Bulk and finite-temperature transitions in SU(3) gauge theories with many light fermions

David Schaich (University of Colorado)

Lattice 2012, Cairns, Australia 25 June 2012

PRD **85**:094509 (2012) [arXiv:1111.2317**v2**] and work in progress with Anqi Cheng, Anna Hasenfratz and Greg Petropolous

Motivation for studying finite-temperature transitions

Hope for contrast between confining vs. IR-conformal systems

Previous work: Groningen–INFN; Lattice Higgs Collaboration

 \longrightarrow Explore with action that showed $N_F = 12$ IR fixed point via MCRG

(For more on MCRG: Greg Petropoulos, Thursday 14:30)

David Schaich (Colorado)

Motivation for studying finite-temperature transitions

• nHYP smeared action with adjoint plaquette term $\beta_A = -0.25\beta_F$

- $N_F = 8$ and 12 staggered fermions in fundamental rep.
- T > 0 volumes up to $40^3 \times 20$, as well T = 0 up to $32^3 \times 64$ (large-volume runs still in progress \longrightarrow results preliminary)

David Schaich (Colorado)

For $N_F = 12$ we observe **two** bulk transitions

Strange behavior in $\langle \overline{\psi}\psi \rangle$ observed using three staggered actions

Our observations (may not yet be consensus)

- Large jump in $\langle \overline{\psi}\psi \rangle$ at stronger coupling
- Large jump in RG-blocked Polyakov loop at weaker coupling

Suggest a confined but chirally symmetric phase

Study through low-lying eigenvalues, and new order parameters... (and spectrum and static potential, omitted from this talk)

David Schaich (Colorado)

Eigenvalue density $\rho(\lambda)$ in intermediate phase

Good observable for exploring chiral properties

"Soft edge": $\lim_{V\to\infty} \rho(\lambda) \propto (\lambda - \lambda_0)^{\alpha}$ with $\lambda_0 > 0$ ($\alpha \approx 0.5$)

Gap in infinite-volume extrapolation of eigenvalue density $\implies \langle \overline{\psi}\psi \rangle = 0$ and $\chi_S = \chi_P$ (axial U(1)_A restored) in chiral limit

(For more on eigenvalues at weak coupling: A. Hasenfratz, Tuesday 14:50)

Single-site shift symmetry of staggered action spontaneously broken in intermediate phase ("\$4")

David Schaich (Colorado)

Consequences of shift symmetry breaking

Observables alternate between slices

Breaking can develop in one or more directions Breaking can change direction(s) during HMC evolution

Present in plaquette \implies feature of gauge configurations themselves

David Schaich (Colorado)

Implications of \mathcal{S}^4 lattice phase

St phase seems to have no continuum limit

- Confining but chirally symmetric (forbidden by anomaly matching)
- Bounded by first-order bulk transitions (merge as m increases)
- Observed for both $N_F = 8$ and 12

(Potential Aoki-like phase? Relation to staggered taste breaking?)

How do finite-temperature transitions behave around bulk transitions?

David Schaich (Colorado)

Finite-temperature transitions around the S^4 phase

 $N_F = 12$, m = 0.01, $24^3 \times 12$ and $32^3 \times 16$

 S^4 order parameters fall to zero at the same time as the RG-blocked Polyakov loop becomes large (compared to $N_F = 2+1$ deconfinement transition)

 \implies At m = 0.01, move from \mathscr{S}^4 phase into deconfined phase

Finite-temperature transitions around the S^4 phase

Eigenvalue density $\rho(\lambda)$ around the \mathcal{S}^4 phase

- $N_F = 8$ and 12, m = 0.01, $32^3 \times 16$
 - Soft edge appears both in \mathcal{S}^4 phase and at high temperature
 - For $N_F = 12$, we move straight from \mathcal{S}^4 phase to chiral symmetry
 - For N_F = 8, we observe a chirally broken phase in between the 𝔅⁴ phase and chiral symmetry restoration

Resulting $N_F = 8$ and 12 phase diagrams

T > 0 transitions congregate at \mathcal{S}^4 bulk transition $N_T = 12$, 16 indistinguishable

Finite-temperature analysis appears feasible despite novel S4 phase

Outlook

Complementing finite-temperature studies with MCRG, Dirac eigenvalues and meson spectrum analyses

Eigenvalues: Anna Hasenfratz, Tuesday 14:50 MCRG: Greg Petropoulos, Thursday 14:30

David Schaich (Colorado)

Thank you!

Thank you!

Collaborators Angi Cheng, Anna Hasenfratz, Greg Petropolous

Backup: spurious UV fixed point from lattice artifacts

We add a negative adjoint plaquette term to the gauge action $(\beta_A = -0.25\beta_F)$ to avoid a well-known spurious UV fixed point

Backup: Blocked Polyakov loop

RG-blocked observables enhance signals over noise

Simply the usual observables measured on RG-blocked configurations Can be thought of as extended observables on original lattices, improved to remove UV fluctuations

Example below: Polyakov loop for $N_F = 12$, $\beta_F = 2.7$, m = 0.01

Note different volumes permit different numbers of blocking steps

David Schaich (Colorado)

Backup: Blocked Polyakov loop

RG-blocked observables preserve existing signals

Simply the usual observables measured on RG-blocked configurations Can be thought of as extended observables on original lattices, improved to remove UV fluctuations

RG-blocked Polyakov loop can still indicate transition

As for other observables, qualitative difference between $N_F = 8$ and 12

David Schaich (Colorado)

Backup: Blocked Polyakov loop

RG-blocked observables checked for $N_F = 2+1$

Simply the usual observables measured on RG-blocked configurations Can be thought of as extended observables on original lattices, improved to remove UV fluctuations

Behave as expected for finite-temperature lattice QCD

Thanks!

Tested on 48³×12 configurations provided by HotQCD Collaboration

David Schaich (Colorado)

Backup: S^4 phase is confining but chirally symmetric

Confinement:

- RG-blocked Polyakov loop is small
- Potential has clear linear term, small Sommer parameter $r_0 \approx 3$

Chiral symmetry:

- Meson spectrum is parity-doubled and volume-independent
- Dirac eigenvalue distribution has "soft edge" λ₀ = 0.0175(5)

Backup: parity doubling in the S^4 meson spectrum

Backup: Volume scaling of Dirac eigenvalues

 \mathcal{S}^{4} phase soft edge visible in eigenvalues themselves (left) Contrast with weak-coupling phase (right)

$$\begin{split} \lim_{V\to\infty}\rho(\lambda)\propto(\lambda-\lambda_0)^{\alpha}\\ \lambda_0=0.0175(5)>0 \text{ is soft edge} \end{split}$$

Backup: Cartoon of phase diagram including \mathcal{S}^4 phase

Staggered single-site shift symmetry:

$$\chi(\mathbf{n}) \rightarrow \xi_{\mu}(\mathbf{n})\chi(\mathbf{n}+\mu)$$

 $\overline{\chi}(\mathbf{n}) \rightarrow \xi_{\mu}(\mathbf{n})\overline{\chi}(\mathbf{n}+\mu)$

$$\xi_{\mu}(n) \equiv (-1)^{\sum_{\nu > \mu} n_{\nu}}$$

 $U_{\mu}(n) \rightarrow U_{\mu}(n+\mu)$