Eight light flavors on large lattice volumes — — — a USQCD BSM project — — —

David Schaich (University of Colorado)

Lattice 2013, Mainz, 29 July

bsm.physics.yale.edu

David Schaich (Colorado)

USBSM $N_F = 8$

USBSM participants

Members of USQCD using leadership computing resources to study strongly-coupled physics beyond the standard model

Argonne M. F. Lin, H. Na, J. Osborn, D. Sinclair

Boston R. Brower, M. Cheng, C. Rebbi, O. Witzel

Colorado A. Hasenfratz, G. Petropoulos, DS

Fermilab E. Neil

Livermore M. Buchoff, C. Schroeder, P. Vranas

Pacific K. Holland

RPI J. Giedt

Syracuse S. Catterall

UC Davis J. Kiskis

UCSD J. Kuti

USQCD

www.usqcd.org

Yale T. Appelquist, G. Fleming, G. Voronov

USBSM projects

(cf. USQCD white paper)

- SU(3) with $N_F = 8$ fundamental
- Pseudo-dilaton in SU(3) with $N_F = 2$ sextet
- Scalar pseudo-Goldstones in SU(2) with $N_F = 2$ fundamental
- Lattice supersymmetry ($\mathcal{N} = 1$ SYM; $\mathcal{N} = 4$ SYM; $\mathcal{N} = 1$ SQCD)

Argonne Leadership Computing Facility

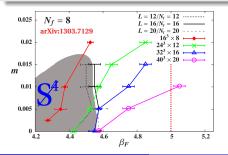
SU(3) with $N_F = 8$ fundamental

2008–2010: Deuzeman, Lombardo & Pallante; Jin & Mawhinney; Fodor, Holland, Kuti, Nogradi & Schroeder; Hasenfratz Boulder, arXiv:1301.1355 – large mass anomalous dimension $\gamma_m \sim 1$ across wide range of energy scales LatKMI, arXiv:1302.6859 – chirally broken with $\gamma_m \sim 1$

Goal: Large-volume *p*-regime lattice ensembles for community use Pursue every possible analysis!

This talk (after overview of lattice generation):

- Initial results for the hadron spectrum
- Chiral condensate, GMOR relation, Dirac eigenvalues
- Finite-size scaling
- Time permitting: Valence domain wall measurements
- Backup: Thermalization, autocorrelations, topological suscept.


Eight-flavor lattice generation strategy

Goal: Large-volume *p*-regime lattice ensembles for community use

- Fix gauge coupling at relatively strong value
 - -Compensate for effects of many light fermions
 - -Be cautious of strong-coupling lattice artifacts

nHYP-smeared staggered lattice action

- Fundamental-plaquette $\beta_F = 5.0$, adjoint-plaquette $\beta_A = -1.25$
- Implemented in QHMC/FUEL

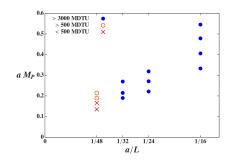
Lattice phase diagram already explored independently

("Framework for Unified Evolution of Lattices")

 $N_T \le 20$ thermal transitions hit bulk transition around $\beta_F \approx 4.6$

Chiral limit requires large volumes

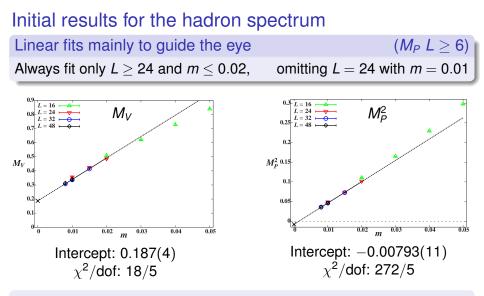
David Schaich (Colorado)


(new since May)

Eight-flavor lattice generation strategy

Goal: Large-volume *p*-regime lattice ensembles for community use

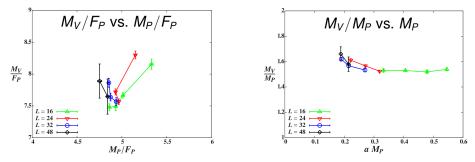
Push towards chiral limit on largest possible volumes


 —χPT radius of convergence shrinks with N_F
 (arXiv:1002.3777)
 —Monitor finite-volume effects from overlapping ranges of masses

Ensembles up to $32^3 \times 64$ complete, $48^3 \times 96$ in production

Fermion mass $0.008 \le m \le 0.05$, 0.004 and 0.006 in production

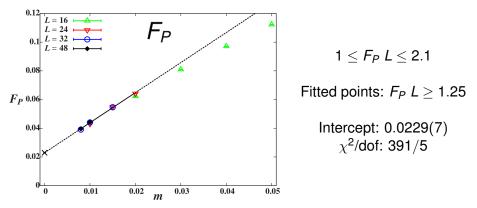
Pseudoscalar mass 0.19 \leq $M_P \leq$ 0.55, with $M_P \approx$ 0.135 in production (5.3 \leq $M_P L \leq$ 10.3)



Clear deviations from linearity, especially as *m* increases
 Seem unlikely to be due to finite-volume effects or chiral logs...

