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Outline

Ising Model: A simple model of a magnet
Phases, phase transitions, and a context for...

Numerical (lattice) simulations
The rather large problem of very large numbers

Markov Chain Monte Carlo
Efficient 'importance sampling'

4 Theory (time permitting)
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Ising Model
Imagine a lattice of 'spins' of magnitude 1 that can 
only point up (+1) or down (­1).

   
   
   
   

Spins correspond to magnetic dipoles at 
temperature T.

Energy: (only nearest neighbors 
  interact)

E=−∑
〈i , j 〉

si s j
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Ising Model
Imagine a lattice of 'spins' of magnitude 1 that can 
only point up (+1) or down (­1).

   
    Energy
   
   

Parallel spins have lower energy, but thermal 
energy causes fluctuations that randomize the 
lattice – if the temperature is high enough.

E=−∑
〈i , j 〉

si s j
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Ising Model Phases
Thus the Ising model has two phases:

ferromagnetic     unordered

       
       
       
       

  Spins aligned
  Lower energy
  Higher magnetization

  Equilibrium for
 low temperatures

  Spins unordered
  Higher energy
  Lower magnetization

 Equilibrium for
 higher temperatures
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Ising Model Phase Transitions
ferromagnetic         unordered

       
       
       
       

 :Energy :Magnetizatione= E
N
=−1
N ∑

〈 i , j〉
si s j m=M

N
=∑

i=0

N−1

si
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Ising Model Phase Transitions
Phase transition becomes sharp as lattice size L∞ 
(equivalent to lattice spacing a ).0

        Point at which phase transition occurs is 'critical temperature'

T c=
2

ln 12
=2.269
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Numerical Simulations
         How to calculate those pretty graphs on the previous slide?

 #Idea 1:     ,   Set up each possible configuration calculate the
        desired quantity and weigh it by its Boltzmann probability

〈Q 〉=
∑
i

Qie
−E i /kT

∑
i

e−E i /kT
(   )See Physics 30
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 #Idea 1:     ,   Set up each possible configuration calculate the
        desired quantity and weigh it by its Boltzmann probability

 # :   .Problem 1 This isn't practical

:     ( )    ~Example Even a very small 16x16 Ising lattice has 2256 
(~1077) ,      ~configurations which will take at least 1060   years to

 .fully calculate

     -  ( )  It gets even worse for moderately sized 512x512 lattices

(~10 ,  78 900 )     (~years or small thermodynamic systems 1010
23

 )years

Numerical Simulations

〈Q 〉=
∑
i

Qie
−E i /kT

∑
i

e−E i /kT
(   )See Physics 30
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 #Idea 1:     ,   Set up each possible configuration calculate the
        desired quantity and weigh it by its Boltzmann probability

 # :   .Problem 1 This isn't practical

:     ( )    ~Example Even a very small 16x16 Ising lattice has 2256 
(~1077) ,      ~configurations which will take at least 1060   years to

 .fully calculate

     -  ( )  It gets even worse for moderately sized 512x512 lattices

(~10 ,  78 900 )     (~years or small thermodynamic systems 1010
23

 )years

Numerical Simulations

〈Q 〉=
∑
i

Qie
−E i /kT

∑
i

e−E i /kT
(   )See Physics 30

DUE 12 MAY
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 #Idea 1:     ,   Set up each possible configuration calculate the
        desired quantity and weigh it by its Boltzmann probability

 # :    Problem 2 This is just silly

   Generally only a very       small proportion of the possible states
 .           .actually matter It's a waste of time to worry about the others

Numerical Simulations

〈Q 〉=
∑
i

Qie
−E i /kT

∑
i

e−E i /kT
(   )See Physics 30
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 #Idea 2:     :   Only sample the important states instead of
         considering every state and then weighing by its Boltzmann

,         factor only worry about those states with sufficiently large
.probabilities

     .This is known as 'importance sampling '

Importance Sampling
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 #Idea 2:     :   Only sample the important states instead of
         considering every state and then weighing by its Boltzmann

,         factor only worry about those states with sufficiently large
.probabilities

     .This is known as 'importance sampling '

:        Complication How to determine which states matter without
   checking all of them?

Importance Sampling
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           Markov processes are ways to generate a random set of states
    .  (    )according to the Boltzmann probabilities Proof left to reader

    But what are Markov processes?

Markov Processes
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    ,       Given an initial state X a Markov process randomly generates a
      (new state Y with 'transition probability' P X ).Y

           This series of states produced by the Markov process is known
   .as a 'Markov chain '

     ,       Because of its use of randomness this approach is known as the
    ( )      'Markov Chain Monte Carlo MCMC method' in honor of the
    .famous casino center in Monaco

    ,    To reproduce the Boltzmann distribution the Markov process
    .needs to satisfy three conditions

Markov Chain Monte Carlo
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    :Three conditions guarantee Boltzmann distribution

)1  (  )        –  ,  P X Y can depend only on X and Y in particular none
          of the previous states can influence the transition probability to
   (  ).the next state hence 'chain'

Markov Chain Monte Carlo
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    :Three conditions guarantee Boltzmann distribution

)1  (  )        –  ,  P X Y can depend only on X and Y in particular none
          of the previous states can influence the transition probability to
   (  ).the next state hence 'chain'

)2              It must be possible to reach any state from any other state
(     ),   possibly passing through intermediate states since Boltzmann

     .  (“ ”)factors are always greater than zero Ergodicity

Markov Chain Monte Carlo
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    :Three conditions guarantee Boltzmann distribution

)1  (  )        –  ,  P X Y can depend only on X and Y in particular none
          of the previous states can influence the transition probability to
   (  ).the next state hence 'chain'

