New results from lattice $\mathcal{N}=4$ super Yang-Mills

David Schaich (Syracuse)

Lattice 2015, 18 July
arXiv:1410.6971, arXiv:1411.0166, arXiv:1505.03135 \& more to come with Simon Catterall, Poul Damgaard, Tom DeGrand and Joel Giedt

Brief review of motivations for lattice supersymmetry

- Much interesting physics in 4D supersymmetric gauge theories: dualities, holography, confinement, conformality, BSM, ...
- Lattice promises non-perturbative insights from first principles

Problem: Discrete spacetime breaks supersymmetry algebra

$$
\left\{Q_{\alpha}^{\mathrm{I}}, \bar{Q}_{\dot{\alpha}}^{\mathrm{J}}\right\}=2 \delta^{\mathrm{IJ}} \sigma_{\alpha \dot{\alpha}}^{\mu} P_{\mu} \text { where I } \mathrm{J}=1, \cdots, \mathcal{N}
$$

\Longrightarrow Impractical fine-tuning generally required to restore susy, especially for scalar fields (from matter multiplets or $\mathcal{N}>1$)

Solution: Preserve (some subset of) the susy algebra on the lattice Possible for $\mathcal{N}=4$ supersymmetric Yang-Mills (SYM)

Brief review of $\mathcal{N}=4$ SYM

$\mathcal{N}=4$ SYM is a particularly interesting theory
-Context for development of AdS/CFT correspondence
-Testing ground for reformulations of scattering amplitudes
-Arguably simplest non-trivial field theory in four dimensions
Basic features:

- $\operatorname{SU}(N)$ gauge theory with four fermions ψ^{I} and six scalars ϕ^{II}, all massless and in adjoint rep.
- Action consists of kinetic, Yukawa and four-scalar terms with coefficients related by symmetries
- Supersymmetric: 16 supercharges Q_{α}^{I} and $\bar{Q}_{\dot{\alpha}}^{\mathrm{I}}$ with $\mathrm{I}=1, \cdots, 4$ Fields and Q 's transform under global $\mathrm{SU}(4) \simeq \mathrm{SO}(6) \mathrm{R}$ symmetry
- Conformal: β function is zero for any 't Hooft coupling λ

Topological twisting \longrightarrow exact susy on the lattice

What is special about $\mathcal{N}=4$ SYM

The 16 spinor supercharges Q_{α}^{I} and $\bar{Q}_{\dot{\alpha}}^{\mathrm{I}}$ fill a Kähler-Dirac multiplet:

$$
\left(\begin{array}{cccc}
Q_{\alpha}^{1} & Q_{\alpha}^{2} & Q_{\alpha}^{3} & Q_{\alpha}^{4} \\
\bar{Q}_{\dot{\alpha}}^{1} & \bar{Q}_{\dot{\alpha}}^{2} & \bar{Q}_{\dot{\alpha}}^{3} & \bar{Q}_{\dot{\alpha}}^{4}
\end{array}\right)=\begin{gathered}
\mathcal{Q}+\mathcal{Q}_{\mu} \gamma_{\mu}+\mathcal{Q}_{\mu \nu} \gamma_{\mu} \gamma_{\nu}+\overline{\mathcal{Q}}_{\mu} \gamma_{\mu} \gamma_{5}+\overline{\mathcal{Q}}_{5} \\
\longrightarrow \mathcal{Q}+\gamma_{a} \mathcal{Q}_{a}+\gamma_{a} \gamma_{b} \mathcal{Q}_{a b} \\
\text { with } a, b=1, \cdots, 5
\end{gathered}
$$

Q's transform with integer spin under "twisted rotation group"

$$
\mathrm{SO}(4)_{t w} \equiv \operatorname{diag}\left[\mathrm{SO}(4)_{\mathrm{euc}} \otimes \mathrm{SO}(4)_{R}\right] \quad \mathrm{SO}(4)_{R} \subset \mathrm{SO}(6)_{R}
$$

This change of variables gives a susy subalgebra $\{\mathcal{Q}, \mathcal{Q}\}=2 \mathcal{Q}^{2}=0$ This subalgebra can be exactly preserved on the lattice

