New results from lattice $\mathcal{N} = 4$ super Yang–Mills

David Schaich (Syracuse)

Lattice 2015, 18 July

arXiv:1410.6971, arXiv:1411.0166, arXiv:1505.03135 & more to come with Simon Catterall, Poul Damgaard, Tom DeGrand and Joel Giedt

David Schaich (Syracuse)

Brief review of motivations for lattice supersymmetry

- Much interesting physics in 4D supersymmetric gauge theories: dualities, holography, confinement, conformality, BSM, ...
- Lattice promises non-perturbative insights from first principles

Problem: Discrete spacetime breaks supersymmetry algebra $\left\{ Q_{\alpha}^{I}, \overline{Q}_{\dot{\alpha}}^{J} \right\} = 2\delta^{IJ}\sigma_{\alpha\dot{\alpha}}^{\mu}P_{\mu}$ where $I, J = 1, \cdots, N$

 $\implies \mbox{Impractical fine-tuning generally required to restore susy,} \\ \mbox{especially for scalar fields (from matter multiplets or $\mathcal{N}>1$)}$

Solution: Preserve (some subset of) the susy algebra on the lattice Possible for $\mathcal{N} = 4$ supersymmetric Yang–Mills (SYM)

Brief review of $\mathcal{N} = 4$ SYM

- $\mathcal{N}=4$ SYM is a particularly interesting theory
- -Context for development of AdS/CFT correspondence
- -Testing ground for reformulations of scattering amplitudes
- -Arguably simplest non-trivial field theory in four dimensions

Basic features:

- SU(N) gauge theory with four fermions Ψ^I and six scalars Φ^{IJ}, all massless and in adjoint rep.
- Action consists of kinetic, Yukawa and four-scalar terms with coefficients related by symmetries
- Supersymmetric: 16 supercharges Q^{I}_{α} and $\overline{Q}^{I}_{\dot{\alpha}}$ with $I = 1, \cdots, 4$ Fields and Q's transform under global SU(4) \simeq SO(6) R symmetry
- Conformal: β function is zero for any 't Hooft coupling λ

David Schaich (Syracuse)

Topological twisting \longrightarrow exact susy on the lattice

What is special about $\mathcal{N} = 4$ SYM

The 16 spinor supercharges Q_{α}^{I} and $\overline{Q}_{\dot{\alpha}}^{I}$ fill a Kähler–Dirac multiplet:

$$\begin{pmatrix} Q_{\alpha}^{1} & Q_{\alpha}^{2} & Q_{\alpha}^{3} & Q_{\alpha}^{4} \\ \overline{Q}_{\dot{\alpha}}^{1} & \overline{Q}_{\dot{\alpha}}^{2} & \overline{Q}_{\dot{\alpha}}^{3} & \overline{Q}_{\dot{\alpha}}^{4} \end{pmatrix} = \mathcal{Q} + \mathcal{Q}_{\mu}\gamma_{\mu} + \mathcal{Q}_{\mu\nu}\gamma_{\mu}\gamma_{\nu} + \overline{\mathcal{Q}}_{\mu}\gamma_{\mu}\gamma_{5} + \overline{\mathcal{Q}}\gamma_{5} \\ \longrightarrow \mathcal{Q} + \gamma_{a}\mathcal{Q}_{a} + \gamma_{a}\gamma_{b}\mathcal{Q}_{ab} \\ \text{with } a, b = 1, \cdots, 5 \end{cases}$$

Q's transform with integer spin under "twisted rotation group"

$$\mathrm{SO(4)}_{tw} \equiv \mathrm{diag} \Big[\mathrm{SO(4)}_{\mathrm{euc}} \otimes \mathrm{SO(4)}_R \Big] \qquad \qquad \mathrm{SO(4)}_R \subset \mathrm{SO(6)}_R$$

This change of variables gives a susy subalgebra $\{Q, Q\} = 2Q^2 = 0$ This subalgebra can be exactly preserved on the lattice

David Schaich (Syracuse)

Formal supersymmetric lattice action

Directly transcribe twisted continuum action:

$$\mathcal{S} = rac{N}{2\lambda_{ ext{lat}}}\mathcal{Q}\left(\chi_{ab}\mathcal{F}_{ab} + \eta \overline{\mathcal{D}}_{a}\mathcal{U}_{a} - rac{1}{2}\eta d
ight) - rac{N}{8\lambda_{ ext{lat}}}\epsilon_{abcde} \ \chi_{ab}\overline{\mathcal{D}}_{c} \ \chi_{de}$$