David Schaich (Colorado)

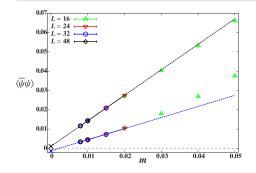
USBSM $N_F = 8$


More fun with the hadron spectrum

Left: Finite-volume effects increase *M*, decrease F_P Clearly visible in lightest points for L = 16 and 24 (both $M_P L = 5.3$), all other points essentially on top of each other (~4% variation)

Right: In chirally broken systems, $M_V/M_P \rightarrow \infty$ as $M_P \rightarrow 0$ Ratio may be starting to turn up, but not significantly (~5% variation) \rightarrow Need $m \le 0.006$ ensembles to probe spontaneous χ SB

Initial results for pseudoscalar decay constant


As for M_P^2 , large χ^2 from $m \le 0.02$ linear fit, with additional deviation as m increases

Motivates investigation of chiral condensate...

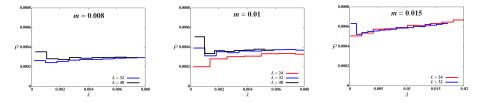
David Schaich (Colorado)
-------------------------	---

Initial results for the chiral condensate

- —In chiral limit, order parameter of spontaneous χ SB
- —Direct measurements sensitive to valence mass in term $\propto m_v/a^2$
- —Leading-order χ PT (GMOR relation): $\langle \overline{\psi}\psi \rangle = M_P^2 F_P^2/2m$

$$\left<\overline{\psi}\psi
ight>$$
 and $M_P^2F_P^2/2m$

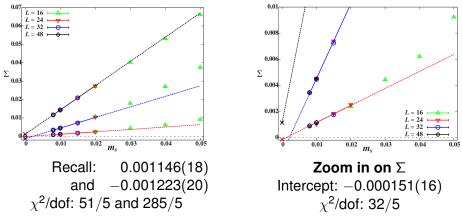
Intercepts: 0.001146(18) and -0.001223(20)


 $\chi^{\rm 2}/{\rm dof}:$ 51/5 and 285/5

—Direct measurements require order-of-magnitude extrapolation —GMOR predictions less sensitive to m_v , fit has larger χ^2 —Third option: Dirac eigenvalue spectrum $\rho(\lambda \rightarrow 0)$

Chiral condensate from Dirac eigenmode number

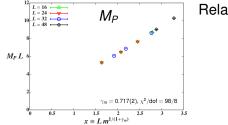
Address valence mass effects in $\langle \overline{\psi}\psi\rangle$ by analyzing the eigenvalues of the massless Dirac operator


Compare $\rho(\lambda)$ on different volumes with fixed sea mass:

Good agreement up to expected finite-volume effects, and topological zero-mode effects in first bin

Extract $\Sigma_{m_s} \equiv \pi \rho (\lambda \to 0)$ from derivative of mode number $\nu \sim \int \rho \ d\lambda$

Chiral condensate from all three approaches

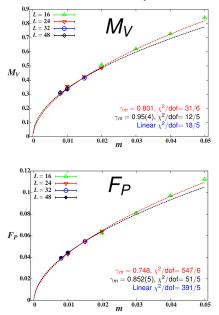

 $-\Sigma$ from eigenvalues seems to be the best controlled $-\lim_{m_s \to 0} \langle \overline{\psi} \psi \rangle$ is small or vanishing — motivates finite-size scaling...

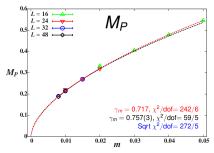
(Future fun with the eigenmode number:

extract running mass anomalous dimension – Anqi Cheng, 11:40 Weds.)

