Latest results from lattice $\mathcal{N}=4$ super Yang-Mills

David Schaich (Syracuse)

Lattice 2016, 26 July
arXiv:1505.03135 arXiv:1508.00884 arXiv:1512.01137
\& more to come with Simon Catterall, Poul Damgaard and Joel Giedt

Brief review of motivations for lattice supersymmetry

- Much interesting physics in 4D supersymmetric gauge theories: dualities, holography, confinement, conformality, BSM, ...
- Lattice promises non-perturbative insights from first principles

Problem: Discrete spacetime breaks supersymmetry algebra

$$
\left\{Q_{\alpha}^{\mathrm{I}}, \bar{Q}_{\dot{\alpha}}^{\mathrm{J}}\right\}=2 \delta^{\mathrm{IJ}} \sigma_{\alpha \dot{\alpha}}^{\mu} P_{\mu} \text { where } \mathrm{I}, \mathrm{~J}=1, \cdots, \mathcal{N}
$$

\Longrightarrow Impractical fine-tuning generally required to restore susy, especially for scalar fields from matter multiplets or $\mathcal{N}>1$

Solution: Preserve (some subset of) the susy algebra on the lattice Possible for $\mathcal{N}=4$ supersymmetric Yang-Mills (SYM)

Brief review of $\mathcal{N}=4$ SYM

$\mathcal{N}=4$ SYM is a particularly interesting theory
-AdS/CFT correspondence
-Testing ground for reformulations of scattering amplitudes
-Arguably simplest non-trivial field theory in four dimensions
Basic features:

- $\operatorname{SU}(N)$ gauge theory with four Majorana ψ^{I} and six scalars Φ^{IJ}, all massless and in adjoint rep.
- Action consists of kinetic, Yukawa and four-scalar terms with coefficients related by symmetries
- Supersymmetric: 16 supercharges Q_{α}^{I} and $\bar{Q}_{\dot{\alpha}}^{\mathrm{I}}$ with $\mathrm{I}=1, \cdots, 4$ Fields and Q 's transform under global $\mathrm{SU}(4) \simeq \mathrm{SO}(6) \mathrm{R}$ symmetry
- Conformal: β function is zero for any 't Hooft coupling λ

Exact supersymmetry on the lattice

Equivalent constructions from orbifolding and "topological" twisting:
The 16 spinor supercharges Q_{α}^{I} and $\bar{Q}_{\dot{\alpha}}^{I}$ fill a Kähler-Dirac multiplet:

Q's transform with integer spin under "twisted rotation group"

$$
\mathrm{SO}(4)_{t w} \equiv \operatorname{diag}\left[\mathrm{SO}(4)_{\mathrm{euc}} \otimes \mathrm{SO}(4)_{R}\right] \quad \mathrm{SO}(4)_{R} \subset \mathrm{SO}(6)_{R}
$$

This change of variables gives a susy subalgebra $\{\mathcal{Q}, \mathcal{Q}\}=2 \mathcal{Q}^{2}=0$ This subalgebra can be exactly preserved on the lattice

Pertinent features of the lattice theory

All fields transform with integer spin under $\mathrm{SO}(4)_{t w}$ - no spinors

$$
\begin{aligned}
& Q_{\alpha}^{\mathrm{I}} \text { and } \bar{Q}_{\dot{\alpha}}^{\mathrm{I}} \longrightarrow \mathcal{Q}, \mathcal{Q}_{a} \text { and } \mathcal{Q}_{a b} \quad(a, b=1, \cdots, 5) \\
& \Psi^{\mathrm{I}} \longrightarrow \eta, \psi_{a} \text { and } \chi_{a b} \quad \text { (site, link, plaq.) } \\
& U_{\mu} \text { and } \Phi^{\mathrm{IJ}} \longrightarrow \mathcal{U}_{a}=\left(U_{\mu}, \phi\right)+i\left(B_{\mu}, \bar{\phi}\right) \text { and } \overline{\mathcal{U}}_{a}
\end{aligned}
$$

Supersymmetry transformations include $\mathcal{Q} \mathcal{U}_{a}=\psi_{a}$
\Longrightarrow Links must be in algebra, with continuum limit $\mathcal{U}_{a}=\mathbb{I}_{N}+\mathcal{A}_{a}$
$\Longrightarrow \mathrm{U}(N)=\operatorname{SU}(N) \otimes \mathrm{U}(1)$ gauge invariance

