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Goals of this informal and pedagogical presentation

e Focus on big-picture context and motivation
(relatively little about my own contributions)

e Basic difficulties with supersymmetry on the lattice

e How we circumvent them in four-dimensional N' =4 SYM
(analogous lattice systems in 2d & 3d)

e Entry point: arXiv:1512.01137 Review: arXiv:0903.4881

Motivations / context for lattice supersymmetry

e Theory: Symmetries simplify systems — analytic insights
into confinement, dynamical symmetry breaking, conformality. . .
Lattice is new non-perturb. method to explore / refine / extend insights

e Dualities: Same physics from theories with different fields & interactions
Relate “electric” & “magnetic” gauge theories — Seiberg duality
Relate gauge & gravity theories — AdS/CFT duality or “holography”
Method: Conjecture & check (exploiting susy), may be extended by lattice

e Pheno: BSM is familiar context for susy-based model building
Relies on (dynamical) spontaneous supersymmetry breaking — lattice
Speculate LHC constraints prefer non-perturbative new physics?

e Modelling: Attempts to study everything from QCD at finite density
to non-Fermi liquids based on AdS/CFT holography
Lattice could provide new input to these efforts — validate or refine


http://arxiv.org/abs/1512.01137
http://arxiv.org/abs/0903.4881

Lattice gauge theory in a nutshell

e Non-perturbative, gauge-invariant QFT regularization, directly in d dims

e Replace continuous spacetime with finite grid of discrete sites
Work in euclidean space — SO(d)eyc rotations A,

e One of its drawbacks: Discretization breaks Poincaré invariance
Equivalently, lattice spacing a between sites introduces UV cutoff a ™!

e Improves upon naive momentum cutoff by preserving hypercubic subgroup
— recover full Poincaré upon removing cutoff (¢ — 0 continuum limit)

Naive obstacle to lattice supersymmetry

e Supersymmetries extend Poincaré spacetime symmetry

e Add spinorial generators Q4 and @ﬁ withA=1,.--- N
Transform under global SU(N)g “R” symmetry
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(Can recall [P, P] ~0; [P,A] ~P; [AA]~A;
{Q4, Q?} ~ eapZ*B central charge)

e Lattice: P, generates infinitesimal spacetime translations
P, does not exist in discrete spacetime

—> explicit susy breaking at classical level of algebra

e Consequence: Relevant or marginal susy-violating operators
(typically many) no longer forbidden and have to be fine-tuned
Scalar mass and Yukawa terms make scalar fields especially problematic

(squarks from matter multiplets or extended susy, N' > 1)

e Special case: Can preserve closed sub-algebra for ' =4 SYM in 4d



N =4 SYM in four dimensions as simplest QFT
e AdS / CFT; integrability / amplituhedron

e Maximally supersymmetric: Restricting to helicities < 1,
Qﬁ act as four ‘lowering operators’ on massless Clifford vacuum states
[highest-weight state annihilated by all @ in frame (E,0,0, E)]

State Helicity Flavor SU(4)g

Q) 1 1

QM) 1/2 4

QF Q4lu) 0 6

QF QF Qi 1) —1/2 4
Qy QF QF Qxl0) -1 1

e Yang—Mills: Only single super-multiplet
Contains the gauge field A, four fermions U4 and six scalars
all massless and in adjoint rep. of SU(N) gauge group

(I)AB

e Action: Usual kinetic, Yukawa, four-scalar terms; only param. is A = ¢? N

e Conformal: 5(\) = 0 for all couplings (line of fixed points)

Topological tWiStil’lg (equivalent construction from orbifolding)

e Expand 4 x4 matrix of 16 supercharges in basis of v matrices
Q) QF Q) Q
@; @2 @3 @4 = Q+ Quvu+ Quu Y + QuVuvs + O

Closed susy subalgebra {Q, Q} = 20? = 0 can be preserved on lattice

e Observation: Expansion mixes spacetime symmetry (along each column)
and R symmetry (along each row)
—> Expanding in integer-spin reps of “twisted rotation group”

SO(4),,, = diag|[SO(4) ., ® SO(4) 5 with SO(4), C SO(6)
e Simple change of variables in flat spacetime,
replacing spinors with anti-symmetric tensors

e Restriction: Need at least 27 supercharges for expansion
Only applicable to N/ =4 SYM in 4d (more possibilities in 2d & 3d)



