Life on the Lattice Markov Chain Monte Carlo and all that

David Schaich
Advisor: Prof. Loinaz

Preliminary Thesis Talk
Amherst College
29 November 2005

Outline

- Ising Model: A simple model of a magnet Phases, phase transitions, and a context for...
- Numerical (lattice) simulations

The rather large problem of very large numbers

- Markov Chain Monte Carlo

Efficient 'importance sampling'

- ϕ^{4} Theory (time permitting)

Ising Model

Imagine a lattice of 'spins' of magnitude 1 that can only point up $(+1)$ or down (-1).

$$
\begin{array}{llll}
1 & \downarrow & 1 & \downarrow \\
1 & 1 & 1 & 1 \\
\downarrow & 1 & \downarrow & 1 \\
\downarrow & \downarrow & \downarrow
\end{array}
$$

Spins correspond to magnetic dipoles at temperature T .
Energy: $\quad E=-\sum_{(i, j)} s_{i} s_{j} \quad$ (only nearest neighbors interact)

Ising Model

Imagine a lattice of 'spins' of magnitude 1 that can only point up $(+1)$ or down (-1).

Parallel spins have lower energy, but thermal energy causes fluctuations that randomize the lattice - if the temperature is high enough.

Ising Model Phases

Thus the Ising model has two phases:
ferromagnetic

- Spins aligned
- Lower energy
- Higher magnetization

Equilibrium for
low temperatures
unordered

```
\uparrow \ \ \downarrow
1 1 \ 1
1 \downarrow 1 \downarrow
\downarrow \ \downarrow \downarrow
```

- Spins unordered
- Higher energy
- Lower magnetization

Equilibrium for
higher temperatures

Ising Model Phase Transitions

ferromagnetic

¢ \uparrow ¢	
	1 1 1
	1 1 1
	\uparrow

Energy: $\quad e=\frac{E}{N}=\frac{-1}{N} \sum_{\langle i, j\rangle} s_{i} s_{j}$

Energy vs. Temperature - Wolff 32321638416384

unordered

† \downarrow † \downarrow	
	$1 \uparrow \downarrow$
	$1 \downarrow 1 \downarrow$
	$\downarrow \uparrow \downarrow$

Magnetization vs. Temperature - Wolff 32321638416384

Ising Model Phase Transitions

Phase transition becomes sharp as lattice size $\mathrm{L} \rightarrow \infty$ (equivalent to lattice spacing $\mathrm{a} \rightarrow 0$).

Point at which phase transition occurs is 'critical temperature'

$$
T_{c}=\frac{2}{\ln (1+\sqrt{2})}=2.269
$$

Numerical Simulations

How to calculate those pretty graphs on the previous slide?
Idea \#1: Set up each possible configuration, calculate the desired quantity and weigh it by its Boltzmann probability

$$
\langle Q\rangle=\frac{\sum_{i} Q_{i} e^{-E_{/ / k}}}{\sum_{i} e^{-E_{i} / k T}} \quad \text { (See Physics 30) }
$$

Numerical Simulations

Idea \#1: Set up each possible configuration, calculate the desired quantity and weigh it by its Boltzmann probability

$$
\langle Q\rangle=\frac{\sum_{i} Q_{i} e^{-E_{/} / k T}}{\sum_{i} e^{-E_{i} / k T}} \quad \text { (See Physics 30) }
$$

Problem \#1: This isn't practical.
Example: Even a very small (16x16) Ising lattice has $\sim 2^{256}$ $\left(\sim 10^{77}\right)$ configurations, which will take at least $\sim 10^{60}$ years to fully calculate.

It gets even worse for moderately-sized (512×512) lattices $\left(\sim 10^{78,900}\right.$ years $)$ or small thermodynamic systems $\left(\sim 10^{10^{23}}\right.$ years $)$

Numerical Simulations

Idea \#1: Set up each possible configuration, calculate the desired quantity and weigh it by its Boltzmann probability

$$
\langle Q\rangle=\frac{\sum_{i} Q_{i} e^{-E_{l} / k T}}{\sum_{i} e^{-E_{i} / k T}} \quad \text { (See Physics 30) }
$$

Problem \#1: This isn't practical.
Example: Even a very small (16x16) Ising lattice has $\sim 2^{256}$ $\left(\sim 10^{77}\right)$ configurations, which will take at least $\sim 10^{60}$ years to fully calculate.

