Comments on gauged spontaneous symmetry breaking (28 Sept. 2012)

Breaking An important result in these chapters (which first appears in the context of global
symmetry breaking in chapter 32) is that a generator 7" is broken if T};v; # 0 and unbroken
if T;;v; = 0, where v; is the vev of field ¢;. This bears some resemblance to our discussion
of BRST symmetry last week, in which the physical states were annihilated by the BRST
charge due to their gauge invariance. In this case the state of interest is the vacuum, which
any unbroken generators T' (corresponding to preserved symmetries) must annihilate. (I'm
fairly confident it is still correct to refer to the vacuum as a closed state in the kernel of these
T even if the T are not nilpotent.)

Goldstones Another important result that first appeared in chapter 32 is that each broken gen-
erator results in a massless (Nambu-)Goldstone boson. Goldstone, Salam and Weinberg
presented three proofs of this statement in 1962, one perturbative and two more general.
Srednicki goes through (what I find) the simplest of these proofs by deriving
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for the potential V and generator T. The vacuum ¢; = v; minimizes V, 22| = 0, while
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is unbroken Tjzvi, = 0 and we're done. If it’s broken, then Tj,v;, # 0 is an eigenvector of
the mass-squared matrix with eigenvalue zero, corresponding to a massless particle. There
are of course some caveats (in particular, we need to establish that this classical effective
potential obeys the same symmetries as the quantum action). (Peskin & Schroeder present
the current-conservation proof, also in a way that looks much simpler than my notes from
lain’s Weinberg-based class. Weinberg2 goes through both of these in section 19.2.)

SO (m2)ij Tjrvi, = 0 for any generator. If the corresponding symmetry

Eating When the broken symmetry that would produce a Goldstone is gauged, the gauge-covariant
derivatives in the Higgs field kinetic term produce a mass term for the gauge field, as well
as a cross term between the gauge field and the derivative of the would-be-Goldstone field.
Fixing to R gauge cancels that cross term, and gives the would-be Goldstone an unphysical &-
dependent mass (= gv+/€), so that the would-be Goldstone vanishes in unitary gauge £ — oo.
Because we're theorists, we just say that the gauge field “eats” the would-be Goldstone to
become massive (and gain a longitudinal degree of freedom). This gives us the same number
of degrees of freedom with or without spontaneous symmetry breaking.

Components Although the massive vector field now has three degrees of freedom, we are still
packing it into a four-component object. Oliver pointed out that the fourth degree of freedom
is now killed off by the equation of motion. In the abelian case, the equation of motion gives
M?9” A, = 0, which provides a single constraint if the vector field mass M? = g?v? # 0, and
no constraint if M? = 0.
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Subgroups There is a straightforward but somewhat messy procedure to determine how a given
representation of a given group transforms under a given subgroup, which probably is not
worth going through in complete detail (though some rules for manipulating Young tableaux
may be useful). Sometimes the result is “intuitively obvious”, as in the case Oliver put on
the board: 5 — (3,1,—1) ® (1,2,3) for SU(5) — SU(3)xSU(2)xU(1) by the vev (¢) =

diag(—%, —%, —%, %, %) For a simple but fun example of something you might not find in-

tuitively obvious, I posted solutions to a pair of group theory problems showing that the
fundamental and adjoint representations of SU(3) each transform differently under two differ-

ent SU(2) subgroups of SU(3).

Unitary gauge I liked Srednicki’s explanation in chapter 85 for the difficulty of establishing
renormalizability in unitary gauge: the absence of ghost kinetic terms and the projector
(g“” + ’“]\“4—’2”) in the massive vector field propagator result in both ghost and vector prop-
agators scaling like M~2 at large momenta, so that simple power-counting arguments for
renormalizability would blow up. I had also forgotten that unitary gauge is equivalent to R,

gauge with & — oo.

Gauges Oliver argued that these examples illustrate why it can be useful to study multiple choices
of gauge: unitary gauge makes it easier to identify the physical degrees of freedom but harder
to carry out loop calculations, and vice-versa in R gauge with £ = 1.