Twisted fields and their transformations

e Four fermions: Majorana U4 expand just like supercharges
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e Complication: Only have SO(4), C SU(4), ~ SO(6)
= Scalar fields in SO(6)p vector rep &4 — (B, ¢, ¢)

e Solution: Combine 4 + 6 bosons in complexified gauge fields B
Aa = (A,ua ¢) + i(Bua Qb) _~Aa = (A/u Qb) - i(Bua ¢)
Similarly combine ¢, = (¢, 1) and Xap = (X, ¥p)
Qa - (Q,LL) Q) and Qab - (Q,uya Q,u,)

e O transformations: Nilpotent (Q? = 0), exchanges bosons «— fermions

QAa:¢a Qwazo
QXab:_fab Q.ZQZO
On=d Qd=0

d is bosonic auxiliary field for off-shell susy, with standard e.o.m. d = D U,

e Discretize: Simply replace A, — U, above,
note geometric site / link / plaq. structure from lattice gauge trans.

(n) = G()Us ()G (n + Tia)  Ya(n) = G(n)a(n)G (0 + i)
(n) = G(n+ fa)Ua(m)G () n(n) = Gn)n(n)G(n)
Xab(n) = G(n + Jig + l/zb)XCLbOﬂL)G]L (n)

Ua
Ua

A} lattice and its S; point group symmetry

e Need five links symmetrically spanning four dimensions — A}
4d analog of 2d triangular lattice — non-orthogonal, degenerate
Obtain from dimensional reduction with symmetric constraint >, 0, =0

e S5 point group symmetry: S5 irreps match those of SO(4)y,

Related by orthogonal 5 x 5 matrix P: (PT = P71
% Xuv
- P{u,5}a % . - Puap{z/,5}b Xab
n Vy

(Explicit form of P on next page...)
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Supersymmetric lattice action

e Twisted action: S is manifestly Q-supersymmetric

4 T d D
S /d X S\ r [Q (Xab ab T 1] aAa 277 > 8)\€abcde Xab che]

QS = 0 follows from Q? - = 0 and Bianchi identity €gpege DeFde = 0

e Expand: Apply Q and integrate out auxiliary field d (implicit trace):

N — 1 — 2 — 1 _
S = /d4$ ﬁ [—J—"abfab + 5 (DaAa) - XabD[awb] - nDa'Qba - Zeabcde XachXde]

e As for Q transformations, lattice action just replaces A, — U,
(also [d*z — >~ and A — Ap, with factor of det P, = 1/v/d + 1)

Remarkable analytic consequences

e Exact symmetries: gauge invariance + Q + S5

e Moduli space preserved to all orders in lattice perturbation theory
— mno scalar potential induced by radiative corrections

e [ function vanishes at one loop in lattice perturbation theory

e Real-space RG blocking transformations preserve O and S5
—> One log tuning to recover all symmetries (Q, and Q) in continuum

e Can present last if time permits. ..
First consider numerical Monte Carlo importance sampling,

(O) = £ [[dU,][dU,)[dV]Oe*



Numerical complications — improved action

e Exact zero modes and flat directions must be regulated

e Complexification complication 1: U(N) gauge invariance
U(N) =SU(N)® U(1) but U(1) only decouples in continuum

e Complication 2: Q U, = ¢, = U, € gl(N,C) (links in algebra)
Need U, = Iy + aA, + O(a?) for continuum limit,
— stabilize by soft susy-breaking scalar potential
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Lifts SU(NV) flat directions and bosonic zero modes

e Susy breaking: Automatically vanishes as u?> — 0
Monitor @ Ward identity violations (QO) # 0: action and Q [nlal,]

e Flat directions in U(1) sector seem especially problematic
Include all constant U(1) shifts of z-independent fields, even if S # 0,
while SU(N) flat dirs restricted to supersymmeric vacua with S = 0

e U(1) sector: Impose constraint on plaquette determinant to regulate
Can be implemented as 9-exact moduli space condition:

NDada —> 1 | Daldy + G Y [det Py — 1] I
a#b

Modifies e.o.m. for auxiliary field d = D, + 2GRe _p (det Py — 1) Iy

e Improved action: Ward identity violations (QQO) (a/ L)?
— effective O(a) improvement

Ongoing numerical investigations

e Static potential: From r x T" Wilson loops W (r,T) o exp [V ()T
Coulombic with perturbative C' = \/(4) at weak couplings A < 4/v/5
Currently carrying out tree-level-improved analysis,