It gets even worse for moderately-sized (512x512) lattices $\left(\sim 10^{78,900}\right.$ years $)$ or small thermodynamic systems $\left(\sim 10^{10^{23}}\right.$ years $)$

Numerical Simulations

Idea \#1: Set up each possible configuration, calculate the desired quantity and weigh it by its Boltzmann probability

$$
\langle Q\rangle=\frac{\sum_{i} Q_{i} e^{-E_{i} / k T}}{\sum_{i} e^{-E_{i} / k T}} \quad(\text { See Physics } 30)
$$

Problem \#2: This is just silly
Generally only a very small proportion of the possible states actually matter. It's a waste of time to worry about the others.

Importance Sampling

Idea \#2: Only sample the important states: instead of considering every state and then weighing by its Boltzmann factor, only worry about those states with sufficiently large probabilities.

This is known as 'importance sampling.'

Importance Sampling

Idea \#2: Only sample the important states: instead of considering every state and then weighing by its Boltzmann factor, only worry about those states with sufficiently large probabilities.

This is known as 'importance sampling.'

Complication: How to determine which states matter without checking all of them?

Markov Processes

Markov processes are ways to generate a random set of states according to the Boltzmann probabilities. (Proof left to reader)

But what are Markov processes?

Markov Chain Monte Carlo

Given an initial state X, a Markov process randomly generates a new state Y with 'transition probability' $\mathrm{P}(\mathrm{X} \rightarrow \mathrm{Y})$.

This series of states produced by the Markov process is known as a 'Markov chain.'

Because of its use of randomness, this approach is known as the 'Markov Chain Monte Carlo (MCMC) method' in honor of the famous casino center in Monaco.

To reproduce the Boltzmann distribution, the Markov process needs to satisfy three conditions.

Markov Chain Monte Carlo

Three conditions guarantee Boltzmann distribution:

1) $P(X \rightarrow Y)$ can depend only on X and Y - in particular, none of the previous states can influence the transition probability to the next state (hence 'chain').

Markov Chain Monte Carlo

Three conditions guarantee Boltzmann distribution:

1) $P(X \rightarrow Y)$ can depend only on X and Y - in particular, none of the previous states can influence the transition probability to the next state (hence 'chain').
2) It must be possible to reach any state from any other state (possibly passing through intermediate states), since Boltzmann factors are always greater than zero. ("Ergodicity")

Markov Chain Monte Carlo

Three conditions guarantee Boltzmann distribution:

1) $P(X \rightarrow Y)$ can depend only on X and Y - in particular, none of the previous states can influence the transition probability to the next state (hence 'chain').
2) It must be possible to reach any state from any other state (possibly passing through intermediate states), since Boltzmann factors are always greater than zero. ("Ergodicity")
3) The probability of going from X to Y must be the same as the probability of going from Y to X :
$p_{X} P(X \rightarrow Y)=p_{Y} P(Y \rightarrow X)$
where p_{X} and p_{Y} are the probabilities of actually being in states X and Y , respectively. ("Detailed Balance")

Markov Chain Monte Carlo

Three conditions guarantee Boltzmann distribution:

1) $P(X \rightarrow Y)$ can depend only on X and Y - in particular, none of the previous states can influence the transition probability to the next state (hence 'chain').
2) It must be possible to reach any state from any other state (possibly passing through intermediate states), since Boltzmann factors are always greater than zero. ("Ergodicity")
3) The probability of going from X to Y must be the same as the probability of going from Y to X :
$p_{X} P(X \rightarrow Y)=p_{Y} P(Y \rightarrow X) \Rightarrow \frac{P(X \rightarrow Y)}{P(Y \rightarrow X)}=\frac{p_{Y}}{p_{X}}=\exp \left[\frac{-\left(E_{Y}-E_{X}\right)}{k T}\right]$
where p_{X} and p_{Y} are the probabilities of actually being in states X and Y , respectively. ("Detailed Balance")

ϕ^{4} Theory (in 2-D)

Lagrangian (density):

$$
\mathscr{L}=\frac{1}{2}\left(\partial_{\alpha} \phi\right)^{2}+\frac{1}{2} \mu^{2} \phi^{2}+\frac{\lambda}{4} \phi^{4}
$$

$$
(\phi \in \mathbb{R})
$$

Discretized ϕ^{4} Theory (in 2-D)