—Twisting reorganizes fermions $\Psi^{I} \longrightarrow \eta, \psi_{a}, \chi_{ab}$, combines gauge & scalar fields into complexified links $\mathcal{U}_{a}, \overline{\mathcal{U}}_{a}$

- —Complexification $\longrightarrow U(N) = SU(N) \otimes U(1)$ gauge invariance
- -Nilpotent Q directly interchanges bosonic \leftrightarrow fermionic d.o.f.
- —Susy (QS = 0) follows from $Q^2 \cdot = 0$ and Bianchi identity

Not quite suitable for numerical calculations

Exact zero modes and flat directions must be regulated,

especially important in U(1) sector

New improved lattice action

arXiv:1505.03135

-Scalar potential $V = \frac{1}{2N\lambda_{\text{lat}}} \left(\text{Tr} \left[\mathcal{U}_a \overline{\mathcal{U}}_a \right] - N \right)^2$ lifts SU(N) flat directions

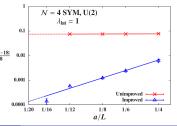
-Constraint on plaquette det. lifts U(1) zero mode & flat directions

New development — supersymmetric plaquette det. deformation:

$$S = \frac{N}{2\lambda_{\text{lat}}} \mathcal{Q} \left(\chi_{ab} \mathcal{F}_{ab} + \bigcup_{\mathcal{P}} -\frac{1}{2} \eta d \right) - \frac{N}{8\lambda_{\text{lat}}} \epsilon_{abcde} \chi_{ab} \overline{\mathcal{D}}_c \chi_{de} + \mu^2 V$$
$$\eta \left(\overline{\mathcal{D}}_a \mathcal{U}_a + G \sum_{\mathcal{P}} \left[\det \mathcal{P} - 1 \right] \mathbb{I}_N \right)$$

Scalar potential **softly** breaks Q, much less than old non-susy det \mathcal{P} (~500× smaller lattice artifacts for L = 16) $\frac{|(r_0)-18|}{18}$ Effective $\mathcal{O}(a)$ improvement

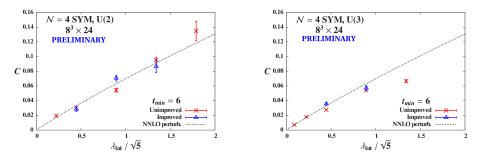
since Q forbids all dim-5 operators



Brief update on the static potential

Previously reported Coulombic static potential V(r) at all λ

Currently confirming and extending with improved action



Left: Agreement with perturbation theory for N = 2, $\lambda \lesssim 2$ Right: Tantalizing $\sqrt{\lambda}$ -like behavior for N = 3, $\lambda \gtrsim 1$, possibly approaching large-*N* AdS/CFT prediction $C(\lambda) \propto \sqrt{\lambda}$

David Schaich (Syracuse)

Konishi operator scaling dimension

 $\mathcal{N}=4 \text{ SYM is conformal at all } \lambda \\ \longrightarrow \text{power-law decay for all correlation functions}$

The Konishi operator is the simplest conformal primary operator

$$\mathcal{O}_{\mathcal{K}} = \sum_{\mathrm{I}} \mathrm{Tr} \left[\Phi^{\mathrm{I}} \Phi^{\mathrm{I}} \right] \qquad \qquad \mathcal{C}_{\mathcal{K}}(r) \equiv \mathcal{O}_{\mathcal{K}}(x+r) \mathcal{O}_{\mathcal{K}}(x) \propto r^{-2\Delta_{\mathcal{K}}}$$

There are many predictions for the scaling dim. $\Delta_{\mathcal{K}}(\lambda) = 2 + \gamma_{\mathcal{K}}(\lambda)$

• From weak-coupling perturbation theory, related to strong coupling by $\frac{4\pi N}{\lambda} \longleftrightarrow \frac{\lambda}{4\pi N}$ S duality

- From holography for $N \to \infty$ and $\lambda \to \infty$ but $\lambda \ll N$
- Upper bounds from the conformal bootstrap program