1 ™ dk exp(ir - k
Vir) —V(r), == 47T2G(T’,u) = 47r2/ 7 I p.( 5 ),\
i —r (2m) 4%, sin*(k-€,/2)

e Scaling dimensions: For Konishi and SUGRA (20") operators

S T [0 (2) @ (z)] — Y, Tr [¢a(n)du(n)] — vev
Preliminary finite-size scaling and MCRG +,,, ~ 3\/(47?)
Complication: Mixing with SO(4)g-singlet part of 20/




Long-distance effective action of the lattice theory

e Question: Does full quantum lattice theory produce N =4 SYM
in continuum limit (flowing to IR 1/L — 0)

e Need symmetry-preserving real-space RG blocking transformation

a — a' = 2a with possible rescaling of non-compact variables:
/

Uy, (n) = Ua(n)Ua(n + @) Uy(n) = EUa(n + @)U (n)
d'(n) = d(n) 7 (n) =n(n)

Ya(n) = QUy(n) = & [Wa(n)lUa(n + @) + Ua(n)tba(n + @)
(n) =

) o o — ~
(. £ [ o(n+a+2b)Up(n+a+b) +Uy(n +2a + b)U,(n +a + )] Xab(n)

4 e [ (4G + 2D)xan(n + DU (1) + Uy (1 + 26 + D) xar(n + a)ﬂa(n)}

+ %QXab(n @ 4D) [l + D) + Do+ )]

e Including n — n + clly and U(1) ghost number, symmetries allow only
QTr [qu(u,zj, d)], Q {Tr [n] Tr [f(Z/I,H, d)} } and existing Q-closed term

e Most general renormalizable action (coefficients unconstrained by Q):

Seff ~ QTr {QIXabfab + 042775aua - _nd} EabcdeTr [XdeDchb}

4
+ 59 {Tr [nUlhs] — %Tr (] Tr [UU,] }

e “f” term lifts moduli space = perturbatively forbidden  (arXiv:1408.7067)
(at non-perturbative level, may need to tune 5 — 0)

N — _
Seff ~ M _F abFab — Xab Dty + Q2 dDU, — nDawa _ B
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e Rescale y — g—ix; v — g—‘l*w; 77—)3—; g—in; d%g—;dand)\%oq)\:
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1 __
d” — _EabcdeXdeDchb

Se N__a ab — aDa dﬁaua_ 5a a7 9
ft FabFab — XabDiathy + nDa 202 1

e Finally e.o.m. for auxiliary field is now d = a(l)‘i@al/{a, SO

a3 1 ,— 1
; §(DaUa) — nDythy — 6abcdeXdGDCXab

—> Only one marginal parameter may need to be tuned
to recover full continuum N =4 SYM

Seff ~ _?abfab - XabD[awb] +
aag


http://arxiv.org/abs/1408.7067

The other 15 9, and 9,

e Define discrete symmetries {R,, Ry}, subgroups of continuum SO(6)p
Example: Continuum invariance under transformations

Ran - 2¢a a¢a - _77 Rawb = —Xab

1

RaXab = _wb RaXbc = éebcagthh (b 7é CL)

RaDa = Da Raﬁa = 5a Ran = 5b Raﬁb = Db
e Inconsistent with lattice geometry, but can define lattice analog
RU,=U,  Rdo=U, Rib=U,  Rily=U;"

e Any one of {R,, Ry} would require ag = s = a3 = oy and 5 = 0,
guaranteeing restoration of all symmetries of continuum N = 4 SYM

e Qualitatively, Q, = R,Q while Q,, = R,;Q
and the individual {R,, R, } are related by the S5 point group symmetry

e Can monitor R, violation in lattice calculation by measuring (normalized)

RWar—Wapy ~ ua(:c)a,j 1(g;+a)aa(x+3)u;1(x)—ua(x)ub(x+a)ﬁa(x+3)ab(x)

o above to minimize R, violation
when approaching long-distance continuum limit

Sign problem

e Phase reweighting: Can enable importance sampling Monte Carlo

using real non-negative Boltzmann factor |pfD|e~°#
1 T
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e Sign problem: When the phase o fluctuates
so much that <ei°‘>pq i1s consistent with zero

e Numerical results: Phase fluctuations become significant for Ay 2 5;
appear largely independent of volume (unlike finite-density QCD)

e Strange behavior: Phase ¢® is extremely sensitive to temporal BCs
e ~ 1 with anti-periodic BCs, <em>pq ~ (0 with periodic BCs
Even more strangely, other observables change little for different BCs