Five links symmetrically span four dimensions $\longrightarrow A_{4}^{*}$ lattice (4D analog of triangular lattice)

Basis vectors are linearly dependent and non-orthogonal $\longrightarrow \lambda=\lambda_{\text {lat }} / \sqrt{5}$

Improvement 1: Lattice action

Exact zero modes and flat directions must be regulated
in both the $\mathrm{SU}(N)$ and $\mathrm{U}(1)$ sectors
—Soft \mathcal{Q} breaking scalar potential $\propto \mu^{2} \sum_{a}\left(\operatorname{Tr}\left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right]-N\right)^{2}$
lifts $\operatorname{SU}(N)$ flat directions
-Constraint on plaquette det. lifts $\mathrm{U}(1)$ zero mode \& flat directions

Improved lattice action introduces
\mathcal{Q}-exact plaquette det. deformation
Ward identity violations
decrease $\sim 500 \times$ for $L=16$, vanish $\langle\mathcal{Q O}\rangle \propto(a / L)^{2}$
(\mathcal{Q} forbids all dim-5 operators)

Improvement 2: Lattice perturbation theory

Previous results for static potential $V(r)$ showed discretization artifacts

Improve by applying tree-level lattice perturbation theory for the $\mathcal{N}=4$ SYM bosonic propagator on the A_{4}^{*} lattice:

$$
V(r) \longrightarrow V_{\text {tree }}\left(r_{l}\right) \quad \text { where } \quad \frac{1}{r_{l}^{2}} \equiv 4 \pi^{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{\exp [i r \cdot k]}{\sum_{\mu=1}^{4} \sin ^{2}\left(k \cdot \widehat{e}_{\mu} / 2\right)}
$$

\widehat{e}_{μ} are A_{4}^{*} lattice basis vectors

Momenta $k=\frac{2 \pi}{L} \sum_{\mu=1}^{4} n_{\mu} \widehat{g}_{\mu}$ depend on dual basis vectors

Improvement 2: Lattice perturbation theory

Previous results for static potential $V(r)$ showed discretization artifacts

Tree-level improvement significantly reduces discretization artifacts

Coupling dependence of Coulomb coefficient

Fit $V(r)$ to Coulombic

C is Coulomb coefficient σ is string tension
$V(r)$ is Coulombic at all λ :
fits to confining form produce vanishing string tension
C for $U(4)$ in good agreement with perturbation theory for $\lambda \lesssim 3 / \sqrt{5}$
$U(2)$ and $U(3)$ results less stable - working on further improvements

Anomalous dimensions

$\mathcal{N}=4$ SYM is conformal at all $\lambda \longrightarrow$ spectrum of scaling dimensions that govern power-law decay of correlation functions

The Konishi operator is the simplest conformal primary operator

$$
\mathcal{O}_{K}(x)=\sum_{\mathrm{I}} \operatorname{Tr}\left[\Phi^{\mathrm{I}}(x) \Phi^{\mathrm{I}}(x)\right], \quad C_{K}(r) \equiv \mathcal{O}_{K}(x+r) \mathcal{O}_{K}(x) \propto r^{-2 \Delta_{K}(\lambda)}
$$

On lattice, extract scalar fields from polar decomposition

$$
\begin{aligned}
\mathcal{U}_{a}(n) & \longrightarrow e^{\varphi_{a}(n)} U_{a}(n) \\
\mathcal{O}_{K}^{\text {lat }}(n) & =\sum_{a} \operatorname{Tr}\left[\varphi_{a}(n) \varphi_{a}(n)\right]-\mathrm{vev}
\end{aligned}
$$

Improvement 3: Lattice Konishi operator mixing

$$
\mathcal{O}_{K}(x)=\sum_{\mathrm{I}} \operatorname{Tr}\left[\Phi^{\mathrm{I}}(x) \Phi^{\mathrm{I}}(x)\right] \longrightarrow \mathcal{O}_{K}^{\text {lat }}(n)=\sum_{a} \operatorname{Tr}\left[\varphi_{a}(n) \varphi_{\mathrm{a}}(n)\right]-\mathrm{vev}
$$

