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Outline

» Ising Model: A simple model of a magnet
Phases, phase transitions, and a context for...

> Numerical (lattice) simulations
The rather large problem of very large numbers

» Markov Chain Monte Carlo

Efficient 'importance sampling'

> ¢* Theory (time permitting)
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I[sing Model

Imagine a lattice of 'spins' of magnitude 1 that can
only point up (+1) or down (-1).
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Spins correspond to magnetic dipoles at
temperature T.

Energy: E =—<Z> s;s,  (only nearest neighbors
| interact)
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I[sing Model

Imagine a lattice of 'spins' of magnitude 1 that can
only point up (+1) or down (-1).
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Parallel spins have lower energy, but thermal
energy causes fluctuations that randomize the
lattice — if the temperature is high enough.
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I[sing Model Phases

Thus the Ising model has two phases:

ferromagnetic
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@ Spins aligned
@ Lower energy
@ Higher magnetization

Equilibrium for
low temperatures

unordered
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@ Spins unordered
@ Higher energy
@ Lower magnetization

Equilibrium for
higher temperatures
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Ising Model Phase Transitions

ferromagnetic unordered
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Ising Model Phase Transitions

Phase transition becomes sharp as lattice size L=
(equivalent to lattice spacing a=0).

Point at which phase transition occurs is 'critical temperature'
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Numerical Simulations

How to calculate those pretty graphs on the previous slide?

Idea #1: Set up each possible configuration, calculate the
desired quantity and weigh it by its Boltzmann probability

Z Qie—E,./kT
(Q)= iz Ei (See Physics 30)

i
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Numerical Simulations

Idea #1: Set up each possible configuration, calculate the
desired quantity and weigh it by its Boltzmann probability

Z 0, e—E,./kT

(Q)= "Z —_ (See Physics 30)
F

i

Problem #1: This isn't practical.

Example: Even a very small (16x16) Ising lattice has ~2°*°
(~10”") configurations, which will take at least ~10% years to
fully calculate.

It gets even worse for moderately-sized (512x512) lattices

(~107 years) or small thermodynamic systems (NlOlO23 years)
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Numerical Simulations

Idea #1: Set up each possible configuration, calculate the
desired quantity and weigh it by its Boltzmann probability

Z 0, e—Ei/kT

(Q)= Z —_ (See Physics 30)
F

i

Problem #1: This isn't practical.

Example: Even a very small (16x16) Ising lattice has ~2°*°
(~10”") configurations, which will take at least ~10% years to
fully calculate.

It gets even worse for moderately-sized (512x512) lattices

(~107 years) or small thermodynamic systems ( NIOIO years)
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Numerical Simulations

Idea #1: Set up each possible configuration, calculate the
desired quantity and weigh it by its Boltzmann probability

Z 0. o~ BT

(Q)= "Z —_ (See Physics 30)
F

Problem #2: This is just silly

Generally only a verp small proportion of the possible states
actually matter. It's a waste of time to worry about the others.
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Importance Sampling

Idea #2: Only sample the important states: instead of
considering every state and then weighing by its Boltzmann
factor, only worry about those states with sufficiently large
probabilities.

This 1s known as 'importance sampling.'
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Importance Sampling

Idea #2: Only sample the important states: instead of
considering every state and then weighing by its Boltzmann
factor, only worry about those states with sufficiently large
probabilities.

This 1s known as 'importance sampling.'

Complication: How to determine which states matter without
checking all of them?
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Markov Processes

Markov processes are ways to generate a random set of states
according to the Boltzmann probabilities. (Proof left to reader)

But what are Markov processes?

David Schaich Preliminary Thesis Talk - 29 November 2005

14



Markov Chain Monte Carlo

Given an mitial state X, a Markov process randomly generates a
new state Y with 'transition probability' P(X—Y).

This series of states produced by the Markov process 1s known
as a 'Markov chain.'

Because of its use of randomness, this approach 1s known as the
'Markov Chain Monte Carlo (MCMC) method' in honor of the
famous casino center in Monaco.

To reproduce the Boltzmann distribution, the Markov process
needs to satisfy three conditions.
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Markov Chain Monte Carlo

Three conditions guarantee Boltzmann distribution:

1) P(X—Y) can depend only on X and Y — in particular, none
of the previous states can influence the transition probability to
the next state (hence 'chain').
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Markov Chain Monte Carlo

Three conditions guarantee Boltzmann distribution:

1) P(X—Y) can depend only on X and Y — in particular, none
of the previous states can influence the transition probability to
the next state (hence 'chain').

2) It must be possible to reach any state from any other state
(possibly passing through intermediate states), since Boltzmann
factors are always greater than zero. (“Ergodicity”)
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Markov Chain Monte Carlo

Three conditions guarantee Boltzmann distribution:

1) P(X—Y) can depend only on X and Y — in particular, none
of the previous states can influence the transition probability to
the next state (hence 'chain').

2) It must be possible to reach any state from any other state
(possibly passing through intermediate states), since Boltzmann
factors are always greater than zero. (“Ergodicity”)

3) The probability of going from X to Y must be the same as
the probability of going from Y to X:

pXP(X_—)Y)=pYP<Y__)X)

where p and p are the probabilities of actually being in states

X and Y, respectively. (“Detailed Balance”)
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Markov Chain Monte Carlo

Three conditions guarantee Boltzmann distribution:

1) P(X—Y) can depend only on X and Y — in particular, none
of the previous states can influence the transition probability to
the next state (hence 'chain').