Lagrangian (density):

$$
(\phi \in \mathbb{R})
$$

Discretized action (energy):

$$
\begin{aligned}
& \mathscr{L}=\frac{1}{2}\left(\partial_{\alpha} \phi\right)^{2}+\frac{1}{2} \mu^{2} \phi^{2}+\frac{\lambda}{4} \phi^{4} \\
& E=-\sum_{\langle i, j\rangle} \phi_{i} \phi_{j}+\sum_{n}\left[\left(2+\frac{\mu_{0 \mathrm{~L}}^{2}}{2}\right) \phi_{n}^{2}+\frac{\lambda_{L}}{4} \phi_{n}^{4}\right]
\end{aligned}
$$

Discretized ϕ^{4} Theory (in 2-D)

Lagrangian (density):

$$
(\phi \in \mathbb{R})
$$

Discretized action (energy):

$$
\begin{aligned}
& \mathscr{L}=\frac{1}{2}\left(\partial_{\alpha} \phi\right)^{2}+\frac{1}{2} \mu^{2} \phi^{2}+\frac{\lambda}{4} \phi^{4} \\
& E=-\sum_{\langle i, j\rangle} \phi_{i} \phi_{j}+\sum_{n}\left[\left(2+\frac{\mu_{0 \mathrm{LL}}^{2}}{2}\right) \phi_{n}^{2}+\frac{\lambda_{L}}{4} \phi_{n}^{4}\right]
\end{aligned}
$$

(In case you're wondering how the action became the energy, I should mention that discretizing the action involves making a Wick rotation ($\mathrm{t} \rightarrow \mathrm{t}$), which changes Minkowski space into Euclidean space and identifies the action and energy. It's a bit too messy for the time I have.)

Discretized ϕ^{4} Theory Parameters

Lagrangian (density):

$$
(\phi \in \mathbb{R})
$$

Discretized action (energy):

$$
\begin{aligned}
& \mathscr{L}=\frac{1}{2}\left(\partial_{\alpha} \phi\right)^{2}+\frac{1}{2} \mu^{2} \phi^{2}+\frac{\lambda}{4} \phi^{4} \\
& E=-\sum_{\langle i, j\rangle} \phi_{i} \phi_{j}+\sum_{n}\left[\left(2+\frac{\mu_{0 \mathrm{~L}}^{2}}{2}\right) \phi_{n}^{2}+\frac{\lambda_{L}}{4} \phi_{n}^{4}\right]
\end{aligned}
$$

(In case you're wondering how the action became the energy, I should mention that discretizing the action involves making a Wick rotation ($t \rightarrow t$), which changes Minkowski space into Euclidean space and identifies the action and energy. It's a bit too messy for the time I have.)

The discretized theory is characterized by two independent dimensionless parameters that depend on the lattice spacing a:

$$
\begin{aligned}
\mu_{0 \mathrm{~L}}^{2} & =\mu_{0}^{2} a^{2} \\
\lambda_{L} & =\lambda a^{2}
\end{aligned}
$$

(both $\mu_{0}{ }^{2}$ and λ have dimensions of mass squared)

Discretized ϕ^{4} Theory Phase Transition

$$
E=-\sum_{\langle i, j\rangle} \phi_{i} \phi_{j}+\sum_{n}\left[\left(2+\frac{\mu_{0 \mathrm{~L}}^{2}}{2}\right) \phi_{n}^{2}+\frac{\lambda_{L}}{4} \phi_{n}^{4}\right]
$$

As with the Ising model, ϕ^{4} theory also exhibits a phase transition, with a critical $\mu^{2}{ }_{0 L}$ for each $\lambda_{\mathrm{L}}>0$.

$$
\left[\mu_{0 \mathrm{~L}}^{2}\right]_{\text {crit }}=-0.10
$$

Discretized ϕ^{4} Theory Continuum Limit

$$
E=-\sum_{\langle i, j\rangle} \phi_{i} \phi_{j}+\sum_{n}\left[\left(2+\frac{\mu_{L}^{2}}{2}\right) \phi_{n}^{2}+\frac{\lambda_{L}}{4} \phi_{n}^{4}\right]
$$

However, we're interested in the continuum theory $(a \rightarrow 0)$. Since the dimensionless parameters depend on the lattice spacing, this presents a problem:

$$
\begin{aligned}
\lim _{a \rightarrow 0} \mu_{0 \mathrm{~L}}^{2} & =\lim _{a \rightarrow 0} \mu_{0}^{2} a^{2}=0 \\
\lim _{a \rightarrow 0} \lambda_{L} & =\lim _{a \rightarrow 0} \lambda a^{2}=0
\end{aligned}
$$