Recall twisted $\mathrm{SO}(4)_{t w}$ involves only $\mathrm{SO}(4)_{R} \subset \mathrm{SO}(6)_{R}$
\Longrightarrow The lattice Konishi operator mixes with the $\mathrm{SO}(4)_{R_{R}}$-singlet part of an $\mathrm{SO}(6)_{R}$-nonsinglet operator \mathcal{O}_{S} (the "SUGRA" or 20^{\prime})

Need joint analyses including both operators
Konishi scaling dimension
from MCRG stability matrix including both $\mathcal{O}_{K}^{\text {lat }}$ and $\mathcal{O}_{S}^{\text {lat }}$

Impose protected $\Delta_{S}=2$
Systematic uncertainties from different amounts of smearing

Recapitulation

- Continuing progress in lattice $\mathcal{N}=4$ SYM
- Improved action dramatically reduces Ward identity violations
- Tree-level improved static potential reduces discretization artifacts
- Promising initial results for Konishi anomalous dimension
- Many more directions are being - or can be - pursued
- Understanding the (absence of a) sign problem
- Exploring the Coulomb branch (Higgs mechanism)
- Reducing to lower dimensions, possibly with less supersymmetry
- Adding matter fields for spontaneous supersymmetry breaking

Advertisement: Public code for lattice $\mathcal{N}=4$ SYM

so that the full improved action becomes

$$
\begin{aligned}
S_{\text {imp }}= & S_{\text {exact }}^{\prime}+S_{\text {closed }}+S_{\text {soft }}^{\prime} \\
S_{\text {exact }}^{\prime}= & \frac{N}{2 \lambda_{\text {lat }}} \sum_{n} \operatorname{Tr}\left[-\overline{\mathcal{F}}_{a b}(n) \mathcal{F}_{a b}(n)-\chi_{a b}(n) \mathcal{D}_{[a}^{(+)} \psi_{b]}(n)-\eta(n) \overline{\mathcal{D}}_{a}^{(-)} \psi_{a}(n)\right. \\
& \left.+\frac{1}{2}\left(\overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}(n)+G \sum_{a \neq b}\left(\operatorname{det} \mathcal{P}_{a b}(n)-1\right) \mathbb{I}_{N}\right)^{2}\right]-S_{\text {det }} \\
S_{\text {det }}= & \frac{N}{2 \lambda_{\text {lat }}} G \sum_{n} \operatorname{Tr}[\eta(n)] \sum_{a \neq b}\left[\operatorname{det} \mathcal{P}_{a b}(n)\right] \operatorname{Tr}\left[\mathcal{U}_{b}^{-1}(n) \psi_{b}(n)+\mathcal{U}_{a}^{-1}\left(n+\widehat{\mu}_{b}\right) \psi_{a}\left(n+\widehat{\mu}_{b}\right)\right] \\
S_{\text {closed }}= & -\frac{N}{8 \lambda_{\text {lat }}} \sum_{n} \operatorname{Tr}\left[\epsilon_{a b c d e} \chi_{\text {de }}\left(n+\widehat{\mu}_{a}+\widehat{\mu}_{b}+\widehat{\mu}_{c}\right) \overline{\mathcal{D}}_{c}^{(-)} \chi_{a b}(n)\right] \\
S_{\text {soft }}^{\prime}= & \frac{N}{2 \lambda_{\text {lat }}} \mu^{2} \sum_{n} \sum_{a}\left(\frac{1}{N} \operatorname{Tr}\left[\mathcal{U}_{a}(n) \overline{\mathcal{U}}_{a}(n)\right]-1\right)^{2}
\end{aligned}
$$

The lattice action is obviously very complicated (the fermion operator involves $\gtrsim 100$ gathers)

To reduce barriers to entry our parallel code is publicly developed at github.com/daschaich/susy

Evolved from MILC code, presented in arXiv:1410.6971

Thank you!

Thank you!

