Results from lattice studies of maximally supersymmetric Yang–Mills

David Schaich (Syracuse)

Lattice 2014, 25 June

arXiv:1405.0644 (submitted to PRD) and work in progress with Simon Catterall, Poul Damgaard, Tom DeGrand and Joel Giedt

Practical lattice $\mathcal{N} = 4$ SYM

The previous talks reviewed the motivations for and formulation of lattice $\mathcal{N}=4$ SYM

$$S = \frac{N}{\lambda_{\text{lat}}} \sum_{x} \left[-\overline{\mathcal{F}}_{ab} \mathcal{F}_{ab} + \frac{C_2}{2} \left(\overline{\mathcal{D}}_a^{(-)} \mathcal{U}_a \right)^2 - \chi_{ab} \mathcal{D}_{[a}^{(+)} \psi_{b]} - \eta \overline{\mathcal{D}}_a^{(-)} \psi_a - \frac{1}{4} \epsilon_{abcde} \chi_{de} \overline{\mathcal{D}}_c^{(-)} \chi_{ab} \right] \\ + \mu^2 \sum_{x, a} \left(\frac{1}{N} \text{Tr} \left[\overline{\mathcal{U}}_a \mathcal{U}_a \right] - 1 \right)^2 + \kappa \sum_{\mathcal{P}} |\det \mathcal{P} - 1|^2$$

-First line exactly preserves one supersymmetry Q, other 15 broken - μ term regulates flat directions, acts like bosonic mass - κ term reduces U(N) \longrightarrow SU(N), suppressing U(1) lattice phase (I focus on N = 2, larger-N studies underway)

How well does this work in our existing lattice calculations?

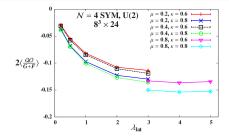
First issue: Both μ and κ deformations break the Q supersymmetry in our numerical computations

Monitoring Q supersymmetry breaking

Exactly preserved Q supersymmetry \Longrightarrow Ward identity $\langle QO \rangle = 0$

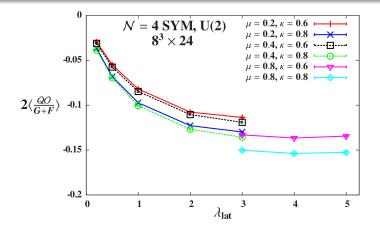
Fermionic $\mathcal{O} = \text{Tr} \left[\eta \sum_{a} \mathcal{U}_{a} \overline{\mathcal{U}}_{a} \right]$ (not already in action) gives bosonic $\mathcal{QO} = \text{Tr} \left[\mathcal{C}_{2} \sum_{b} \left(\mathcal{U}_{b} \overline{\mathcal{U}}_{b} - \overline{\mathcal{U}}_{b} \mathcal{U}_{b} \right) \sum_{a} \mathcal{U}_{a} \overline{\mathcal{U}}_{a} \right] - \text{Tr} \left[\eta \sum_{a} \psi_{a} \overline{\mathcal{U}}_{a} \right] = \mathcal{G} - \mathcal{F}$ (difference of gauge term and fermion-bilinear term)

Normalized Ward identity violations $\left\langle \frac{G-F}{(G+F)/2} \right\rangle$ measure susy breaking



We observe mild Q supersymmetry breaking

Normalized Ward identity violations $\left\langle \frac{G-F}{(G+F)/2} \right\rangle$ measure susy breaking



Observations: ~10% violations grow with each of λ_{lat} , μ and κ More sensitive to κ than to μ

David Schaich (Syracuse)

The other 15 supersymmeties Q_a and Q_{ab} Previous talk reviewed role of discrete R symmetries $R_a \& R_{ab}$ Qualitatively, $Q_a \sim R_a \times Q$ and $Q_{ab} \sim R_{ab} \times Q$ where R_a and R_{ab} transform $U_c \rightarrow \overline{U}_c^{-1}$ for $c \neq a$ (or *b*)

Act on $m \times n$ Wilson loop: $\mathcal{W}_{ab} \longrightarrow \widetilde{\mathcal{W}}_{ab} \equiv R_a \mathcal{W}_{ab}$ where

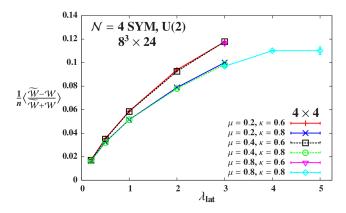
$$\mathcal{W}_{ab} = \operatorname{Tr}\left[\prod_{m} \mathcal{U}_{a}(x) \prod_{n} \mathcal{U}_{b}(x + m\widehat{\boldsymbol{e}}_{a}) \prod_{m} \overline{\mathcal{U}}_{a}(x + n\widehat{\boldsymbol{e}}_{b}) \prod_{n} \overline{\mathcal{U}}_{b}(x)\right]$$
$$\widetilde{\mathcal{W}}_{ab} = \operatorname{Tr}\left[\prod_{m} \mathcal{U}_{a}(x) \prod_{n} \overline{\mathcal{U}}_{b}^{-1}(x + m\widehat{\boldsymbol{e}}_{a}) \prod_{m} \overline{\mathcal{U}}_{a}(x + n\widehat{\boldsymbol{e}}_{b}) \prod_{n} \mathcal{U}_{b}^{-1}(x)\right]$$