2) It must be possible to reach any state from any other state
(possibly passing through intermediate states), since Boltzmann
factors are always greater than zero. (“Ergodicity”)

3) The probability of going from X to Y must be the same as
the probability of going from Y to X:
P(X—-Y) py

X

where p and p are the probabilities of actually being in states

X and Y, respectively. (“Detailed Balance”)

David Schaich Preliminary Thesis Talk - 29 November 2005

19



¢* Theory (in 2-D)

1

Lagrangian (density): L=—(0,p)+ % u’ g’ +% N

(pER)

2

David Schaich
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Discretized ¢* Theory (in 2-D)

Lagrangian (density): 3=%(aa d)+ % u’ g+ A </>4
(PER)
Discretized action (energy): =—> ¢, b, +Z[ 2+ﬂ )b +—<l> M
(i, )
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Discretized ¢* Theory (in 2-D)

Lagrangian (density): 3=%(aa¢)2+%u2¢2+3¢4
(PER)
Discretized action (energy): Z b P, +Z[ 2+ﬂ )b +—c/> 1

i, j)

(In case you're wondering how the action became the energy, I
should mention that discretizing the action involves making a
Wick rotation (t —» 4£), which changes Minkowski space into
Euclidean space and identifies the action and energy. It's a bit
too messy for the time I have.)
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Discretized ¢* Theory Parameters

Lagrangian (density): 3=%(aa¢)2+%u2¢2+3¢4
(PER)
Discretized action (energy): Z b P, +Z[ 2+ﬂ )b +—c/> 1

i, j)

(In case you're wondering how the action became the energy, I
should mention that discretizing the action involves making a
Wick rotation (t —» 4£), which changes Minkowski space into
Euclidean space and identifies the action and energy. It's a bit
too messy for the time I have.)

The discretized theory is characterized by two independent
dimensionless parameters that depend on the lattice spacing a:

HoL=Hod’
A,=Aa’

(both u02 and A have dimensions of mass squared)
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Discretized ¢* Theory Phase Transition

u
== 2 dub,t 2 [(2+3) ¢+—¢]
i, 77
As with the Ising model, ¢* theory also exhibits a phase transition,
with a critical u20L for each A > 0.

LAverage b vs. ugl_ for A, = 0.05 (512 512 8192 8192)
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Discretized ¢* Theory Continuum Limit

E==2, dib+ 2 2+— )i+ ]

However, we're interested in the continuum theory (a=0). Since

the dimensionless parameters depend on the lattice spacing,
this presents a problem:

: 2 _1: 2 2
lim, o ug.=lm, o pga"=0

lim, ,,A,=lim, ,Aa’=0
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Discretized ¢* Theory Continuum Limit

E==2, dib+ 2 2+— )i+ ]

However, we're interested in the continuum theory (a=0). Since

the dimensionless parameters depend on the lattice spacing,
this presents a problem:

lim, ,, ug =lim, ., puea’=0
lim, ,,A,=lim, ,Aa’=0
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Discretized ¢* Theory Continuum Limit

E=— <Z>¢ b, +Z[ 2+— )b, +—<l>]

However, we're interested in the continuum theory (a=0). Since
the dimensionless parameters depend on the lattice spacing,
this presents a problem:

lim, ,, po =lim, , usa’=0
lim, ,A,=lim,  Aa’=0
Solution:

Introduce dimensionless critical coupling constant:
[A/I’lz]crit=lima——>0 [AL/ui]crit

The continuum theory is characterized by this single parameter.

(/,12L is the renormalized version of uZOL — no time to cover that subject)
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Discretized ¢* Theory Continuum Limit

E=— <Z>cl> b, +Z[ 2+— )b, +—<l>]

However, we're interested in the continuum theory (a=0). Since
the dimensionless parameters depend on the lattice spacing,
this presents a problem:

c 2 _1: 2 2 __
lim, ,po=lm,  ,pu,a" =0

lim, ,A,=lim,  Aa’=0

Solution:
Introduce dimensionless critical coupling constant:

[A/uz]critzlima—ao [AL/ui]crit

The continuum theory is characterized by this single parameter.

(/,12L is the renormalized version of uZOL — no time to cover that subject)
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Preliminary Results

Critical coupling constant
is inverse of slope:

David Schaich
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Preliminary Results

Critical coupling constant
is inverse of slope:

[A/p*],,=10.27 1%
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Preliminary Results

[A/H ]crzt_lo 27+ 06

0.2 0.4 0.6 0.8 1
Published Results:
o
0.08}
.06 [A/u’],,=10.26"",
o odl
0.02
02 04 0s o 1

W. Loinaz & R. S. Willey, Phys. Rev. D. 538, 076003 (1998).
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Future Plans

> Polish up result on previous slide

» Calculate critical coupling constant for
four-dimensional ¢* theory

» Calculate soliton masses in two-
dimensional ¢* theory

- Time permitting, calculate soliton
masses in four-dimensional ¢* theory
and other simple nonperturbative field
theories
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