Formal supersymmetric lattice action

Directly transcribe twisted continuum action:

$$
S=\frac{N}{2 \lambda_{\text {lat }}} \mathcal{Q}\left(\chi_{a b} \mathcal{F}_{a b}+\eta \overline{\mathcal{D}}_{a} \mathcal{U}_{a}-\frac{1}{2} \eta d\right)-\frac{N}{8 \lambda_{\text {lat }}} \epsilon_{a b c d e} \chi_{a b} \overline{\mathcal{D}}_{c} \chi_{d e}
$$

-Twisting reorganizes fermions $\psi^{\prime} \longrightarrow \eta, \psi_{a}, \chi_{a b}$, combines gauge \& scalar fields into complexified links $\mathcal{U}_{a}, \overline{\mathcal{U}}_{a}$
—Complexification $\longrightarrow \mathrm{U}(N)=\mathrm{SU}(N) \otimes \mathrm{U}(1)$ gauge invariance
-Nilpotent \mathcal{Q} directly interchanges bosonic \longleftrightarrow fermionic d.o.f.
-Susy ($\mathcal{Q} S=0$) follows from $\mathcal{Q}^{2} \cdot=0$ and Bianchi identity

Not quite suitable for numerical calculations

Exact zero modes and flat directions must be regulated, especially important in $\mathrm{U}(1)$ sector

New improved lattice action

-Scalar potential $V=\frac{1}{2 N \lambda_{\text {lat }}}\left(\operatorname{Tr}\left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right]-N\right)^{2}$ lifts $\operatorname{SU}(N)$ flat directions -Constraint on plaquette det. lifts $U(1)$ zero mode \& flat directions

New development - supersymmetric plaquette det. deformation:

$$
\begin{gathered}
S=\frac{N}{2 \lambda_{\mathrm{lat}}} \mathcal{Q}\left(\chi_{a b} \mathcal{F}_{a b}+\downarrow-\frac{1}{2} \eta d\right)-\frac{N}{8 \lambda_{\mathrm{lat}}} \epsilon_{a b c d e} \chi_{a b} \overline{\mathcal{D}}_{c} \chi_{d e}+\mu^{2} V \\
\eta\left(\overline{\mathcal{D}}_{a} \mathcal{U}_{a}+G \sum_{\mathcal{P}}[\operatorname{det} \mathcal{P}-1] \mathbb{I}_{N}\right)
\end{gathered}
$$

Scalar potential softly breaks \mathcal{Q},
much less than old non-susy $\operatorname{det} \mathcal{P}$ ($\sim 500 \times$ smaller lattice artifacts for $L=16$)

Effective $\mathcal{O}(a)$ improvement
since \mathcal{Q} forbids all dim- 5 operators

Brief update on the static potential

Previously reported Coulombic static potential $V(r)$ at all λ
Currently confirming and extending with improved action

Left: Agreement with perturbation theory for $N=2, \lambda \lesssim 2$
Right: Tantalizing $\sqrt{\lambda}$-like behavior for $N=3, \lambda \gtrsim 1$, possibly approaching large- N AdS/CFT prediction $C(\lambda) \propto \sqrt{\lambda}$

Konishi operator scaling dimension

$\mathcal{N}=4 \mathrm{SYM}$ is conformal at all λ
\longrightarrow power-law decay for all correlation functions
The Konishi operator is the simplest conformal primary operator

$$
\mathcal{O}_{K}=\sum_{\mathrm{I}} \operatorname{Tr}\left[\Phi^{\mathrm{I}} \Phi^{\mathrm{I}}\right] \quad C_{K}(r) \equiv \mathcal{O}_{K}(x+r) \mathcal{O}_{K}(x) \propto r^{-2 \Delta_{K}}
$$

There are many predictions for the scaling dim. $\Delta_{K}(\lambda)=2+\gamma_{K}(\lambda)$

- From weak-coupling perturbation theory, related to strong coupling by $\frac{4 \pi N}{\lambda} \longleftrightarrow \frac{\lambda}{4 \pi N}$ S duality
- From holography for $N \rightarrow \infty$ and $\lambda \rightarrow \infty$ but $\lambda \ll N$
- Upper bounds from the conformal bootstrap program

