potential (including mass) for all but the three NGBs eaten through EWSB
- Need to check that PNGB Higgs potential \longrightarrow EWSB with correct v and M_H \implies Radiative corrections from SM fields misalign vacuum away from Σ_0

(Too-)Minimal (custodial) Composite Higgs Model

- Smallest custodial $\mathcal{H} = \mathrm{SU}(2)_L \times \mathrm{SU}(2)_R \sim \mathrm{SO}(4)$ with six generators Smallest coset $\mathcal{G}/\mathcal{H} \ni$ four NGBs in (2, 2) rep of $\mathrm{SU}(2)_L \times \mathrm{SU}(2)_R \to 4$ of $\mathrm{SO}(4)$ \implies Minimal possibility is $\mathcal{G} = \mathrm{SO}(5)$ with ten generators
- CCWZ parameterization of four NGBs h^a is $\Sigma(x) = \exp\left[i\sqrt{2}T_ah^a(x)/f\right]\left(\vec{0},1\right)^T$ Broken generators T^a rotate between SO(4) subgroup and fifth component:

$$\Sigma = \begin{pmatrix} \dots & \frac{h^a}{h} \sin\left(\frac{h}{f}\right) \\ -\frac{h^a}{h} \sin\left(\frac{h}{f}\right) & \cos\left(\frac{h}{f}\right) \end{pmatrix} \begin{pmatrix} \vec{0} \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{h^a}{h} \sin\left(\frac{h}{f}\right) \\ \cos\left(\frac{h}{f}\right) \end{pmatrix} \qquad h \equiv \sqrt{h^a h^a}$$

Can check $\lim_{h\to 0} \Sigma = \Sigma_0$ or explicitly use fund.-rep $T_{IJ}^a = -\frac{i}{\sqrt{2}} \left(\delta_I^a \delta_J^5 - \delta_J^a \delta_I^5 \right)$

• h^a in vector rep of SO(4) \longrightarrow SU(2)_L × SU(2)_R bidoublet $\frac{1}{h} \begin{pmatrix} h^1 - ih^2 \\ h^3 - ih^4 \end{pmatrix} \checkmark$

Explicit \mathcal{G} breaking

- CCWZ provides procedure to incorporate explicit \mathcal{G} breaking discussed above Spurion trick: Gauge full \mathcal{G} , decompose into reps of \mathcal{H} , set to physical value
- For NGBs, decomposition yields expected SO(4)-vector part of Σ :

$$\widehat{\Sigma} = \frac{h^a}{h} \sin\left(\frac{h}{f}\right) \longrightarrow \sin\left(\frac{h}{f}\right) \frac{1}{h} \left(\begin{array}{c} h^1 - ih^2\\ h^3 - ih^4 \end{array}\right)$$

• For now, **assume** non-zero vev that we can rotate to be

$$\langle h^a \rangle = (0, 0, \langle h \rangle, 0)^T \qquad \Longrightarrow \left\langle \widehat{\Sigma} \right\rangle = \sin\left(\frac{\langle h \rangle}{f}\right) \begin{pmatrix} 0\\ 1 \end{pmatrix}$$

usual $\mathcal{L}_2 = \frac{f^2}{4} \operatorname{Tr}\left[D_\mu \Sigma^T D^\mu \Sigma\right] \implies M_W = \frac{1}{2}g_2 f \sin\left(\frac{\langle h \rangle}{f}\right) \text{ and } M_Z = \frac{M_W}{\cos\theta_W}$

• Then usual $\mathcal{L}_2 = \frac{f^2}{4} \operatorname{Tr} \left[D_\mu \Sigma^T D^\mu \Sigma \right] \implies M_W = \frac{1}{2} g_2 f \sin \left(\frac{\langle h \rangle}{f} \right)$ and $M_Z = \frac{M_W}{\cos \theta_W}$ $\implies v = f \sin \left(\frac{\langle h \rangle}{f} \right) \leq f$ of scaled-up QCD