Only lattice gauge theory can access nonperturbative λ at moderate N

Konishi scaling dimension on the lattice

Extract scalar fields from polar decomposition of complexified links

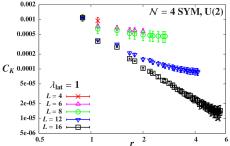
$$\mathcal{U}_{a} \simeq \mathcal{U}_{a} (\mathbb{I}_{N} + \varphi_{a}) \qquad \widehat{\mathcal{O}}_{K} = \sum_{a} \operatorname{Tr} [\varphi_{a} \varphi_{a}] \qquad \overline{\mathcal{O}}_{K} = \widehat{\mathcal{O}}_{K} - \left\langle \widehat{\mathcal{O}}_{K} \right\rangle$$

$$\overline{\mathcal{C}}_{\mathcal{K}}(r) = \overline{\mathcal{O}}_{\mathcal{K}}(x+r)\overline{\mathcal{O}}_{\mathcal{K}}(x) \propto r^{-2\Delta_{\mathcal{K}}}$$

Obvious sensitivity to volume as desired for conformal system C_{κ}

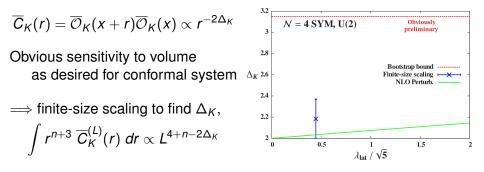
 \implies finite-size scaling to find $\Delta_{\mathcal{K}}$,

$$\int r^{n+3} \ \overline{C}_{K}^{(L)}(r) \ dr \propto L^{4+n-2\Delta_{K}}$$



Konishi scaling dimension on the lattice

Extract scalar fields from polar decomposition of complexified links $\mathcal{U}_a \simeq \mathcal{U}_a (\mathbb{I}_N + \varphi_a) \qquad \widehat{\mathcal{O}}_K = \sum_a \operatorname{Tr} [\varphi_a \varphi_a] \qquad \overline{\mathcal{O}}_K = \widehat{\mathcal{O}}_K - \left\langle \widehat{\mathcal{O}}_K \right\rangle$

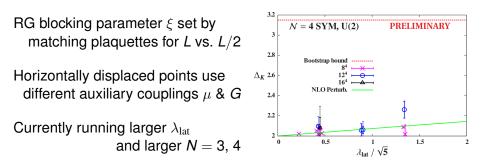


Work in progress to add more points & reduce uncertainties
 Also carrying out complementary MCRG analyses...

David Schaich (Syracuse)

Konishi scaling dimension from Monte Carlo RG

Eigenvalues of MCRG stability matrix \longrightarrow scaling dimensions



Uncertainties from weighted histogram of results from...

* 1 & 2 RG blocking steps

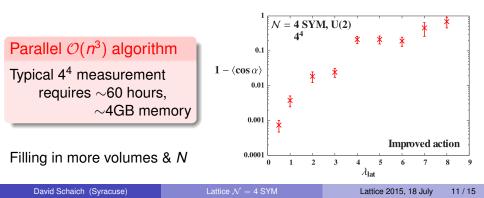
- * Blocked volumes 3⁴ through 8⁴
- \star 1–5 operators in stability matrix

Revisiting the sign problem

Pfaffian can be complex for lattice $\mathcal{N} = 4$ SYM, $\text{pf } \mathcal{D} = |\text{pf } \mathcal{D}| e^{i\alpha}$

Previously found $1 - \langle \cos(\alpha) \rangle \ll 1$, independent of lattice volume

Now extending with improved action, which allows access to larger λ Finding much larger phase fluctuations at stronger couplings



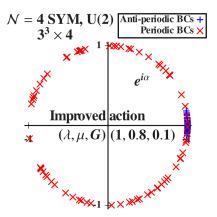
Two puzzles posed by the sign problem

- With periodic temporal boundary conditions for the fermions we have an obvious sign problem, $\langle e^{i\alpha} \rangle$ consistent with zero
- With anti-periodic BCs and all else the same $\langle e^{i\alpha} \rangle \approx 1$, phase reweighting not even necessary

Why such sensitivity to the BCs?

Also, other observables are nearly identical for these two ensembles

Why doesn't the sign problem have observable effects?