Loop still closes since \mathcal{U}_b and $\overline{\mathcal{U}}_b^{-1}$ both go from $x + \widehat{\boldsymbol{e}}_b$ to x

Relative difference $\left\langle \frac{(\widetilde{W}-W)/2n}{(\widetilde{W}+W)/2} \right\rangle$ measures R symmetry breaking $\longrightarrow Q_a$ and Q_{ab} breaking

R symmetry breaking also appears mild

Relative difference $\left\langle \frac{(\widetilde{W} - W)/2n}{(\widetilde{W} + W)/2} \right\rangle$ measures R symmetry breaking $\longrightarrow Q_a$ and Q_{ab} breaking



Observations: ~10% violations grow with λ_{lat} but shrink with κ Connection to U(1) sector?

David Schaich (Syracuse)

Lattice $\mathcal{N} = 4$ SYN

Lattice 2014, 25 June

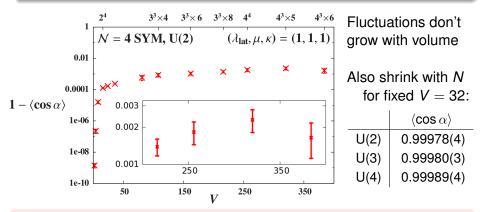
6/12

Complex pfaffian $P = |P|e^{i\alpha} \rightarrow \text{potential sign problem}$

Our calculations are all phase-quenched:

Omit $e^{i\alpha}$ in RHMC, compute full pfaffian *P* on saved configurations

We measure *P* to be nearly real and positive: $\langle e^{i\alpha} \rangle \approx \langle \cos(\alpha) \rangle \approx 1$



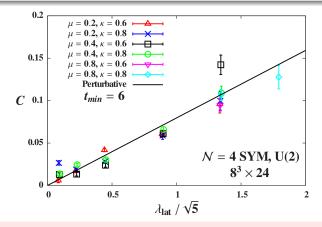
We have no good explanation for the absence of a sign problem

David Schaich (Syracuse)

Static potential: Comparison with continuum theory

---Wilson loops $W(\vec{r}, t) = \exp \left[-V(\vec{r})t\right] \longrightarrow V(r) = A - C/r$

—Coulomb coefficients agree with perturbative $C = \lambda_{\text{lat}}/(4\pi\sqrt{5})$



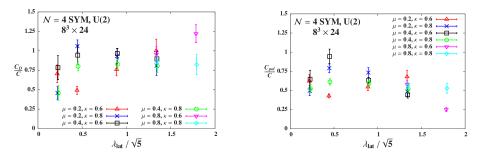
Smearing may help reduce noise in static potential results We have implemented stout smearing, re-analysis underway

David Schaich (Syracuse)

Coulomb coefficients for different Wilson loops

Left: Project Wilson loops from U(2) \longrightarrow SU(2) Expect *C* to decrease by factor of $\frac{N^2-1}{N^2} = 3/4$

Right: Build Wilson loops from unitarized links (removing scalars) Expect *C* to decrease by factor of 1/2

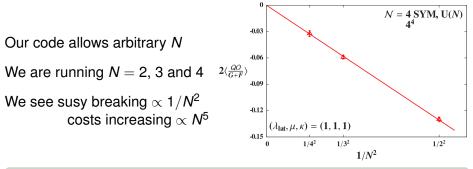


Both expected factors present, although again noisily

David Schaich (Syracuse)

There are many open directions for further studies

Moving to larger *N* important for contact with continuum theory **Example:** Maldacena prediction $C \propto \sqrt{\lambda}$ for strong coupling $\lambda \ll N$



Other projects underway include...