Collaborators

Simon Catterall, Poul Damgaard and Joel Giedt

Funding and computing resources

USQCD

Supplement: The sign problem

$$
\langle\mathcal{O}\rangle=\frac{1}{\mathcal{Z}} \int[d \mathcal{U}][d \overline{\mathcal{U}}] \mathcal{O} \quad e^{-S_{B}[\mathcal{U}, \overline{\mathcal{U}}]} \operatorname{pf} \mathcal{D}[\mathcal{U}, \overline{\mathcal{U}}]
$$

Pfaffian can be complex for lattice $\mathcal{N}=4$ SYM, $\operatorname{pf} \mathcal{D}=|\operatorname{pf} \mathcal{D}| e^{i \alpha}$
Complicates interpretation of $\left\{e^{-S_{\mathrm{B}}} \mathrm{pf} \mathcal{D}\right\}$ as Boltzmann weight

We carry out phase-quenched calculations with $\mathrm{pf} \mathcal{D} \longrightarrow|\mathrm{pf} \mathcal{D}|$
In principle need to reweight phase-quenched (pq) observables:
$\langle\mathcal{O}\rangle=\frac{\left\langle\mathcal{O} e^{i \alpha}\right\rangle_{p q}}{\left\langle e^{i \alpha}\right\rangle_{p q}} \quad$ with $\left\langle\mathcal{O} e^{i \alpha}\right\rangle_{p q}=\frac{1}{\mathcal{Z}_{p q}} \int[d \mathcal{U}][d \overline{\mathcal{U}}] \mathcal{O} e^{i \alpha} e^{-S_{B}}|p f \mathcal{D}|$
\Longrightarrow Monitor $\left\langle e^{i \alpha}\right\rangle_{p q}$ as function of volume, coupling, N

Pfaffian phase dependence on volume and coupling

Left: $1-\langle\cos (\alpha)\rangle_{p q} \ll 1$ independent of volume and N at $\lambda_{\text {lat }}=1$
Right: Newer 4^{4} results at $4 \leq \lambda_{\text {lat }} \leq 8$ show much larger fluctuations

May be interesting to check more volumes and N for improved action
Extremely expensive computation despite parallelization:
$\mathcal{O}\left(n^{3}\right)$ scaling $\longrightarrow \sim 50$ hours for single $\mathrm{U}(2) 4^{4}$ measurement

Two puzzles posed by the sign problem

- With periodic temporal boundary conditions for the fermions we have an obvious sign problem, $\left\langle e^{i \alpha}\right\rangle_{p q}$ consistent with zero
- With anti-periodic BCs and all else the same $e^{i \alpha} \approx 1$, phase reweighting has negligible effect

Also, other pq observables are nearly identical for these two ensembles

Why doesn't the sign problem affect other observables?

Backup: Failure of Leibnitz rule in discrete space-time

Given that $\left\{Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\right\}=2 \sigma_{\alpha \dot{\alpha}}^{\mu} P_{\mu}=2 i \sigma_{\alpha \dot{\alpha}}^{\mu} \partial_{\mu}$ is problematic, why not try $\left\{Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\right\}=2 i \sigma_{\alpha \dot{\alpha}}^{\mu} \nabla_{\mu}$ for a discrete translation?

Here $\nabla_{\mu} \phi(x)=\frac{1}{a}[\phi(x+a \widehat{\mu})-\phi(x)]=\partial_{\mu} \phi(x)+\frac{a}{2} \partial_{\mu}^{2} \phi(x)+\mathcal{O}\left(a^{2}\right)$
Essential difference between ∂_{μ} and ∇_{μ} on the lattice, $a>0$

$$
\begin{aligned}
\nabla_{\mu}[\phi(x) \chi(x)] & =a^{-1}[\phi(x+a \widehat{\mu}) \chi(x+a \widehat{\mu})-\phi(x) \chi(x)] \\
& =\left[\nabla_{\mu} \phi(x)\right] \chi(x)+\phi(x) \nabla_{\mu} \chi(x)+a\left[\nabla_{\mu} \phi(x)\right] \nabla_{\mu} \chi(x)
\end{aligned}
$$

We only recover the Leibnitz rule $\partial_{\mu}(f g)=\left(\partial_{\mu} f\right) g+f \partial_{\mu} g$ when $a \rightarrow 0$
\Longrightarrow "Discrete supersymmetry" breaks down on the lattice
(Dondi \& Nicolai, "Lattice Supersymmetry", 1977)