Recapitulation

- Rapid progress in lattice $\mathcal{N} = 4$ SYM
- New improved action dramatically reduces lattice artifacts
- N = 3 static potential apparently approaching AdS/CFT prediction
- Promising initial results for Konishi anomalous dimension
- New information on origin and effects of sign problem

Advertisement: Public code for lattice $\mathcal{N} = 4$ SYM

so that the full improved action becomes

$$S_{\text{tenset}} = S_{\text{exact}} + S_{\text{closed}} + S_{\text{soft}}^{\prime} \qquad (3.10)$$

$$S_{\text{exact}}^{\prime} = \frac{N}{2\lambda_{\text{hat}}} \sum_{n} \text{Tr} \left[-\overline{\mathcal{F}}_{ab}(n)\mathcal{F}_{ab}(n) - \chi_{ab}(n)\mathcal{D}_{|a}^{(+)}\psi_{b|}(n) - \eta(n)\overline{\mathcal{D}}_{a}^{(-)}\psi_{a}(n) + \frac{1}{2} \left(\overline{\mathcal{D}}_{a}^{(-)}\mathcal{U}_{a}(n) + G\sum_{a\neq b} (\det \mathcal{P}_{ab}(n) - 1)\mathbb{I}_{N} \right)^{2} \right] - S_{\text{det}}$$

$$S_{\text{det}} = \frac{N}{2\lambda_{\text{hat}}} G\sum_{n} \text{Tr} \left[\eta(n) \right] \sum_{a\neq b} [\det \mathcal{P}_{ab}(n)] \text{Tr} \left[\mathcal{U}_{b}^{-1}(n)\psi_{b}(n) + \mathcal{U}_{a}^{-1}(n + \hat{\mu}_{b})\psi_{a}(n + \hat{\mu}_{b}) \right]$$

$$S_{\text{closed}} = -\frac{N}{8\lambda_{\text{hat}}} \sum_{n} \text{Tr} \left[\epsilon_{abcde} \chi_{de}(n + \hat{\mu}_{a} + \hat{\mu}_{b} + \hat{\mu}_{c})\overline{\mathcal{D}}_{c}^{(-)}\chi_{ab}(n) \right],$$

$$S_{\text{soft}} = \frac{N}{2\lambda_{\text{hat}}} \mu^{2} \sum_{n} \sum_{a} \left(\frac{1}{N} \text{Tr} \left[\mathcal{U}_{a}(n)\overline{\mathcal{U}}_{a}(n) \right] - 1 \right)^{2}$$

The lattice action is obviously very complicated (the fermion operator involves $\gtrsim 100$ gathers)

To reduce barriers to entry our parallel code is publicly developed at github.com/daschaich/susy

Evolved from MILC code, presented in arXiv:1410.6971

David Schaich (Syracuse)

Thank you!

Thank you!

Collaborators

Simon Catterall, Poul Damgaard, Tom DeGrand and Joel Giedt

Funding and computing resources

Backup: Failure of Leibnitz rule in discrete space-time

Given that
$$\left\{ Q_{\alpha}, \overline{Q}_{\dot{\alpha}} \right\} = 2\sigma^{\mu}_{\alpha\dot{\alpha}}P_{\mu} = 2i\sigma^{\mu}_{\alpha\dot{\alpha}}\partial_{\mu}$$
 is problematic,
why not try $\left\{ Q_{\alpha}, \overline{Q}_{\dot{\alpha}} \right\} = 2i\sigma^{\mu}_{\alpha\dot{\alpha}}\nabla_{\mu}$ for a discrete translation?

Here $\nabla_{\mu}\phi(\mathbf{x}) = \frac{1}{a} \left[\phi(\mathbf{x} + a\hat{\mu}) - \phi(\mathbf{x})\right] = \partial_{\mu}\phi(\mathbf{x}) + \frac{a}{2}\partial_{\mu}^{2}\phi(\mathbf{x}) + \mathcal{O}(a^{2})$

Essential difference between ∂_{μ} and ∇_{μ} on the lattice, a > 0 $\nabla_{\mu} [\phi(x)\chi(x)] = a^{-1} [\phi(x + a\hat{\mu})\chi(x + a\hat{\mu}) - \phi(x)\chi(x)]$ $= [\nabla_{\mu}\phi(x)]\chi(x) + \phi(x)\nabla_{\mu}\chi(x) + a[\nabla_{\mu}\phi(x)]\nabla_{\mu}\chi(x)$

We only recover the Leibnitz rule $\partial_{\mu}(fg) = (\partial_{\mu}f)g + f\partial_{\mu}g$ when $a \to 0$ \implies "Discrete supersymmetry" breaks down on the lattice (Dondi & Nicolai, "Lattice Supersymmetry", 1977)