Discretized ϕ^{4} Theory Continuum Limit

$$
E=-\sum_{\langle i, j\rangle} \phi_{i} \phi_{j}+\sum_{n}\left[\left(2+\frac{\mu_{L}^{2}}{2}\right) \phi_{n}^{2}+\frac{\lambda_{L}}{4} \phi_{n}^{4}\right]
$$

However, we're interested in the continuum theory $(a \rightarrow 0)$. Since the dimensionless parameters depend on the lattice spacing, this presents a problem:

$$
\begin{aligned}
\lim _{a \rightarrow 0} \mu_{0 \mathrm{~L}}^{2} & =\lim _{a \rightarrow 0} \mu_{0}^{2} a^{2}=0 \\
\lim _{a \rightarrow 0} \lambda_{L} & =\lim _{a \rightarrow 0} \lambda a^{2}=0
\end{aligned}
$$

Discretized ϕ^{4} Theory Continuum Limit

$$
E=-\sum_{\langle i, j\rangle} \phi_{i} \phi_{j}+\sum_{n}\left[\left(2+\frac{\mu_{L}^{2}}{2}\right) \phi_{n}^{2}+\frac{\lambda_{L}}{4} \phi_{n}^{4}\right]
$$

However, we're interested in the continuum theory ($a \rightarrow 0$). Since the dimensionless parameters depend on the lattice spacing, this presents a problem:

$$
\begin{aligned}
\lim _{a \rightarrow 0} \mu_{0 \mathrm{~L}}^{2} & =\lim _{a \rightarrow 0} \mu_{0}^{2} a^{2}=0 \\
\lim _{a \rightarrow 0} \lambda_{L} & =\lim _{a \rightarrow 0} \lambda a^{2}=0
\end{aligned}
$$

Solution:
Introduce dimensionless critical coupling constant:

$$
\left[\lambda / \mu^{2}\right]_{c r i t}=\lim _{a \rightarrow 0}\left[\lambda_{L} / \mu_{L}^{2}\right]_{c r i t}
$$

The continuum theory is characterized by this single parameter. (μ_{L}^{2} is the renormalized version of $\mu^{2}{ }_{0 \mathrm{~L}}$ - no time to cover that subject)

Discretized ϕ^{4} Theory Continuum Limit

$$
E=-\sum_{(i, j)} \phi_{i} \phi_{j}+\sum_{n}\left[\left(2+\frac{\mu_{L}^{2}}{2}\right) \phi_{n}^{2}+\frac{\lambda_{L}}{4} \phi_{n}^{4}\right]
$$

However, we're interested in the continuum theory ($a \rightarrow 0$). Since the dimensionless parameters depend on the lattice spacing, this presents a problem:

$$
\begin{aligned}
\lim _{a \rightarrow 0} \mu_{0 \mathrm{~L}}^{2} & =\lim _{a \rightarrow 0} \mu_{0}^{2} a^{2}=0 \\
\lim _{a \rightarrow 0} \lambda_{L} & =\lim _{a \rightarrow 0} \lambda a^{2}=0
\end{aligned}
$$

Solution:
Introduce dimensionless critical coupling constant:

$$
\left[\lambda / \mu^{2}\right]_{c r i t}=\lim _{a \rightarrow 0}\left[\lambda_{L} / \mu_{L}^{2}\right]_{c r i t}
$$

The continuum theory is characterized by this single parameter.
(μ_{L}^{2} is the renormalized version of $\mu^{2}{ }_{0 \mathrm{~L}}$ - no time to cover that subject)

Preliminary Results

Critical coupling constant is inverse of slope:

Preliminary Results

Critical coupling constant is inverse of slope:

$$
\left[\lambda / \mu^{2}\right]_{c r i t}=10.27_{-.05}^{+.06}
$$

Preliminary Results

$$
\left[\lambda / \mu^{2}\right]_{c r i t}=10.27_{-.05}^{+.06}
$$

Published Results:

$$
\left[\lambda / \mu^{2}\right]_{c r i t}=10.26_{-.04}^{+.08}
$$

W. Loinaz \& R. S. Willey, Phys. Rev. D. 58, 076003 (1998).

Future Plans

- Polish up result on previous slide
- Calculate critical coupling constant for four-dimensional ϕ^{4} theory
- Calculate soliton masses in twodimensional ϕ^{4} theory
- Time permitting, calculate soliton masses in four-dimensional ϕ^{4} theory and other simple nonperturbative field theories

Acknowledgments

- National Science Foundation

This work was partially funded by NSF grant 0521169

- Prof. Loinaz
- Prof. Kaplan
- Chris Bednarzyk '01