Backup: Twisting \longleftrightarrow Kähler-Dirac fermions

The Kähler-Dirac representation is related to the spinor $Q_{\alpha}^{\mathrm{I}}, \bar{Q}_{\dot{\alpha}}^{\mathrm{I}}$ by

$$
\left(\begin{array}{cccc}
Q_{\alpha}^{1} & Q_{\alpha}^{2} & Q_{\alpha}^{3} & Q_{\alpha}^{4} \\
\bar{Q}_{\dot{\alpha}}^{1} & \bar{Q}_{\dot{\alpha}}^{2} & \bar{Q}_{\dot{\alpha}}^{3} & \bar{Q}_{\dot{\alpha}}^{4}
\end{array}\right)=\begin{gathered}
\mathcal{Q}+\mathcal{Q}_{\mu} \gamma_{\mu}+\mathcal{Q}_{\mu \nu} \gamma_{\mu} \gamma_{\nu}+\overline{\mathcal{Q}}_{\mu} \gamma_{\mu} \gamma_{5}+\overline{\mathcal{Q}}_{5} \\
\longrightarrow \mathcal{Q}+\mathcal{Q}_{a} \gamma_{a}+\mathcal{Q}_{a b} \gamma_{a} \gamma_{b} \\
\text { with } a, b=1, \cdots, 5
\end{gathered}
$$

The 4×4 matrix involves R symmetry transformations along each row and (euclidean) Lorentz transformations along each column
\Longrightarrow Kähler-Dirac components transform under "twisted rotation group"

$$
\begin{aligned}
\mathrm{SO}(4)_{t w} \equiv \operatorname{diag}\left[\mathrm{SO}(4)_{\mathrm{euc}} \otimes\right. & \left.\mathrm{SO}(4)_{R}\right] \\
& \uparrow_{\text {only }} \mathrm{SO}(4)_{R} \subset \mathrm{SO}(6)_{R}
\end{aligned}
$$

Backup: Twisted $\mathcal{N}=4$ SYM fields and \mathcal{Q}

Everything transforms with integer spin under $\mathrm{SO}(4)_{t w}$ - no spinors

$$
\begin{aligned}
Q_{\alpha}^{I} \text { and } \mathcal{Q}_{\dot{\alpha}}^{I} & \longrightarrow \mathcal{Q}, \mathcal{Q}_{a} \text { and } \mathcal{Q}_{a b} \\
\psi^{I} & \longrightarrow \eta, \psi_{a} \text { and } \chi_{a b}
\end{aligned}
$$

$$
A_{\mu} \text { and } \phi^{\mathrm{IJ}} \longrightarrow \mathcal{A}_{a}=\left(A_{\mu}, \phi\right)+i\left(B_{\mu}, \bar{\phi}\right) \text { and } \overline{\mathcal{A}}_{a}
$$

The twisted-scalar supersymmetry \mathcal{Q} acts as
$\mathcal{Q} \mathcal{A}_{a}=\psi_{a}$
$\mathcal{Q} \psi_{a}=0$
$\mathcal{Q} \chi_{a b}=-\overline{\mathcal{F}}_{a b}$
$\mathcal{Q} \overline{\mathcal{A}}_{a}=0$
$\mathcal{Q} \eta=d$
$\mathcal{Q} d=0$ bosonic auxiliary field with e.o.m. $d=\overline{\mathcal{D}}_{a} \mathcal{A}_{a}$
(1) \mathcal{Q} directly interchanges bosonic \longleftrightarrow fermionic d.o.f.
(2) The susy subalgebra $\mathcal{Q}^{2} \cdot=0$ is manifest

Backup: Lattice $\mathcal{N}=4$ SYM

The lattice theory is nearly a direct transcription,
despite breaking the $15 \mathcal{Q}_{a}$ and $\mathcal{Q}_{a b}$

- Covariant derivatives \longrightarrow finite difference operators
- Complexified gauge fields $\mathcal{A}_{a} \longrightarrow$ gauge links $\mathcal{U}_{a} \in \mathfrak{g l}(N, \mathbb{C})$

$$
\begin{array}{cr}
\mathcal{Q} \mathcal{A}_{a} \longrightarrow \mathcal{Q} \mathcal{U}_{a}=\psi_{a} & \mathcal{Q} \psi_{a}=0 \\
\mathcal{Q} \chi_{a b}=-\overline{\mathcal{F}}_{a b} & \mathcal{Q} \overline{\mathcal{A}}_{a} \longrightarrow \mathcal{Q} \overline{\mathcal{U}}_{a}=0 \\
\mathcal{Q} \eta=d & \mathcal{Q} d=0
\end{array}
$$

Geometry manifest: η and d on sites, \mathcal{U}_{a} and ψ_{a} on links, etc.