The Kähler–Dirac representation is related to the spinor $Q_{\alpha}^{I}, \overline{Q}_{\dot{\alpha}}^{I}$ by

$$\begin{pmatrix} Q_{\alpha}^{1} & Q_{\alpha}^{2} & Q_{\alpha}^{3} & Q_{\alpha}^{4} \\ \overline{Q}_{\dot{\alpha}}^{1} & \overline{Q}_{\dot{\alpha}}^{2} & \overline{Q}_{\dot{\alpha}}^{3} & \overline{Q}_{\dot{\alpha}}^{4} \end{pmatrix} = \mathcal{Q} + \mathcal{Q}_{\mu}\gamma_{\mu} + \mathcal{Q}_{\mu\nu}\gamma_{\mu}\gamma_{\nu} + \overline{\mathcal{Q}}_{\mu}\gamma_{\mu}\gamma_{5} + \overline{\mathcal{Q}}\gamma_{5} \\ \longrightarrow \mathcal{Q} + \gamma_{a}\mathcal{Q}_{a} + \gamma_{a}\gamma_{b}\mathcal{Q}_{ab} \\ \text{with } a, b = 1, \cdots, 5 \end{cases}$$

The 4 \times 4 matrix involves R symmetry transformations along each row and (euclidean) Lorentz transformations along each column

⇒ Kähler–Dirac components transform under "twisted rotation group"

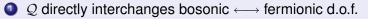
$$SO(4)_{tw} \equiv diag \left[SO(4)_{euc} \otimes SO(4)_R \right]$$

 $\uparrow_{only SO(4)_R \subset SO(6)_R}$

Backup: Twisted $\mathcal{N} = 4$ SYM fields and \mathcal{Q}

Everything transforms with integer spin under $SO(4)_{tw}$ — no spinors

The twisted-scalar supersymmetry Q acts as



2 The susy subalgebra $Q^2 \cdot = 0$ is manifest

Backup: Lattice $\mathcal{N} = 4$ SYM fields and \mathcal{Q}

The lattice theory is very nearly a direct transcription

- Covariant derivatives —> finite difference operators
- Gauge fields $\mathcal{A}_a \longrightarrow$ gauge links \mathcal{U}_a

 $\begin{array}{l} \mathcal{Q} \ \mathcal{A}_{a} \longrightarrow \mathcal{Q} \ \mathcal{U}_{a} = \psi_{a} & \mathcal{Q} \ \psi_{a} = 0 \\ \mathcal{Q} \ \chi_{ab} = -\overline{\mathcal{F}}_{ab} & \mathcal{Q} \ \overline{\mathcal{A}}_{a} \longrightarrow \mathcal{Q} \ \overline{\mathcal{U}}_{a} = 0 \\ \mathcal{Q} \ \eta = d & \mathcal{Q} \ d = 0 \end{array}$

• Formal lattice action retains same form as continuum action and remains supersymmetric, QS = 0

Geometrical formulation facilitates discretization η live on lattice sites ψ_a live on links χ_{ab} connect opposite corners of oriented plaquettes

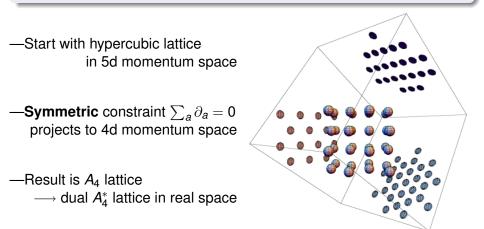
Orbifolding / dimensional deconstruction produces same lattice system

David Schaich (Syracuse)

Backup: A_4^* lattice with five links in four dimensions

 $A_a = (A_\mu, \phi)$ may remind you of dimensional reduction

On the lattice we want to treat all five U_a symmetrically to obtain $S_5 \longrightarrow SO(4)_{tw}$ symmetry