Only lattice gauge theory can access nonperturbative λ at moderate N

Konishi scaling dimension on the lattice

Extract scalar fields from polar decomposition of complexified links

$$
\mathcal{U}_{a} \simeq U_{a}\left(\mathbb{I}_{N}+\varphi_{\mathrm{a}}\right) \quad \widehat{\mathcal{O}}_{K}=\sum_{a} \operatorname{Tr}\left[\varphi_{a} \varphi_{\mathrm{a}}\right] \quad \overline{\mathcal{O}}_{K}=\widehat{\mathcal{O}}_{K}-\left\langle\widehat{\mathcal{O}}_{K}\right\rangle
$$

$\bar{C}_{K}(r)=\overline{\mathcal{O}}_{K}(x+r) \overline{\mathcal{O}}_{K}(x) \propto r^{-2 \Delta_{K}}$
Obvious sensitivity to volume as desired for conformal system
\Longrightarrow finite-size scaling to find Δ_{K},

$$
\int r^{n+3} \bar{C}_{K}^{(L)}(r) d r \propto L^{4+n-2 \Delta_{K}}
$$

Konishi scaling dimension on the lattice

Extract scalar fields from polar decomposition of complexified links

$$
\mathcal{U}_{a} \simeq U_{a}\left(\mathbb{I}_{N}+\varphi_{a}\right) \quad \widehat{\mathcal{O}}_{K}=\sum_{a} \operatorname{Tr}\left[\varphi_{a} \varphi_{a}\right] \quad \overline{\mathcal{O}}_{K}=\widehat{\mathcal{O}}_{K}-\left\langle\widehat{\mathcal{O}}_{K}\right\rangle
$$

$\bar{C}_{K}(r)=\overline{\mathcal{O}}_{K}(x+r) \overline{\mathcal{O}}_{K}(x) \propto r^{-2 \Delta_{K}}$
Obvious sensitivity to volume as desired for conformal system
\Longrightarrow finite-size scaling to find Δ_{K},

$$
\int r^{n+3} \bar{C}_{K}^{(L)}(r) d r \propto L^{4+n-2 \Delta_{K}}
$$

-Work in progress to add more points \& reduce uncertainties -Also carrying out complementary MCRG analyses. . .

Konishi scaling dimension from Monte Carlo RG

Eigenvalues of MCRG stability matrix \longrightarrow scaling dimensions

RG blocking parameter ξ set by matching plaquettes for L vs. $L / 2$

Horizontally displaced points use different auxiliary couplings μ \& G

Currently running larger $\lambda_{\text {lat }}$

$$
\text { and larger } N=3,4
$$

Uncertainties from weighted histogram of results from...
$\star 1 \& 2$ RG blocking steps $\quad \star$ Blocked volumes 3^{4} through 8^{4}

* 1-5 operators in stability matrix

Revisiting the sign problem

Pfaffian can be complex for lattice $\mathcal{N}=4 \mathrm{SYM}, \quad \mathrm{pf} \mathcal{D}=|\mathrm{pf} \mathcal{D}| e^{i \alpha}$ Previously found $1-\langle\cos (\alpha)\rangle \ll 1$, independent of lattice volume Now extending with improved action, which allows access to larger λ Finding much larger phase fluctuations at stronger couplings

Parallel $\mathcal{O}\left(n^{3}\right)$ algorithm

Typical 4^{4} measurement requires ~ 60 hours, $\sim 4 G B$ memory

Filling in more volumes \& N

Two puzzles posed by the sign problem

- With periodic temporal boundary conditions for the fermions we have an obvious sign problem, $\left\langle e^{i \alpha}\right\rangle$ consistent with zero
- With anti-periodic BCs and all else the same $\left\langle e^{i \alpha}\right\rangle \approx 1$, phase reweighting not even necessary

$$
\mathcal{N}=\underset{3^{3} \times 4}{4} \text { SYM, U(2) }
$$

$$
\begin{array}{|r|}
\hline \text { Anti-periodic BCs + } \\
\text { Periodic BCs } \times \\
\hline
\end{array}
$$

Why such sensitivity to the BCs?

Also, other observables are nearly identical for these two ensembles

Why doesn't the sign problem have observable effects?