Decoupling limit

- In decoupling limit $f \to \infty$ we have $v = \langle h \rangle + \mathcal{O}\left(\langle h \rangle^3 / f^2\right)$ and recover SM! \implies All deviations from SM should depend on $\xi \equiv \frac{v^2}{f^2} = \sin^2\left(\frac{\langle h \rangle}{f}\right) \leq 1$ (no decoupling limit for scaled-up QCD or dilatonic Higgs)
- Easy to confirm for Higgs couplings to V = W, Z that also come from \mathcal{L}_2 Expanding $h = (0, 0, \langle h \rangle + \phi, 0)^T$ around vev,

$$f^{2} \sin^{2}\left(\frac{h}{f}\right) = f^{2} \sin^{2}\left(\frac{\langle h \rangle}{f}\right) + 2f \sin\left(\frac{\langle h \rangle}{f}\right) \cos\left(\frac{\langle h \rangle}{f}\right) \phi + \left[1 - 2\sin^{2}\left(\frac{\langle h \rangle}{f}\right)\right] \phi^{2} + \mathcal{O}\left(\phi^{3}/f\right)$$
$$= v^{2} + 2v\sqrt{1 - \xi}\phi + (1 - 2\xi)\phi^{2} + \mathcal{O}\left(\phi^{3}/f\right)$$
$$\implies \text{Couplings between vector bosons and one or two Higgs bosons modified by}$$

$$\kappa_{VVh} \equiv \frac{g_{VVh}}{g_{VVh}^{\rm SM}} = \sqrt{1-\xi} \qquad \qquad \kappa_{VVhh} \equiv \frac{g_{VVhh}}{g_{VVhh}^{\rm SM}} = 1-2\xi$$

LHC phenomenology \implies need $\xi \lesssim 0.1$ (PDG 2016)

• Generality of CCWZ construction \implies decoupling is '**universal**' result Generic feature of dozens of $\mathcal{G} \rightarrow \mathcal{H}$ composite Higgs models studied in literature

Radiative EWSB via vacuum misalignment

- Still need to ensure EWSB via vacuum misalignment $\longrightarrow \langle h \rangle \neq 0$ \implies Higgs potential should be periodic function of "misalignment angle" h/f
- Higgs potential $V(H^{\dagger}H)$ corresponds to one-loop Coleman–Weinberg potential resumming diagrams with *n* insertions of *VVhh* vertex $\Gamma_{\mu\nu}$

$$\Gamma_{\mu\nu}(q^2) = \frac{1}{4} \left(\eta^{\mu\nu} - \frac{q_\mu q_\nu}{q^2} \right) \Pi_{U-B}(q^2) \sin^2\left(\frac{h}{f}\right)$$

(Note added: CW potential is sum of all 1PI diagrams with n external $H^{\dagger}H$ lines)

- $\Pi_{U-B}(q^2)$ is difference between two-point functions along unbroken ("U") and broken ("B") directions (for QCD-like symmetry breaking U = V are vector generators and B = A are axial) Depends on strong dynamics \longrightarrow model-dependent and not analytically calculable Should vanish at high energies $Q^2 \gg f^2 \longrightarrow$ reasonable for integral to be finite
- Resumming produces log, which we expand to leading order: $(Q^2 = -q^2)$ $V(h) = \frac{1}{2} \int \frac{d^4Q}{(2\pi)^4} \log \left[1 + \frac{3g_2^2 + g_1^2}{4Q^2} \Pi_{U-B}(Q^2) \sin^2\left(\frac{h}{f}\right) \right] \simeq c_V \sin^2\left(\frac{h}{f}\right)$ $c_V = \frac{3g_2^2 + g_1^2}{8(16\pi^2)} \int_0^\infty dQ^2 \Pi_{U-B}(Q^2)$ (factors of 2 questionable but irrelevant)
- Witten's inequality implies integral is generically **positive** \implies Vacuum alignment: potential minimized at $\langle h \rangle = 0$, no EWSB
- Even if sign were negative, minimum would be at $\xi = \sin^2\left(\frac{\langle h \rangle}{f}\right) = 1 \longrightarrow$ ruled out