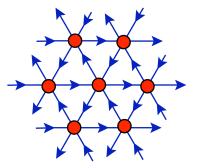


Backup: A_4^* lattice point group symmetry

—Can picture A^{*}₄ lattice as 4d analog of 2d triangular lattice

—Preserves S_5 point group symmetry

-Basis vectors are non-orthogonal and linearly dependent

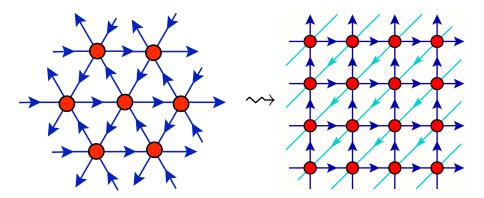


 S_5 irreps precisely match onto irreps of twisted SO(4)_{tw}

$$\mathbf{5} = \mathbf{4} \oplus \mathbf{1} : \quad \mathcal{U}_{\mathbf{a}} \longrightarrow \mathbf{A}_{\mu} + i\mathbf{B}_{\mu}, \quad \phi + i\overline{\phi}$$
$$\psi_{\mathbf{a}} \longrightarrow \psi_{\mu}, \quad \overline{\eta}$$
$$\mathbf{10} = \mathbf{6} \oplus \mathbf{4} : \quad \chi_{\mathbf{ab}} \longrightarrow \chi_{\mu\nu}, \quad \overline{\psi}_{\mu}$$

Backup: Hypercubic representation of A_4^* lattice

In the code it is very convenient to represent the A_4^* lattice as a hypercube with a backwards diagonal



Backup: More on flat directions

Complex gauge field ⇒ U(N) = SU(N) ⊗ U(1) gauge invariance
 U(1) sector decouples only in continuum limit

Q U_a = ψ_a ⇒ gauge links must be elements of algebra
 Resulting flat directions required by supersymmetric construction but must be lifted to ensure U_a = I_N + A_a in continuum limit

We need to add two deformations to regulate flat directions SU(N) scalar potential $\propto \mu^2 \sum_a (\text{Tr} [\mathcal{U}_a \overline{\mathcal{U}}_a] - N)^2$ U(1) plaquette determinant $\sim G \sum_{a \neq b} (\det \mathcal{P}_{ab} - 1)$

Scalar potential **softly** breaks Q supersymmetry

`susy-violating operators vanish as $\mu^2
ightarrow 0$

Plaquette determinant can be made Q-invariant \longrightarrow improved action

David Schaich (Syracuse)

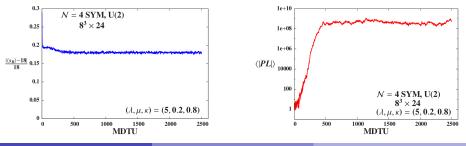
Backup: One problem with flat directions

Gauge fields U_a can move far away from continuum form $\mathbb{I}_N + A_a$ if $N\mu^2/(2\lambda_{\text{lat}})$ becomes too small

Example for two-color $(\lambda_{\text{lat}}, \mu, \kappa) = (5, 0.2, 0.8)$ on $8^3 \times 24$ volume

Left: Bosonic action is stable $\sim 18\%$ off its supersymmetric value

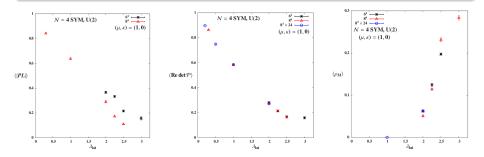
Right: Polyakov loop wanders off to $\sim 10^9$



David Schaich (Syracuse)

Backup: Another problem with U(1) flat directions

Flat directions in U(1) sector can induce transition to confined phase This lattice artifact is not present in continuum $\mathcal{N} = 4$ SYM



Around the same $\lambda_{lat} \approx 2...$

Left: Polyakov loop falls towards zero

Center: Plaquette determinant falls towards zero

Right: Density of U(1) monopole world lines becomes non-zero

David Schaich (Syracuse)

Backup: Soft susy breaking

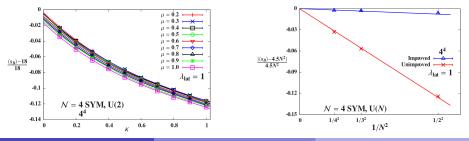
The unimproved action directly adds to the lattice action

$$S_{soft} = \frac{N}{2\lambda_{\text{lat}}} \mu^2 \left(\frac{1}{N} \text{Tr} \left[\mathcal{U}_a \overline{\mathcal{U}}_a\right] - 1\right)^2 + \kappa \left|\det \mathcal{P}_{ab} - 1\right|^2$$

Both terms explicitly break Q but det \mathcal{P}_{ab} effects dominate

Left: The breaking is soft — guaranteed to vanish as $\mu, \kappa \longrightarrow 0$

Right: Soft Q breaking also suppressed $\propto 1/N^2$



David Schaich (Syracuse)