Recapitulation

- Rapid progress in lattice $\mathcal{N}=4$ SYM
- New improved action dramatically reduces lattice artifacts
- $N=3$ static potential apparently approaching AdS/CFT prediction
- Promising initial results for Konishi anomalous dimension
- New information on origin and effects of sign problem

Advertisement: Public code for lattice $\mathcal{N}=4$ SYM

so that the full improved action becomes

$$
\begin{aligned}
S_{\text {imp }}= & S_{\text {exact }}^{\prime}+S_{\text {closed }}+S_{\text {soft }}^{\prime} \\
S_{\text {exact }}^{\prime}= & \frac{N}{2 \lambda_{\text {lat }}} \sum_{n} \operatorname{Tr}\left[-\overline{\mathcal{F}}_{a b}(n) \mathcal{F}_{a b}(n)-\chi_{a b}(n) \mathcal{D}_{[a}^{(+)} \psi_{b]}(n)-\eta(n) \overline{\mathcal{D}}_{a}^{(-)} \psi_{a}(n)\right. \\
& \left.+\frac{1}{2}\left(\overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}(n)+G \sum_{a \neq b}\left(\operatorname{det} \mathcal{P}_{a b}(n)-1\right) \mathbb{I}_{N}\right)^{2}\right]-S_{\text {det }} \\
S_{\text {det }}= & \frac{N}{2 \lambda_{\text {lat }}} G \sum_{n} \operatorname{Tr}[\eta(n)] \sum_{a \neq b}\left[\operatorname{det} \mathcal{P}_{a b}(n)\right] \operatorname{Tr}\left[\mathcal{U}_{b}^{-1}(n) \psi_{b}(n)+\mathcal{U}_{a}^{-1}\left(n+\widehat{\mu}_{b}\right) \psi_{a}\left(n+\widehat{\mu}_{b}\right)\right] \\
S_{\text {closed }}= & -\frac{N}{8 \lambda_{\text {lat }}} \sum_{n} \operatorname{Tr}\left[\epsilon_{a b c d e} \chi_{\text {de }}\left(n+\widehat{\mu}_{a}+\widehat{\mu}_{b}+\widehat{\mu}_{c}\right) \overline{\mathcal{D}}_{c}^{(-)} \chi_{a b}(n)\right] \\
S_{\text {soft }}^{\prime}= & \frac{N}{2 \lambda_{\text {lat }}} \mu^{2} \sum_{n} \sum_{a}\left(\frac{1}{N} \operatorname{Tr}\left[\mathcal{U}_{a}(n) \overline{\mathcal{U}}_{a}(n)\right]-1\right)^{2}
\end{aligned}
$$

The lattice action is obviously very complicated (the fermion operator involves $\gtrsim 100$ gathers)

To reduce barriers to entry our parallel code is publicly developed at github.com/daschaich/susy

Evolved from MILC code, presented in arXiv:1410.6971

Thank you!

Thank you!

Collaborators
 Simon Catterall, Poul Damgaard, Tom DeGrand and Joel Giedt

Funding and computing resources

USQCD

Backup: Failure of Leibnitz rule in discrete space-time

Given that $\left\{Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\right\}=2 \sigma_{\alpha \dot{\alpha}}^{\mu} P_{\mu}=2 i \sigma_{\alpha \dot{\alpha}}^{\mu} \partial_{\mu}$ is problematic, why not try $\left\{Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\right\}=2 i \sigma_{\alpha \dot{\alpha}}^{\mu} \nabla_{\mu}$ for a discrete translation?

Here $\nabla_{\mu} \phi(x)=\frac{1}{a}[\phi(x+a \widehat{\mu})-\phi(x)]=\partial_{\mu} \phi(x)+\frac{a}{2} \partial_{\mu}^{2} \phi(x)+\mathcal{O}\left(a^{2}\right)$
Essential difference between ∂_{μ} and ∇_{μ} on the lattice, $a>0$

$$
\begin{aligned}
\nabla_{\mu}[\phi(x) \chi(x)] & =a^{-1}[\phi(x+a \widehat{\mu}) \chi(x+a \widehat{\mu})-\phi(x) \chi(x)] \\
& =\left[\nabla_{\mu} \phi(x)\right] \chi(x)+\phi(x) \nabla_{\mu} \chi(x)+a\left[\nabla_{\mu} \phi(x)\right] \nabla_{\mu} \chi(x)
\end{aligned}
$$