)2              It must be possible to reach any state from any other state
(     ),   possibly passing through intermediate states since Boltzmann

     .  (“ ”)factors are always greater than zero Ergodicity

)3               The probability of going from X to Y must be the same as
       :the probability of going from Y to X

 where p
X
  and p

Y
         are the probabilities of actually being in states

  , . (“  ”)X and Y respectively Detailed Balance

Markov Chain Monte Carlo

pX P X Y = pY P Y  X 
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    :Three conditions guarantee Boltzmann distribution

)1  (  )        –  ,  P X Y can depend only on X and Y in particular none
          of the previous states can influence the transition probability to
   (  ).the next state hence 'chain'

)2              It must be possible to reach any state from any other state
(     ),   possibly passing through intermediate states since Boltzmann

     .  (“ ”)factors are always greater than zero Ergodicity

)3               The probability of going from X to Y must be the same as
       :the probability of going from Y to X

 where p
X
  and p

Y
         are the probabilities of actually being in states

  , . (“  ”)X and Y respectively Detailed Balance

Markov Chain Monte Carlo

pX P X Y = pY P Y  X  ⇒ P X Y 
P Y  X 

=
pY
pX

=exp [
−EY−E X 

kT
]
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4 Theory (in 2­D)
Lagrangian (density):

(∈ℝ)
ℒ=1

2
∂21

2
22

4
4
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 Discretized 4 Theory (in 2­D)
Lagrangian (density):

(∈ℝ)

Discretized action (energy):

ℒ=1
2
∂21

2
22

4
4

E=−∑
〈 i , j 〉

i j∑
n

[2
0L

2

2
n

2
 L
4
n

4]
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 Discretized 4 Theory (in 2­D)
Lagrangian (density):

(∈ℝ)

Discretized action (energy):

(In case you're wondering how the action became the energy, I 
should mention that discretizing the action involves making a 
Wick rotation (t  it), which changes Minkowski space into 
Euclidean space and identifies the action and energy.  It's a bit 
too messy for the time I have.)

ℒ=1
2
∂21

2
22

4
4

E=−∑
〈i , j 〉

i j∑
n

[2
0L

2

2
n

2
 L
4
n

4]
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 Discretized 4 Theory Parameters
Lagrangian (density):

(∈ℝ)

Discretized action (energy):

(In case you're wondering how the action became the energy, I 
should mention that discretizing the action involves making a 
Wick rotation (t  it), which changes Minkowski space into 
Euclidean space and identifies the action and energy.  It's a bit 
too messy for the time I have.)

The discretized theory is characterized by two independent 
dimensionless parameters that depend on the lattice spacing a:

(both 
0

2 and  have dimensions of mass squared)

ℒ=1
2
∂21

2
22

4
4

E=−∑
〈i , j 〉

i j∑
n

[2
0L

2

2
n

2
 L
4
n

4]

0L
2 =0

2 a2

L= a2
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 Discretized 4 Theory Phase Transition

As with the Ising model, 4 theory also exhibits a phase transition, 
with a  critical 2

0L
 for each 

L
 > 0.

E=−∑
〈i , j 〉

i j∑
n

[2
0L

2

2
n

2
 L
4
n

4]

[0L
2 ]crit=−0.10
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 Discretized 4 Theory Continuum Limit

However, we're interested in the continuum theory (a0).  Since 
the dimensionless parameters depend on the lattice spacing, 
this presents a problem:

E=−∑
〈i , j 〉

i j∑
n

[2
L

2

2
n

2
 L
4
n

4]

lima0 0L
2 =lima 0 0

2 a2=0

lima0  L=lima0  a
2=0
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 Discretized 4 Theory Continuum Limit

However, we're interested in the continuum theory (a0).  Since 
the dimensionless parameters depend on the lattice spacing, 
this presents a problem:

E=−∑
〈i , j 〉

i j∑
n

[2
L

2

2
n

2
 L
4
n

4]

lima0 0L
2 =lima 0 0
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lima0  L=lima0  a
2=0
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 Discretized 4 Theory Continuum Limit

However, we're interested in the continuum theory (a0).  Since 
the dimensionless parameters depend on the lattice spacing, 
this presents a problem:

Solution:
Introduce dimensionless critical coupling constant:

The continuum theory is characterized by this single parameter.

(2
L
 is the renormalized version of 2

0L
 – no time to cover that subject)

E=−∑
〈i , j 〉

i j∑
n

[2
L

2

2
n

2
 L
4
n

4]

lima0 0L
2 =lima 0 0

2a2=0
lima 0 L=lima0  a

2=0

[ /2]crit=lima 0 [ L/L
2 ]crit
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 Discretized 4 Theory Continuum Limit

However, we're interested in the continuum theory (a0).  Since 
the dimensionless parameters depend on the lattice spacing, 
this presents a problem:
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 is the renormalized version of 2

0L
 – no time to cover that subject)

E=−∑
〈i , j 〉

i j∑
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Preliminary Results
Critical coupling constant 
is inverse of slope:
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Preliminary Results

[ /2]crit=10.27−.05
.06

Critical coupling constant 
is inverse of slope:
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Preliminary Results

Published Results:

W. Loinaz & R. S. Willey, Phys. Rev. D. 58, 076003 (1998).

[ /2]crit=10.26−.04
.08

[ /2]crit=10.27−.05
.06
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Future Plans

Polish up result on previous slide

Calculate critical coupling constant for 
four-dimensional 4 theory

Calculate soliton masses in two-
dimensional 4 theory

Time permitting, calculate soliton 
masses in four-dimensional 4 theory 
and other simple nonperturbative field 
theories
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