- Supersymmetric lattice action $(\mathcal{Q S}=0)$ follows from $\mathcal{Q}^{2} \cdot=0$ and Bianchi identity

$$
S=\frac{N}{2 \lambda_{\text {lat }}} \mathcal{Q}\left(\chi_{a b} \mathcal{F}_{a b}+\eta \overline{\mathcal{D}}_{a} \mathcal{U}_{a}-\frac{1}{2} \eta d\right)-\frac{N}{8 \lambda_{\text {lat }}} \epsilon_{a b c d e} \chi_{a b} \overline{\mathcal{D}}_{c} \chi_{d e}
$$

Backup: A_{4}^{*} lattice with five links in four dimensions

$A_{a}=\left(A_{\mu}, \phi\right)$ may remind you of dimensional reduction
On the lattice we want to treat all five \mathcal{U}_{a} symmetrically to obtain $S_{5} \longrightarrow \mathrm{SO}(4)_{t w}$ symmetry
-Start with hypercubic lattice in 5d momentum space
-Symmetric constraint $\sum_{a} \partial_{a}=0$ projects to 4D momentum space
—Result is A_{4} lattice
\longrightarrow dual A_{4}^{*} lattice in real space

Backup: Twisted $\mathrm{SO}(4)$ symmetry on the A_{4}^{*} lattice

-Can picture A_{4}^{*} lattice as 4D analog of 2D triangular lattice
-Basis vectors are linearly dependent and non-orthogonal $\longrightarrow \lambda=\lambda_{\text {lat }} / \sqrt{5}$
—Preserves S_{5} point group symmetry

S_{5} irreps precisely match onto irreps of twisted $\mathrm{SO}(4)_{t w}$

$$
\begin{array}{cc}
\mathbf{5}=\mathbf{4} \oplus \mathbf{1}: & \psi_{a} \longrightarrow \psi_{\mu}, \quad \bar{\eta} \\
\mathbf{1 0}=\mathbf{6} \oplus \mathbf{4}: & \chi_{a b} \longrightarrow \chi_{\mu \nu}, \bar{\psi}_{\mu}
\end{array}
$$

$S_{5} \longrightarrow \mathrm{SO}(4)_{t w}$ in continuum limit restores the rest of \mathcal{Q}_{a} and $\mathcal{Q}_{a b}$

Backup: Hypercubic representation of A_{4}^{*} lattice

 In the code it is very convenient to represent the A_{4}^{*} lattice as a hypercube with a backwards diagonal

Backup: Restoration of \mathcal{Q}_{a} and $\mathcal{Q}_{a b}$ supersymmetries

Results from arXiv:1411.0166 to be revisited with improved action
\mathcal{Q}_{a} and $\mathcal{Q}_{a b}$ from restoration of R symmetry (motivation for A_{4}^{*} lattice) Modified Wilson loops test R symmetries at non-zero lattice spacing Parameter c_{2} may need log. tuning in continuum limit

Backup: More on flat directions

Supersymmetry transformations include $\mathcal{Q} \mathcal{U}_{a}=\psi_{a}$
\Longrightarrow Links must be in algebra, with continuum limit $\mathcal{U}_{a}=\mathbb{I}_{N}+\mathcal{A}_{a}$
$\Longrightarrow \mathrm{U}(N)=\mathrm{SU}(N) \otimes \mathrm{U}(1)$ gauge invariance
Flat directions in $\mathrm{SU}(N)$ sector are physical, those in $U(1)$ sector decouple only in continuum limit

Both must be regulated in calculations \longrightarrow two deformations needed:
$\operatorname{SU}(N)$ scalar potential $\propto \mu^{2} \sum_{a}\left(\operatorname{Tr}\left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right]-N\right)^{2}$
$\mathrm{U}(1)$ plaquette determinant $\sim G \sum_{a \neq b}\left(\operatorname{det} \mathcal{P}_{a b}-1\right)$
Scalar potential softly breaks \mathcal{Q} supersymmetry susy-violating operators vanish as $\mu^{2} \rightarrow 0$

Plaquette determinant can be made \mathcal{Q}-invariant \longrightarrow improved action