We only recover the Leibnitz rule $\partial_{\mu}(f g)=\left(\partial_{\mu} f\right) g+f \partial_{\mu} g$ when $a \rightarrow 0$ \Longrightarrow "Discrete supersymmetry" breaks down on the lattice
(Dondi \& Nicolai, "Lattice Supersymmetry", 1977)

Backup: Twisting \longleftrightarrow Kähler-Dirac fermions

The Kähler-Dirac representation is related to the spinor $Q_{\alpha}^{\mathrm{I}}, \bar{Q}_{\dot{\alpha}}^{\mathrm{I}}$ by

$$
\left(\begin{array}{cccc}
Q_{\alpha}^{1} & Q_{\alpha}^{2} & Q_{\alpha}^{3} & Q_{\alpha}^{4} \\
\bar{Q}_{\dot{\alpha}}^{1} & \bar{Q}_{\dot{\alpha}}^{2} & \bar{Q}_{\dot{\alpha}}^{3} & \bar{Q}_{\dot{\alpha}}^{4}
\end{array}\right)=\begin{aligned}
& \longrightarrow \mathcal{Q}+\mathcal{Q}_{\mu} \gamma_{\mu}+\mathcal{Q}_{\mu \nu} \gamma_{\mu} \gamma_{\nu}+\overline{\mathcal{Q}}_{\mu} \gamma_{\mu} \gamma_{5}+\overline{\mathcal{Q}}_{55} \\
& \longrightarrow \mathcal{Q}+\gamma_{a} \mathcal{Q}_{a}+\gamma_{a} \gamma_{b} \mathcal{Q}_{a b} \\
& \text { with } a, b=1, \cdots, 5
\end{aligned}
$$

The 4×4 matrix involves R symmetry transformations along each row and (euclidean) Lorentz transformations along each column
\Longrightarrow Kähler-Dirac components transform under "twisted rotation group"

$$
\begin{aligned}
\mathrm{SO}(4)_{t w} \equiv \operatorname{diag}\left[\mathrm{SO}(4)_{\mathrm{euc}} \otimes\right. & \left.\mathrm{SO}(4)_{R}\right] \\
& \uparrow_{\text {only }} \mathrm{SO}(4)_{R} \subset \mathrm{SO}(6)_{R}
\end{aligned}
$$

Backup: Twisted $\mathcal{N}=4$ SYM fields and \mathcal{Q}

Everything transforms with integer spin under $\mathrm{SO}(4)_{t w}$ - no spinors

$$
\begin{aligned}
& \mathcal{Q}_{\alpha}^{\mathrm{I}} \text { and } \bar{Q}_{\dot{\alpha}}^{\mathrm{I}} \longrightarrow \mathcal{Q}, \mathcal{Q}_{a} \text { and } \mathcal{Q}_{a b} \\
& \Psi^{\mathrm{I}} \text { and } \bar{\psi}^{\mathrm{I}} \longrightarrow \eta, \psi_{a} \text { and } \chi_{a b} \\
& A_{\mu} \text { and } \Phi^{\mathrm{IJ}} \longrightarrow \mathcal{A}_{a}=\left(\mathcal{A}_{\mu}, \phi\right)+i\left(B_{\mu}, \bar{\phi}\right) \text { and } \overline{\mathcal{A}}_{a}
\end{aligned}
$$

The twisted-scalar supersymmetry \mathcal{Q} acts as
$\mathcal{Q} \mathcal{A}_{a}=\psi_{a}$
$\mathcal{Q} \psi_{a}=0$
$\mathcal{Q} \chi_{a b}=-\overline{\mathcal{F}}_{a b}$
$\mathcal{Q} \overline{\mathcal{A}}_{a}=0$
$\mathcal{Q} \eta=d_{反}$
$\mathcal{Q} d=0$
bosonic auxiliary field with e.o.m. $d=\overline{\mathcal{D}}_{a} \mathcal{A}_{a}$
(1) \mathcal{Q} directly interchanges bosonic \longleftrightarrow fermionic d.o.f.
(2) The susy subalgebra $\mathcal{Q}^{2} \cdot=0$ is manifest