- -Computation of Konishi & SUGRA correlators and their anom. dims.
- —Stout smearing to improve signals \longrightarrow gradient flow?
- -Blocking, tuning to desired continuum limit (previous talk)

Recapitulation

Supersymmetric field theories very interesting to study on the lattice

Lattice formulation of $\mathcal{N}=4$ SYM preserves one supersymmetry, only known example of such discretization in 4d

Current results from lattice $\mathcal{N} = 4$ SYM calculations

- Q supersymmetry breaking is under control R symmetry breaking for Q_a and Q_{ab} also appears mild
- The pfaffian is nearly real and positive on all accessible volumes and fluctuations don't grow with volume or with *N*
- Static potentials are coulombic at all investigated couplings
- Coulomb coefficients agree with perturbation theory and scale as expected for different types of Wilson loops

It will be healthy to have more groups studying lattice susy \longrightarrow We publicly release our software to reduce barriers to entry

MILC-based code through USQCD

-4 6		tum Chromodynamics - Mozilla Firefox		• •	з×
ile Edit View	Higtory Bookmarks Jools Help				
÷ -> 🖲	usqcd-software.github.io/MoreSoftware.html	☆ ♥ 🕼 ♥ Google	🔍 🤚 🕰	- 🍙 🖬	
USQCD: US I	Lattice Quantum Chro				88
		Tom DeGrand and David Schaich rmation: project website			
		el code for RHMC simulations of ex two and four dimensions, includin		mmetric	
	measurements. Historic	cally based on the MILC code, this j in by Simon Catterall and Anosh Jos	package supers	edes the	

(github.com/daschaich/susy)

Introduction b Physics targets b Running the code: High-lev b Modifying the code: Underl Summary and discussion of	
	David Schaich
	Department of Physics, Synacuse University, Synacuse, NY 13244, United States
	Abstract
	We present new parallel software for lattice simulation of four-dimensional $\mathcal{M}=4$ supersymmetric Yang alkin likewyh hasod na gauge group SU(\mathcal{N}). The lattice action is constructed to exartly pre- serve a single supersymmetry charge at non-zero lattice spacing, up to additional potential terms that we add to stabilize numerical simulations. The software evolved from the MLC code for lattice QCD, and retain a similar large-scale framework despite the different target theory. Many routines are adapted from the existing article C+r code SU(2) TATTICE [1], which its advance supersofts. This paper serves as a named for the new parallel SU(1) LATTICE, explaining how to run it and providing dimension necessary to totared it of a additional measurements of rolutus.
	Keywords: Lattice gauge theory, Supersymmetric Yang-Mills, Monte Carlo methods, Parallel computing PACS: 11.15.Ha, 12.00.Jv, 02.70.Uu
	1. Introduction

Thank you!

Thank you!

Collaborators

Simon Catterall, Poul Damgaard, Tom DeGrand, Joel Giedt, Aarti Veernala

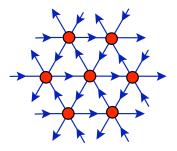
Funding and computing resources

Backup: Discretization on A_4^* lattice

—Five links symmetrically spanning 4d —Analog of 2d triangular lattice

Non-orthogonal links

 \implies continuum $\lambda = \lambda_{\text{lat}} / \sqrt{5}$



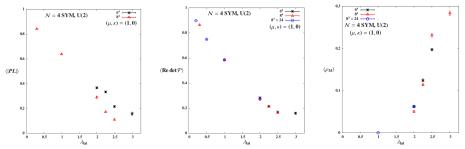
 A_4^* lattice has S_5 point group symmetry S_5 irreducible representations of lattice fields \longrightarrow continuum SO(4) euclidean Lorentz irreps.

$$\mathcal{U}_{a} = \mathbf{4} \oplus \mathbf{1} \longrightarrow U_{\mu} \text{ and } \Phi$$

$$\psi_{a} = \mathbf{4} \oplus \mathbf{1} \longrightarrow \psi_{\mu} \text{ and } \overline{\eta}$$

$$\chi_{ab} = \mathbf{6} \oplus \mathbf{4} \longrightarrow \chi_{\mu\nu} \text{ and } \overline{\psi}_{\mu}$$

Backup: Lattice phase due to U(1) sector



Polyakov loop collapses \implies confining phase (not present in continuum $\mathcal{N} = 4$ SYM)

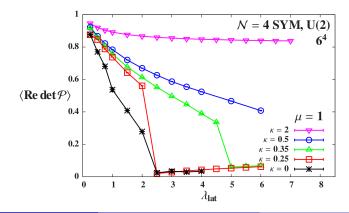
- 2 Plaquette determinant is associated with U(1) sector Drops around same coupling λ_{lat} as Polyakov loop
- ρ_M is density of U(1) monopole world lines (DeGrand & Toussaint) Non-zero when Polyakov loop and plaq. determinant collapse

David Schaich (Syracuse)

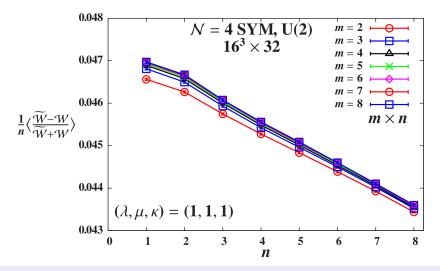
Backup: Removing the U(1) sector, U(N) \longrightarrow SU(N)