Initial results for finite-size scaling

-IR conformality $\implies ML = f(x)$ with scaling variable $x \equiv Lm^{1/(1+\gamma_m)}$ -Search for anomalous dimension γ_m that optimizes curve collapse -I use method of Houdayer and Hartmann, cond-mat/0402036




Relatively small number of points for FSS Obs. $\gamma_m \chi^2/dof$ $M_P 0.717(2) 98/8$ $M_V 0.801(14) 40/8$ $F_P 0.748(2) 1444/8$

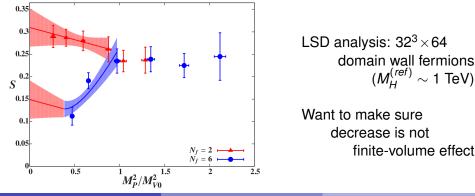
—Roughly consistent $\gamma_m \sim 0.75$, though widely-varying quality —Try using these γ_m in power-law fits to hadron spectrum...

(Future fun with finite-size scaling: account for nearly-marginal gauge coupling – Anna Hasenfratz, 14:20 Tues.)

Revisit hadron spectrum: Power-law fits

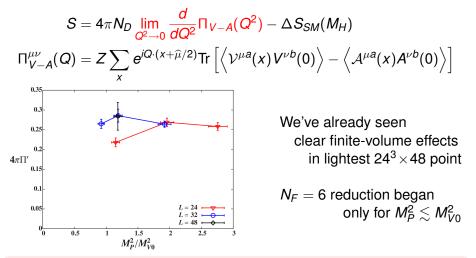
Same seven points in fits

Red fits fix γ_m from FSS Black fits let γ_m float (γ_m always increases)


 $\chi^2/{
m dof}$ smaller than linear fits, $\gamma_m\gtrsim$ 0.75 preferred

Motivation for valence domain wall analyses

Experiment requires small electroweak *S* parameter, S = 0.03(10) with $M_H = 125$ GeV


Lattice Strong Dynamics Collaboration found reduction in S for $N_F = 6$ (PRL **106**:231601, 2011)

Important observable to explore for $N_F = 8$

Initial results for V–A vacuum polarization

S parameter depends on $Q^2 \rightarrow 0$ slope of transverse Π_{V-A}

Looking forward to smaller masses on $48^3 \times 96$!

Recapitulation: SU(3) with $N_F = 8$ fundamental

This USBSM project is off to a good start!

Goal: Large-volume p-regime lattice ensembles for community use

- Ensembles up to $48^3 \times 96$ becoming available
- Initial analyses suggest small or vanishing chiral condensate
- Finite-size scaling prefers large $\gamma_m\gtrsim$ 0.7
- Prospects for S parameter from valence domain wall

Looking forward to more fun in the future

- Running mass anomalous dimension from eigenmode number
- Unitary staggered analysis of vacuum polarization
- Other USBSM projects: light scalars; lattice supersymmetry

Thank you!

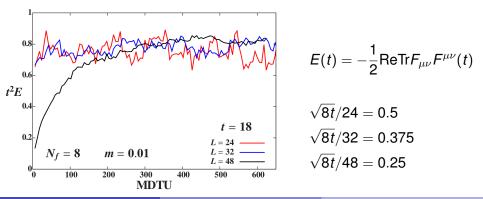
Thank you!

Contributors to this talk

George Fleming, Anna Hasenfratz, Meifeng Lin, Ethan Neil, James Osborn

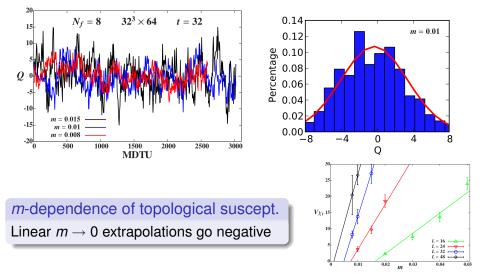
The rest of the USBSM community

Tom Appelquist, Rich Brower, Mike Buchoff, Simon Catterall, Michael Cheng, Joel Giedt, Kieran Holland, Joe Kiskis, Julius Kuti, Heechang Na, Gregory Petropoulos, Claudio Rebbi, Chris Schroeder, Don Sinclair, Gennady Voronov, Pavlos Vranas, Oliver Witzel

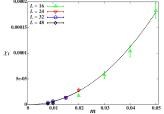


Backup: Status of ensemble generation

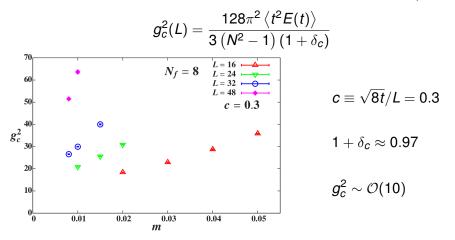
Many-flavor lattice systems may have long autocorrelations Expect observables related to topology to be sensitive (arXiv:1204.6000)


Wilson flow to monitor thermalization, autocorrelations

Integrate infinitesimal stout smearing steps out to flow time t with $\sqrt{8t}$ comparable to L/2