Backup: Lattice $\mathcal{N}=4 \mathrm{SYM}$ fields and \mathcal{Q}

The lattice theory is very nearly a direct transcription

- Covariant derivatives \longrightarrow finite difference operators
- Gauge fields $\mathcal{A}_{a} \longrightarrow$ gauge links \mathcal{U}_{a}

$$
\begin{array}{crr}
\mathcal{Q} \mathcal{A}_{a} \longrightarrow \mathcal{Q} \mathcal{U}_{a}=\psi_{a} & \mathcal{Q} \psi_{a}=0 \\
\mathcal{Q} \chi_{a b}=-\overline{\mathcal{F}}_{a b} & \mathcal{Q} \overline{\mathcal{A}}_{a} \longrightarrow \mathcal{Q} \overline{\mathcal{U}}_{a}=0 \\
\mathcal{Q} \eta=d & \mathcal{Q} d=0
\end{array}
$$

- Formal lattice action retains same form as continuum action and remains supersymmetric, $\mathcal{Q} S=0$

Geometrical formulation facilitates discretization

η live on lattice sites $\quad \psi_{a}$ live on links
$\chi_{a b}$ connect opposite corners of oriented plaquettes

Orbifolding / dimensional deconstruction produces same lattice system

Backup: A_{4}^{*} lattice with five links in four dimensions

$A_{a}=\left(A_{\mu}, \phi\right)$ may remind you of dimensional reduction
On the lattice we want to treat all five \mathcal{U}_{a} symmetrically to obtain $S_{5} \longrightarrow \mathrm{SO}(4)_{t w}$ symmetry
-Start with hypercubic lattice in 5d momentum space
-Symmetric constraint $\sum_{a} \partial_{a}=0$ projects to 4d momentum space
—Result is A_{4} lattice
\longrightarrow dual A_{4}^{*} lattice in real space

Backup: A_{4}^{*} lattice point group symmetry

-Can picture A_{4}^{*} lattice as 4d analog of 2d triangular lattice
-Preserves S_{5} point group symmetry
-Basis vectors are non-orthogonal and linearly dependent

S_{5} irreps precisely match onto irreps of twisted $\mathrm{SO}(4)_{t w}$

$$
\begin{aligned}
\mathbf{5}=\mathbf{4} \oplus \mathbf{1}: & \mathcal{U}_{a} \longrightarrow \boldsymbol{A}_{\mu}+i B_{\mu}, \phi+i \bar{\phi} \\
& \psi_{a} \longrightarrow \psi_{\mu}, \bar{\eta} \\
\mathbf{1 0 = 6} \oplus \mathbf{4}: & \chi_{a b} \longrightarrow \chi_{\mu \nu}, \bar{\psi}_{\mu}
\end{aligned}
$$

Backup: Hypercubic representation of A_{4}^{*} lattice

 In the code it is very convenient to represent the A_{4}^{*} lattice as a hypercube with a backwards diagonal

Backup: More on flat directions

(1) Complex gauge field $\Longrightarrow \mathrm{U}(N)=\mathrm{SU}(N) \otimes \mathrm{U}(1)$ gauge invariance $\mathrm{U}(1)$ sector decouples only in continuum limit
(2) $\mathcal{Q} \mathcal{U}_{a}=\psi_{a} \Longrightarrow$ gauge links must be elements of algebra Resulting flat directions required by supersymmetric construction but must be lifted to ensure $\mathcal{U}_{a}=\mathbb{I}_{N}+\mathcal{A}_{a}$ in continuum limit

We need to add two deformations to regulate flat directions
$\operatorname{SU}(N)$ scalar potential $\propto \mu^{2} \sum_{a}\left(\operatorname{Tr}\left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right]-N\right)^{2}$
$\mathrm{U}(1)$ plaquette determinant $\sim G \sum_{a \neq b}\left(\operatorname{det} \mathcal{P}_{a b}-1\right)$
Scalar potential softly breaks \mathcal{Q} supersymmetry susy-violating operators vanish as $\mu^{2} \rightarrow 0$

Plaquette determinant can be made \mathcal{Q}-invariant \longrightarrow improved action