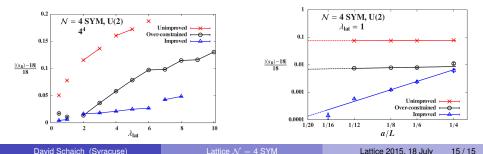
Backup: More on supersymmetric constraints

Improved action from arXiv:1505.03135 imposes Q-invariant plaquette determinant constraint

Basic idea: Modify the equations of motion \longrightarrow moduli space

$$d(n) = \overline{\mathcal{D}}_a^{(-)} \mathcal{U}_a(n) \longrightarrow \overline{\mathcal{D}}_a^{(-)} \mathcal{U}_a(n) + G \sum_{a \neq b} [\det \mathcal{P}_{ab}(n) - 1]$$

Produces much smaller violations of Q Ward identity $\langle s_B \rangle = 9N^2/2$

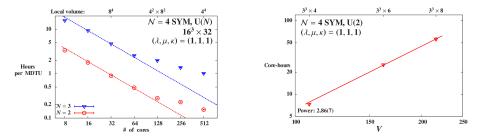


Backup: Code performance—weak and strong scaling

Results from arXiv:1410.6971 using the unimproved action

Left: Strong scaling for U(2) and U(3) $16^3 \times 32$ RHMC

Right: Weak scaling for $O(n^3)$ pfaffian calculation (fixed local volume) $n \equiv 16N^2L^3N_T$ is number of fermion degrees of freedom



Both plots on log-log axes with power-law fits

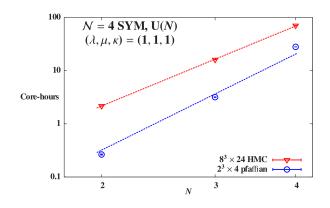
David Schaich (Syracuse)

Backup: Numerical costs for 2, 3 and 4 colors

Red: Find RHMC cost scaling $\sim N^5$ (recall adjoint fermion d.o.f. $\propto N^2$)

Blue: Pfaffian cost scaling consistent with expected N⁶

Additional factor of $\sim 2 \times$ from improved action, but same scaling



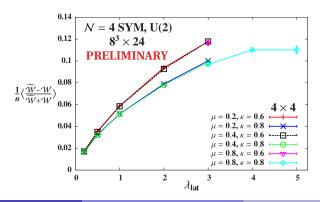
David Schaich (Syracuse)

Backup: Restoration of Q_a and Q_{ab} supersymmetries

Restoration of the other 15 Q_a and Q_{ab} in the continuum limit follows from restoration of R symmetry (motivation for A_4^* lattice)

Modified Wilson loops test R symmetries at non-zero lattice spacing

Results from arXiv:1411.0166 to be revisited with the improved action

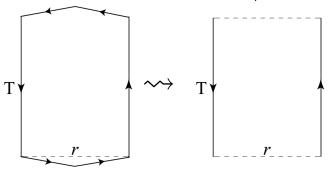


David Schaich (Syracuse)

Backup: $\mathcal{N} = 4$ static potential from Wilson loops

Extract static potential V(r) from $r \times T$ Wilson loops $W(r, T) \propto e^{-V(r) T}$ $V(r) = A - C/r + \sigma r$

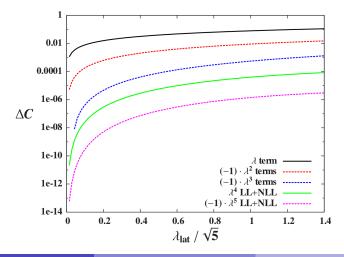
Coulomb gauge trick from lattice QCD reduces A_{4}^{*} lattice complications



Backup: Perturbation theory for Coulomb coefficient

For range of λ_{lat} currently being studied

perturbation theory for the Coulomb coefficient is well behaved

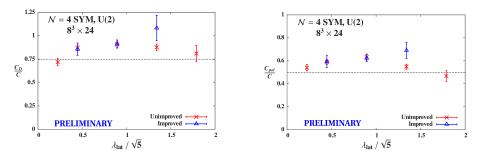


David Schaich (Syracuse)

Backup: More tests of the U(2) static potential

Left: Projecting Wilson loops from U(2)
$$\longrightarrow$$
 SU(2)
 \implies factor of $\frac{N^2-1}{N^2} = 3/4$

Right: Unitarizing links removes scalars \implies factor of 1/2



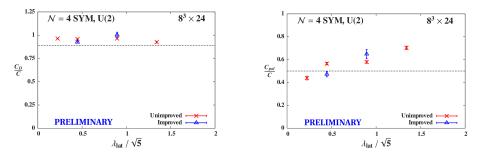
Some results slightly above expected factors, may be related to non-zero auxiliary couplings μ and κ / G