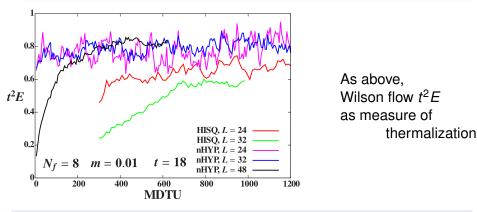

Backup: Topo. charge and χ_t from the Wilson flow

 $32\pi^2 Q = \text{ReTr} [\epsilon_{\mu\nu\sigma\tau} F_{\mu\nu} F^{\sigma\tau}]$ after flowing to $\sqrt{8t} = L/2$


Backup: Topo. charge and χ_t from the Wilson flow $32\pi^2 Q = \text{ReTr} [\epsilon_{\mu\nu\sigma\tau} F_{\mu\nu} F^{\sigma\tau}]$ after flowing to $\sqrt{8t} = L/2$ 20 $N_f = 8$ $32^3 \times 64$ t = 320.14 15 m = 0.010.12 0.10 Percentage 0.08 0.06 0.04 -10 0.02 -15 0.00 -0.008-4 0 4 -20<u></u> 500 1000 1500 2000 2500 3000 MDTU *m*-dependence of topological suscept. 0.000

For IR-conformal system, $\chi_t \propto m^{4/(1+\gamma_m)}$ Neglecting poorly-determined L = 48, $\gamma_m = 0.91(16)$ with $\chi^2/dof = 1.5/3$

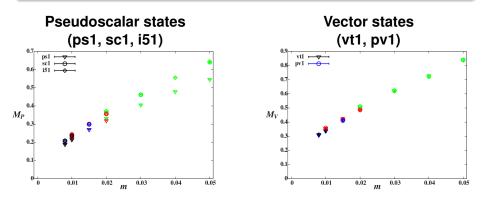
Backup: Wilson flow running coupling (arXiv:1208.1051)


Z. Fodor, K. Holland, J. Kuti, D. Nogradi and C. H. Wong define SU(*N*) running coupling from Wilson flow $\langle t^2 E(t) \rangle$:

Sensitive to non-zero fermion mass as well as lattice volume

Backup: Trouble with HISQ at strong coupling

Our new nHYP action is **orders of magnitude** faster than HISQ at comparably strong couplings

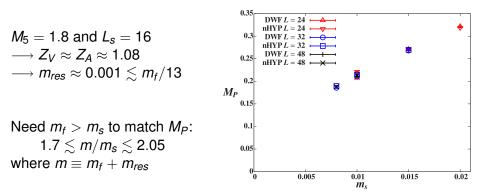

David Schaich (Colorado)

USBSM $N_F = 8$

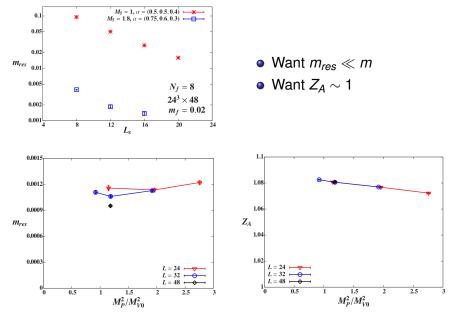
Backup: nHYP taste splitting

The nHYP-smeared action

exhibits excellent control over staggered taste splitting


These are very preliminary results; pv1 masses are not yet determined for some L = 32 and 48 runs

David Schaich (Colorado)


USBSM $N_F = 8$

Backup: Valence domain wall procedure (LHPC, arXiv:0705.4295)

- HYP smear to reduce m_{res} and get renormalization factors $Z \sim 1$
- Tune domain wall height M_5 and length L_s of fifth direction so that residual chiral symmetry breaking $m_{res} \ll m$
- Tune bare valence mass m_f so that M_P matches unitary value

Backup: Valence domain wall m_{res} and Z_A

David Schaich (Colorado)

USBSM $N_F = 8$

The S parameter

Constrain the physics of electroweak symmetry breaking from its effects on vacuum polarizations $\Pi(Q)$ of EW gauge bosons

$$\gamma, Z \longrightarrow \gamma, Z$$

(independent of flavor physics/ETC)

$$S = 4\pi N_D \lim_{Q^2 \to 0} \frac{d}{dQ^2} \Pi_{V-A}(Q^2) - \Delta S_{SM}(M_H)$$

2 $N_D \ge 1$ is the number of doublets with chiral electroweak couplings

• $\Delta S_{SM}(M_H)$ subtracted so that S = 0 in the standard model Removes three eaten modes, depends on Higgs mass