Backup: One problem with flat directions

Gauge fields \mathcal{U}_{a} can move far away from continuum form $\mathbb{I}_{N}+\mathcal{A}_{a}$ if $N \mu^{2} /\left(2 \lambda_{\text {lat }}\right)$ becomes too small

Example for two-color $\left(\lambda_{\text {lat }}, \mu, \kappa\right)=(5,0.2,0.8)$ on $8^{3} \times 24$ volume
Left: Bosonic action is stable $\sim 18 \%$ off its supersymmetric value
Right: Polyakov loop wanders off to $\sim 10^{9}$

Backup: Another problem with $\mathrm{U}(1)$ flat directions

Flat directions in $\mathrm{U}(1)$ sector can induce transition to confined phase
This lattice artifact is not present in continuum $\mathcal{N}=4 \mathrm{SYM}$

Around the same $\lambda_{\text {lat }} \approx 2 \ldots$
Left: Polyakov loop falls towards zero
Center: Plaquette determinant falls towards zero
Right: Density of $\mathrm{U}(1)$ monopole world lines becomes non-zero

Backup: Soft susy breaking

The unimproved action directly adds to the lattice action

$$
S_{\text {soft }}=\frac{N}{2 \lambda_{\text {lat }}} \mu^{2}\left(\frac{1}{N} \operatorname{Tr}\left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right]-1\right)^{2}+\kappa\left|\operatorname{det} \mathcal{P}_{a b}-1\right|^{2}
$$

Both terms explicitly break \mathcal{Q} but $\operatorname{det} \mathcal{P}_{a b}$ effects dominate
Left: The breaking is soft - guaranteed to vanish as $\mu, \kappa \longrightarrow 0$
Right: Soft \mathcal{Q} breaking also suppressed $\propto 1 / N^{2}$

Backup: More on supersymmetric constraints

Improved action from arXiv:1505.03135

 imposes \mathcal{Q}-invariant plaquette determinant constraintBasic idea: Modify the equations of motion \longrightarrow moduli space

$$
d(n)=\overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}(n) \longrightarrow \overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}(n)+G \sum_{a \neq b}\left[\operatorname{det} \mathcal{P}_{a b}(n)-1\right]
$$

Produces much smaller violations of \mathcal{Q} Ward identity $\left\langle s_{B}\right\rangle=9 N^{2} / 2$

Backup: Code performance-weak and strong scaling

Results from arXiv:1410.6971 using the unimproved action
Left: Strong scaling for $U(2)$ and $U(3) 16^{3} \times 32$ RHMC
Right: Weak scaling for $\mathcal{O}\left(n^{3}\right)$ pfaffian calculation (fixed local volume)

$$
n \equiv 16 N^{2} L^{3} N_{T} \text { is number of fermion degrees of freedom }
$$

Both plots on log-log axes with power-law fits

Backup: Numerical costs for 2, 3 and 4 colors

Red: Find RHMC cost scaling $\sim N^{5}$ (recall adjoint fermion d.o.f. $\propto N^{2}$)
Blue: Pfaffian cost scaling consistent with expected N^{6}
Additional factor of $\sim 2 \times$ from improved action, but same scaling

Backup: Restoration of \mathcal{Q}_{a} and $\mathcal{Q}_{a b}$ supersymmetries

Restoration of the other $15 \mathcal{Q}_{a}$ and $\mathcal{Q}_{a b}$ in the continuum limit follows from restoration of R symmetry (motivation for A_{4}^{*} lattice)

Modified Wilson loops test R symmetries at non-zero lattice spacing
Results from arXiv:1411.0166 to be revisited with the improved action

Backup: $\mathcal{N}=4$ static potential from Wilson loops

Extract static potential $V(r)$ from $r \times T$ Wilson loops

$$
W(r, T) \propto e^{-V(r) T} \quad V(r)=A-C / r+\sigma r
$$

Coulomb gauge trick from lattice QCD reduces A_{4}^{*} lattice complications

Backup: Perturbation theory for Coulomb coefficient

For range of $\lambda_{\text {lat }}$ currently being studied

perturbation theory for the Coulomb coefficient is well behaved

Backup: More tests of the $U(2)$ static potential

Left: Projecting Wilson loops from $\mathrm{U}(2) \longrightarrow \mathrm{SU}(2)$
\Longrightarrow factor of $\frac{N^{2}-1}{N^{2}}=3 / 4$
Right: Unitarizing links removes scalars \Longrightarrow factor of $1 / 2$

