Physics 8.324, Fall 2007 Homework #5

Due Wednesday, December 12 by 4:00 PM in the 8.323 homework box.

- 1. Peskin and Schroeder problem 15.1 (parts c, d)
- 2. Peskin and Schroeder problem 15.2
- 3. Peskin and Schroeder problem 15.3
- 4. Peskin and Schroeder problem 15.5
- 5. Fun with SU(3) representations: In this problem we use the methods developed in class to look further into some SU(3) representations.
 - a) Given a highest weight state $|\mu\rangle$ for an irreducible representation of SU(3) with $\mu_{\beta} = 1, \mu_{-\gamma} = 1/2$, determine the weights appearing in this irreducible representation by completing each irrep of the SU(2) subgroups generated by $e_{\pm\alpha}, e_{\pm\beta}, e_{\pm\gamma}$.
 - b) Determine the multiplicities at each weight for the irrep of part a). Hint: you can do this by first constructing all states at a given weight which can be realized by a product of "lowering" operators (those corresponding to the adjoints e_{γ} , $e_{-\beta}$ of the generators associated with the simple roots β , $-\gamma$) on the highest weight state. Then determine the degeneracy at this level by computing the matrix of norms for these states, using $\langle \mu | \mu \rangle = 1$ and the commutation relations between the raising and lowering operators.
 - c) The tensor product of two representations R, R' is given by taking all states $|\nu, \nu'\rangle$ where $|\nu\rangle$ is a state in R and $|\nu'\rangle$ is a state in R', acted on by the generators $T_{R\otimes R'} = T_R \otimes 1 + 1 \otimes T_{R'}$. The weight of the tensor product state is thus just the sum of weights $\nu + \nu'$. Consider the tensor product of the fundamental and adjoint SU(2) representations. Construct the set of weights and associated multiplicities. Decompose into a sum of irreducible representations by subtracting the irrep associated with the highest weight in the tensor product iteratively until all multiplicities of each weight are incorporated into a component irrep.