Backup: One problem with flat directions

Gauge fields \mathcal{U}_{a} can move far away from continuum form $\mathbb{I}_{N}+\mathcal{A}_{a}$ if $N \mu^{2} /\left(2 \lambda_{\text {lat }}\right)$ becomes too small

Example for two-color $\left(\lambda_{\text {lat }}, \mu, \kappa\right)=(5,0.2,0.8)$ on $8^{3} \times 24$ volume
Left: Bosonic action is stable $\sim 18 \%$ off its supersymmetric value
Right: Polyakov loop wanders off to $\sim 10^{9}$

Backup: Another problem with $\mathrm{U}(1)$ flat directions

Flat directions in $\mathrm{U}(1)$ sector can induce transition to confined phase
This lattice artifact is not present in continuum $\mathcal{N}=4 \mathrm{SYM}$

Around the same $\lambda_{\text {lat }} \approx 2 \ldots$
Left: Polyakov loop falls towards zero
Center: Plaquette determinant falls towards zero
Right: Density of $\mathrm{U}(1)$ monopole world lines becomes non-zero

Backup: More on soft susy breaking

Until 2015 we used a more naive constraint on plaquette det.:

$$
S_{\text {soft }}=\frac{N}{2 \lambda_{\text {lat }}} \mu^{2}\left(\frac{1}{N} \operatorname{Tr}\left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right]-1\right)^{2}+\kappa\left|\operatorname{det} \mathcal{P}_{a b}-1\right|^{2}
$$

Both terms explicitly break \mathcal{Q} but $\operatorname{det}_{\mathcal{P}_{a b}}$ effects dominate
Left: The breaking is soft - guaranteed to vanish as $\mu, \kappa \longrightarrow 0$
Right: Soft \mathcal{Q} breaking also suppressed $\propto 1 / N^{2}$

Backup: More on supersymmetric constraints

Improved action from arXiv:1505.03135

 imposes \mathcal{Q}-invariant plaquette determinant constraint$$
\begin{gathered}
S=\frac{N}{2 \lambda_{\mathrm{lat}}} \mathcal{Q}\left(\chi_{a b} \mathcal{F}_{a b}+\downarrow-\frac{1}{2} \eta d\right)-\frac{N}{8 \lambda_{\mathrm{lat}}} \epsilon_{a b c d e} \chi_{a b} \overline{\mathcal{D}}_{c} \chi_{d e}+\mu^{2} V \\
\eta\left(\overline{\mathcal{D}}_{a} \mathcal{U}_{a}+G \sum_{a \neq b}\left[\operatorname{det} \mathcal{P}_{a b}-1\right] \mathbb{I}_{N}\right)
\end{gathered}
$$

Basic idea: Modify the equations of motion \longrightarrow moduli space

$$
d(n)=\overline{\mathcal{D}}_{a} \mathcal{U}_{a}(n) \longrightarrow \overline{\mathcal{D}}_{a} \mathcal{U}_{a}(n)+G \sum_{a \neq b}\left[\operatorname{det} \mathcal{P}_{a b}(n)-1\right] \mathbb{I}_{N}
$$

Produces much smaller \mathcal{Q} Ward identity violations
that vanish $\propto(a / L)^{2}$ in the continuum limit

Backup: Code performance-weak and strong scaling

Results from arXiv:1410.6971 to be revisited with improved action
Left: Strong scaling for $U(2)$ and $U(3) 16^{3} \times 32$ RHMC
Right: Weak scaling for $\mathcal{O}\left(n^{3}\right)$ pfaffian calculation (fixed local volume)

$$
n \equiv 16 N^{2} L^{3} N_{T} \text { is number of fermion degrees of freedom }
$$

Dashed lines are optimal scaling

Solid line is power-law fit

Backup: Numerical costs for 2, 3 and 4 colors

Results from arXiv:1410.6971 to be revisited with improved action
Red: RHMC cost scaling $\sim N^{5}$ should now be better thanks to recent optimizations (specific to adjoint fermions)