Some results slightly above expected factors, may be related to non-zero auxiliary couplings μ and κ / G

Backup: More tests of the $U(3)$ static potential

Left: Projecting Wilson loops from $U(3) \longrightarrow S U(3)$

$$
\Longrightarrow \text { factor of } \frac{N^{2}-1}{N^{2}}=8 / 9
$$

Right: Unitarizing links removes scalars \Longrightarrow factor of $1 / 2$

Some results slightly above expected factors, may be related to non-zero auxiliary couplings μ and κ / G

Backup: Smearing for Konishi analyses

-As in glueball analyses, operator basis enlarged through smearing
—Use APE-like smearing $(1-\alpha)-+\frac{\alpha}{8} \sum \sqcap$,
with staples built from unitary parts of links but no final unitarization (unitarized smearing - e.g. stout - doesn't affect Konishi)
-Average plaquette is stable upon smearing (right) even though minimum plaquette steadily increases (left)

Backup: Scaling dimensions from Monte Carlo RG

Write system as (infinite) sum of operators \mathcal{O}_{i} with couplings c_{i}
Couplings c_{i} flow under RG blocking transformation R_{b} n-times-blocked system is $H^{(n)}=R_{b} H^{(n-1)}=\sum_{i} c_{i}^{(n)} \mathcal{O}_{i}^{(n)}$

Consider linear expansion around fixed point H^{\star} with couplings c_{i}^{\star}

$$
c_{i}^{(n)}-c_{i}^{\star}=\left.\sum_{j} \frac{\partial c_{i}^{(n)}}{\partial c_{j}^{(n-1)}}\right|_{H^{\star}}\left(c_{j}^{(n-1)}-c_{j}^{\star}\right) \equiv \sum_{j} T_{i j}^{\star}\left(c_{j}^{(n-1)}-c_{j}^{\star}\right)
$$

$T_{i j}^{\star}$ is the stability matrix

Eigenvalues of $T_{i j}^{\star} \longrightarrow$ scaling dimensions of corresponding operators

Backup: The sign problem

In lattice gauge theory we compute operator expectation values

$$
\langle\mathcal{O}\rangle=\frac{1}{\mathcal{Z}} \int[d \mathcal{U}][d \overline{\mathcal{U}}] \mathcal{O} e^{-S_{B}[\mathcal{U}, \overline{\mathcal{U}}]} \text { pf } \mathcal{D}[\mathcal{U}, \overline{\mathcal{U}}]
$$

$\operatorname{pf} \mathcal{D}=|\operatorname{pf} \mathcal{D}| e^{i \alpha}$ can be complex for lattice $\mathcal{N}=4$ SYM \longrightarrow Complicates interpretation of $\left[e^{-S_{B}}\right.$ pf $\left.\mathcal{D}\right]$ as Boltzmann weight

Instead absorb $e^{i \alpha}$ into phase-quenched (pq) observables $\mathcal{O} e^{i \alpha}$ and reweight using $Z=\int e^{i \alpha} e^{-S_{B}}|\operatorname{pf} \mathcal{D}|=\left\langle e^{i \alpha}\right\rangle_{p q}$

$$
\langle\mathcal{O}\rangle_{p q}=\frac{1}{\mathcal{Z}_{p q}} \int[d \mathcal{U}][d \overline{\mathcal{U}}] \mathcal{O} e^{-S_{B}}|p f \mathcal{D}| \quad\langle\mathcal{O}\rangle=\frac{\left\langle\mathcal{O} e^{i \alpha}\right\rangle_{p q}}{\left\langle e^{i \alpha}\right\rangle_{p q}}
$$

Sign problem: This breaks down if $\left\langle e^{i \alpha}\right\rangle_{p q}$ is consistent with zero

Backup: Pfaffian phase volume dependence

No indication of a sign problem at $\lambda_{\text {lat }}=1$ with anti-periodic BCs

- Results from arXiv:1411.0166 using the unimproved action
- Fluctuations in pfaffian phase don't grow with the lattice volume
- Insensitive to number of colors $N=2,3,4$