 $\kappa \sum_{\mathcal{P}} |\det \mathcal{P} - 1|^2 \in S$ suppresses the strongly-coupled lattice phase

Produces $2\kappa F_{\mu\nu}F^{\mu\nu}$ term in U(1) sector \implies QED critical $\beta_c = 0.99 \longrightarrow$ critical $\kappa_c \approx 0.5$



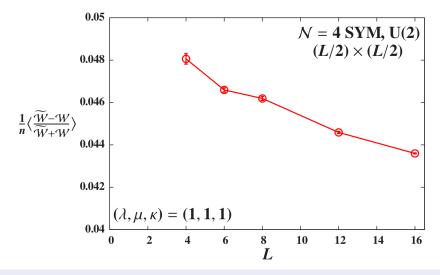
Backup: R symmetry breaking vs. size of Wilson loop



R symmetry breaking decreases slightly with 2n inverted links in W, largely insensitive to number (2m) of unaltered links

David Schaich (Syracuse)

Backup: R symmetry breaking vs. lattice volume



R symmetry breaking from $(L/2) \times (L/2)$ Wilson loops decreases ~10% for $16^3 \times 32$ volume compared to $4^3 \times 12$

Backup: New parallel pfaffian measurement

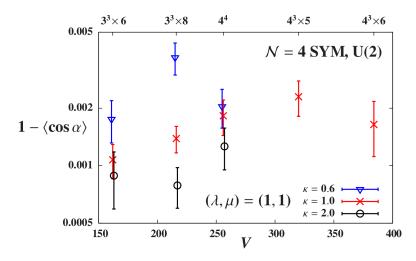
Pfaffian measurement is much harder than RHMC

Cost scales $\propto N_{\psi}^3$ where N_{ψ} is number of elements in fermionic fields



So far we haven't gone beyond $4^3 \times 6$ lattices for U(2) gauge group This measurement takes ~ 8 days (and $\sim 10GB$ memory) on 16 cores

Backup: Pfaffian phase for other values of λ_{lat} and κ



Fluctuations grow with λ_{lat} (not shown) but shrink with κ Connection to U(1) sector?

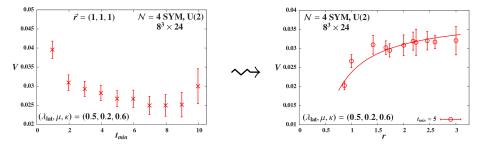
David Schaich (Syracuse)

Backup: More details of static potential calculation

Wilson loops computed from temporal link products in Coulomb gauge

$$W(\vec{r}, T) = \frac{1}{V} \sum_{\vec{x}, t_0} \operatorname{Tr} \left[\prod_{T} \mathcal{U}_t(\vec{x}, t_0 + T) \prod_{T} \overline{\mathcal{U}}_t(\vec{x} + \vec{r}, t_0) \right]$$

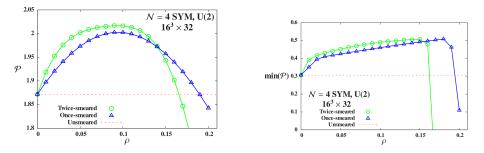
Checked against explicily-constructed on-axis loops



Left: Checking stability of fits to $W(\vec{r}, t) \propto \exp\left[-V(\vec{r})t\right]$

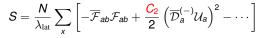
David Schaich (Syracuse)

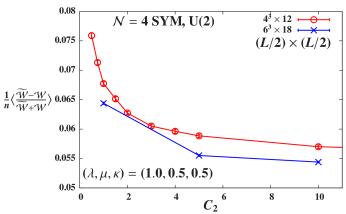
Backup: Stout smearing implemented on A_4^* lattice



Average (left) and minimum (right) plaquette as function of stout smearing parameter ρ on U(2) 16³×32 lattice

Backup: R symmetry breaking vs. C_2 in gauge action





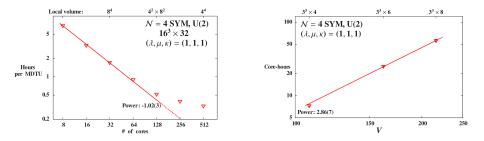
Want to tune C_2 to minimize breaking, then take continuum limit Relatively large $C_2 \sim 10$ preferred on small volumes L = 4 and 6

David Schaich (Syracuse)

Backup: $\mathcal{N} = 4$ SYM code performance at Fermilab

Left: Strong scaling for U(2) $16^3 \times 32$ RHMC gauge generation

Right: Weak scaling for $\mathcal{O}(N_{\Psi}^3)$ pfaffian calculation with local volume fixed to $3^3 \times 2$ sites per core



Both plots on log-log axes with power-law fits

David Schaich (Syracuse)