David Schaich (Syracuse)

Backup: More tests of the U(3) static potential

Left: Projecting Wilson loops from U(3)
$$\longrightarrow$$
 SU(3)
 \implies factor of $\frac{N^2-1}{N^2} = 8/9$

Right: Unitarizing links removes scalars \implies factor of 1/2



Some results slightly above expected factors, may be related to non-zero auxiliary couplings μ and κ / G

David Schaich (Syracuse)

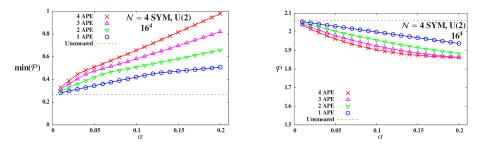
Backup: Smearing for Konishi analyses

-As in glueball analyses, operator basis enlarged through smearing

—Use APE-like smearing $(1 - \alpha)$ — $+ \frac{\alpha}{8} \sum \Box$,

with staples built from unitary parts of links but no final unitarization (unitarized smearing — e.g. stout — doesn't affect Konishi)

—Average plaquette is stable upon smearing (right) even though minimum plaquette steadily increases (left)



Backup: Scaling dimensions from Monte Carlo RG

Write system as (infinite) sum of operators O_i with couplings c_i

Couplings c_i flow under RG blocking transformation R_b

n-times-blocked system is $H^{(n)} = R_b H^{(n-1)} = \sum_i c_i^{(n)} \mathcal{O}_i^{(n)}$

Consider linear expansion around fixed point H^* with couplings c_i^*

$$\left. oldsymbol{c}_{i}^{(n)}-oldsymbol{c}_{i}^{\star} = \sum_{j} \left. rac{\partial oldsymbol{c}_{i}^{(n)}}{\partial oldsymbol{c}_{j}^{(n-1)}}
ight|_{H^{\star}} \left(oldsymbol{c}_{j}^{(n-1)}-oldsymbol{c}_{j}^{\star}
ight) \equiv \sum_{j} T_{ij}^{\star} \left(oldsymbol{c}_{j}^{(n-1)}-oldsymbol{c}_{j}^{\star}
ight)$$

T_{ii}^{\star} is the stability matrix

Eigenvalues of $T_{ii}^{\star} \longrightarrow$ scaling dimensions of corresponding operators

David Schaich (Syracuse)

Backup: The sign problem

In lattice gauge theory we compute operator expectation values

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int [d\mathcal{U}] [d\overline{\mathcal{U}}] \mathcal{O} e^{-S_{\mathcal{B}}[\mathcal{U},\overline{\mathcal{U}}]} \text{ pf } \mathcal{D}[\mathcal{U},\overline{\mathcal{U}}]$$

pf $\mathcal{D} = |\text{pf } \mathcal{D}| e^{i\alpha}$ can be complex for lattice $\mathcal{N} = 4$ SYM \longrightarrow Complicates interpretation of $[e^{-S_B} \text{ pf } \mathcal{D}]$ as Boltzmann weight

Instead absorb $e^{i\alpha}$ into phase-quenched (pq) observables $\mathcal{O}e^{i\alpha}$ and reweight using $Z = \int e^{i\alpha} e^{-S_B} |\text{pf }\mathcal{D}| = \langle e^{i\alpha} \rangle_{pq}$

$$\langle \mathcal{O} \rangle_{pq} = \frac{1}{\mathcal{Z}_{pq}} \int [d\mathcal{U}] [d\overline{\mathcal{U}}] \mathcal{O} e^{-S_B} |\text{pf } \mathcal{D}| \qquad \langle \mathcal{O} \rangle = \frac{\langle \mathcal{O} e^{i\alpha} \rangle_{pq}}{\langle e^{i\alpha} \rangle_{pq}}$$

Sign problem: This breaks down if $\langle e^{i\alpha} \rangle_{pq}$ is consistent with zero

David Schaich (Syracuse)

Backup: Pfaffian phase volume dependence

No indication of a sign problem at $\lambda_{lat} = 1$ with anti-periodic BCs

- Results from arXiv:1411.0166 using the unimproved action
- Fluctuations in pfaffian phase don't grow with the lattice volume
- Insensitive to number of colors N = 2, 3, 4