Blue: Pfaffian cost scaling consistent with expected N^{6}

Backup: $\mathcal{N}=4$ SYM static potential from Wilson loops

Extract static potential $V(r)$ from $r \times T$ Wilson loops

$$
W(r, T) \propto e^{-V(r) T} \quad V(r)=A-C / r+\sigma r
$$

Coulomb gauge trick from lattice QCD provides off-axis loops

Backup: Static potential is Coulombic at all λ

String tension σ from fits to confining form $V(r)=A-C / r+\sigma r$

Slightly negative values make $V\left(r_{l}\right)$ flat for $3 \lesssim r_{l} \lesssim 4$
$\sigma \rightarrow 0$ as accessible range of r_{l} increases on larger volumes

Backup: Perturbation theory for Coulomb coefficient

For range of couplings currently being studied
(continuum) perturbation theory for $C(\lambda)$ is well behaved

Backup: More tests of the static potential

Left: Projecting Wilson loops from $U(N) \longrightarrow S U(N) \Longrightarrow$ factor of $\frac{N^{2}-1}{N^{2}}$

Right: Unitarizing links removes scalars \Longrightarrow factor of $1 / 2$

Some results slightly above expected factors
May be related to fixed $L=8$ or non-zero auxiliary couplings (μ, G)

Backup: Real-space RG for lattice $\mathcal{N}=4$ SYM

Lattice RG blocking transformation must preserve symmetries \mathcal{Q} and $S_{5} \longleftrightarrow$ geometric structure of the system

Simple scheme constructed in arXiv:1408.7067

$$
\begin{array}{lc}
\mathcal{U}_{c}^{\prime}\left(x^{\prime}\right)=\xi \mathcal{U}_{c}(x) \mathcal{U}_{c}\left(x+\widehat{\mu}_{c}\right) & \eta^{\prime}\left(x^{\prime}\right)=\eta(x) \\
\psi_{c}^{\prime}\left(x^{\prime}\right)=\xi\left[\psi_{c}(x) \mathcal{U}_{c}\left(x+\widehat{\mu}_{c}\right)+\mathcal{U}_{c}(x) \psi_{c}\left(x+\widehat{\mu}_{c}\right)\right] & \text { etc. }
\end{array}
$$

Doubles lattice spacing $a \longrightarrow a^{\prime}=2 a$, with ξ a tunable rescaling factor
Scalar fields from polar decomposition $\mathcal{U}_{c}(n)=e^{\varphi_{c}(n)} U_{c}(n)$ are shifted $\varphi_{c} \longrightarrow \varphi_{c}+\log \xi$, since blocked U_{c} must remain unitary
\mathcal{Q}-preserving RG blocking is necessary ingredient to derive that at most one log. tuning needed to recover \mathcal{Q}_{a} and $\mathcal{Q}_{a b}$ in the continuum

Backup: Scaling dimensions from Monte Carlo RG

Write system as (infinite) sum of operators, $H=\sum_{i} c_{i} \mathcal{O}_{i}$
with couplings c_{i} that flow under RG blocking transformation R_{b}
n-times-blocked system is $H^{(n)}=R_{b} H^{(n-1)}=\sum_{i} c_{i}^{(n)} \mathcal{O}_{i}^{(n)}$
Fixed point defined by $H^{\star}=R_{b} H^{\star}$ with couplings c_{i}^{\star}

Linear expansion around fixed point defines stability matrix $T_{i k}^{*}$

$$
c_{i}^{(n)}-c_{i}^{\star}=\left.\sum_{k} \frac{\partial c_{i}^{(n)}}{\partial c_{k}^{(n-1)}}\right|_{H^{\star}}\left(c_{k}^{(n-1)}-c_{k}^{\star}\right) \equiv \sum_{k} T_{i k}^{\star}\left(c_{k}^{(n-1)}-c_{k}^{\star}\right)
$$

Correlators of $\mathcal{O}_{i}, \mathcal{O}_{k} \longrightarrow$ elements of stability matrix (Swendsen, 1979)
Eigenvalues of $T_{i k}^{\star} \longrightarrow$ scaling dimensions of corresponding operators

Backup: Smearing for Konishi analyses

As in glueball analyses, use smearing to enlarge operator basis Using APE-like smearing: $(1-\alpha)-\quad+\frac{\alpha}{8} \sum \sqcap$,
with staples built from unitary parts of links but no final unitarization (unitarized smearing - e.g. stout - doesn't affect scalar fields)

Average plaquette is stable upon smearing (right) while minimum plaquette steadily increases (left)