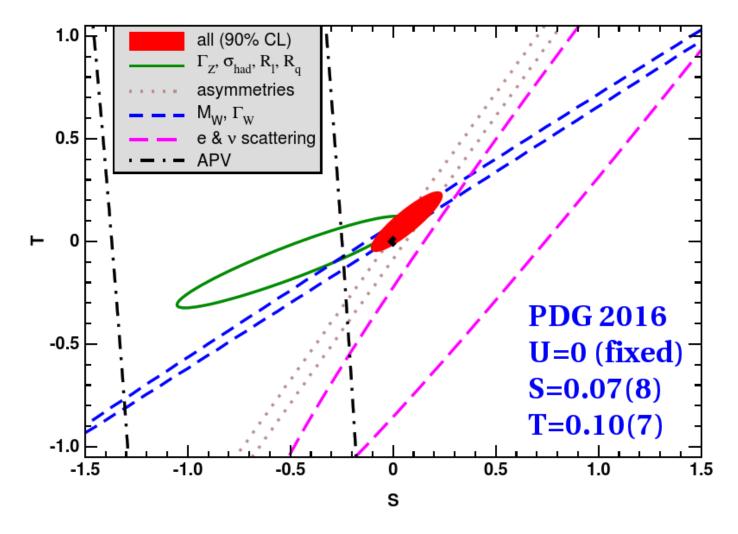


Figure 1: Current experimental constraints on the electroweak S and T parameters, from a global electroweak fit (with fixed U = 0) reported in the 2016 Review of Particle Physics.

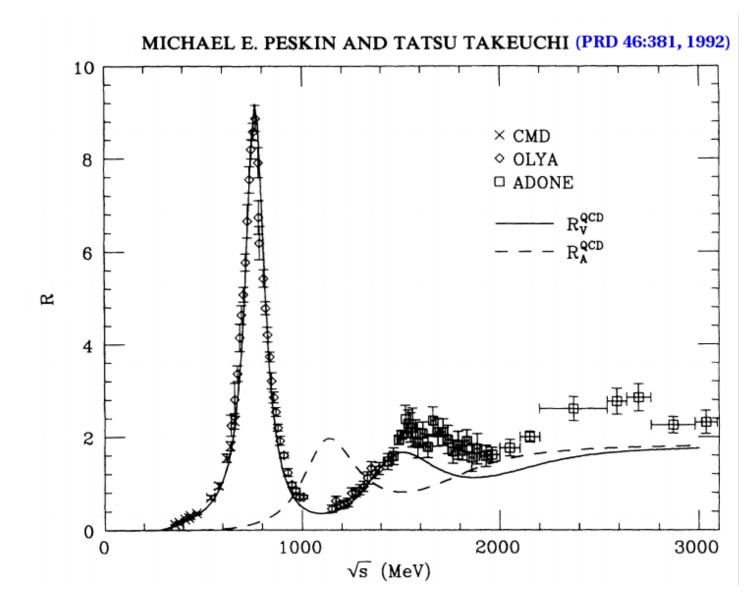


Figure 2: Vector and axial-vector spectral functions $(R_V(s) \text{ and } R_A(s), \text{ respectively})$ for QCD, from Peskin & Takeuchi, 1992. R_V is determined by fitting experimental data for the production of even numbers of pions in e^+e^- annihilation. For $\sqrt{s} \leq M_\tau \approx 1.8$ GeV R_A is determined by fitting experimental data for τ decays to odd numbers of pions; it is then extrapolated to higher energies. The data points are for the total $R(s) = R_V(s) + \frac{1}{4}\Pi'_{YY}(s)$. As expected $R_V(s) - R_A(s) \to 0$ as \sqrt{s} increases.