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Plan

@ Motivations for lattice supersymmetry in general
@ Why lattice N = 4 supersymmetric Yang—Mills (SYM) in particular

@ Some highlights of the lattice N' = 4 SYM formulation
& demonstrations of correctness

@ Some initial physics results
& connections to perturbation theory, AdS/CFT, bootstrap

@ The future
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Context: Why lattice supersymmetry

Lattice discretization provides non-perturbative,
gauge-invariant regularization of vectorlike gauge theories

Amenable to numerical analysis
— complementary approach to study strongly coupled field theoriesJ

Proven success for QCD; many potential susy applications:

@ Compute Wilson loops, spectrum, scaling dimensions, etc.,
complementing perturbation theory, holography, bootstrap, ...

@ Further direct checks of conjectured dualities
@ Predict low-energy constants from dynamical susy breaking

@ Validate or refine AdS/CFT-based modelling
(e.g., QCD phase diagram, condensed matter systems)
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Context: Why not lattice supersymmetry

There is a problem with supersymmetry on a space-time lattice
Recall: supersymmetry extends Poincaré symmetry
by spinorial generators Q!, and (_DiM withl=1,.-- N

The resulting algebra includes {Qa,(_Dd} =208 P,

P,, generates infinitesimal translations, which don't exist on the lattice
— supersymmetry explicitly broken at classical level

Consequence for lattice calculations
Quantum effects generate (typically many) susy-violating operators

Fine-tuning their couplings to restore susy is generally not practical
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Why N = 4 SYM: Exact susy on the lattice

In order to forbid generation of susy-violating operators
(some subset of) the susy algebra must be preserved

In four dimensions A/ = 4 SYM is the only known system
with a supersymmetric lattice formulationJ

N =4 SYM is an extremely interesting theory

@ SU(N) gauge theory with four fermions W! and six scalars ¢V,
all massless and in adjoint rep.

@ Action consists of kinetic, Yukawa and four-scalar terms

@ Supersymmetric: 16 supercharges Q!, and 5; withlI=1,.-- 4
Fields and Q’s transform under global SU(4) ~ SO(6) R symmetry

@ Conformal: 3 function is zero for all 't Hooft couplings A
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Why lattice V' = 4 SYM: Kahler—Dirac fermions

What is special about V' = 4 SYM

The 16 fermionic supercharges Q! and Q;, of " = 4 SYM
fill a Kéhler—Dirac multiplet:

—I
Qé, Qd S Q, Q,u,, Q;wy Q;wp; Q,u,l/po’
all totally anti-symmetric

In this notation there is a susy subalgebra {Q, Q} =202 =0
This can be exactly preserved on the lattice

Let’s see how. ..
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Dijkstra, “Notes on Structured Programming”, 1970

A convincing demonstration of correctness being impossible
as long as the mechanism is regarded as a black box,
our only hope lies in not regarding the mechanism as a black box.
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Kahler-Dirac fermions from topological twisting

The Ké&hler-Dirac representation is related to the usual o;,di by

Q @@ @& &
o « « « P Q + ’.Y,UQ;U' + PY/JPYVQ;UIV + Py‘u,’)/S Q/J,yp + ’YSQ,U,V/)O'

—1 —2 —3 —a4 — Q4+ vaQa+ Va7V Qab

Qu Qu Qu Qq witha,b=1,--- .5

The 4 x 4 matrix involves R symmetry transformations along each row
and (euclidean) Lorentz transformations along each cquan

= Kahler—Dirac components transform under “twisted rotation group”

SO(4),, = diag [80(4)euc ® SO(4)R]

TonIy SO(4)r C SO(B)R
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Twisted N/ = 4 SYM

SO(4);, = diag|SO(4).,. ® SO(4)g

euc
@ 9,9, Qu, ...transform with integer spin — no longer spinors!
@ Fermions decompose in the same way, ¥/ — {1, vz, xap}

@ Scalar fields transform as a four-vector B, plus two scalars ¢, ¢
Combine with A, in complexified five-component gauge field

Aa=Aa+iBa= (A, ¢) + i(B, d) and similarly for A,

Complexified gauge field = U(N) = SU(N) ® U(1) gauge invariance

Irrelevant in the continuum, but will affect lattice calculations
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Twisted N/ = 4 SYM

SO(4)yy = diag | SO(4),,. @ SO(4)g

@ 9,9, Qu, ...transform with integer spin — no longer spinors!
@ Fermions decompose in the same way, ¥/ — {1, 2, xab}

@ Scalar fields transform as a four-vector B, plus two scalars ¢, ¢
Combine with A, in complexified five-component gauge field

Aa=Aq+iBa= (Au, &) + i(Bu, ¢) and similarly for A,
Twisting is trustworthy

In flat space just a change of variables, no effect on physics

If you're not yet convinced. . .

You can derive precisely the same lattice system
from orbifolding / dimensional deconstruction — cf. arXiv:0903.4881
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Five-component notation lets us move to the lattice

Goal: Preserve Q supersymmetry on the lattice
Q@ &? =0
@ Q directly interchanges bosonic «— fermionic d.o.f.

Both conditions are easy to verify in five-component notation:

Qua:¢a Q¢a:O
Q Xap = _?ab Qaazo
Qn=d Qd=0

@ Gauge field U5 and 4 live on links between lattice sites
U must be elements of algebra gl(N, C)

— Non-trivial to ensure U; — I + A, in the continuum limit

@ Field strength F,, and x4 live on diagonals of oriented faces

@ Bosonic auxiliary field d and 7 live on sites
Usual equation of motion: d = D, U,

v
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Five links in four dimensions: The Aj lattice

Aa = (A, ¢) may remind you of dimensional reduction

On the lattice we need to treat all five Uz symmetrically

—Start with hypercubic lattice _ ° $e
in 5d momentum space . ":...o
‘:\.‘...
.e®

—Symmetric constraint ), 0, =0 . o o @ 6 &

projects to 4d momentumspace / © © @O & &
© 085969 o
e © % @ a :...‘:
—Result is A4 lattice : 0000 @
Lot ; 0% 0%,
— dual Aj lattice in real space : o .: ®
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Twisted SO(4) symmetry on the Aj lattice

—Can picture A} lattice
as 4d analog of 2d triangular lattice

—Five basis vectors are non-orthogonal
and linearly dependent

—Preserves S5 point group symmetry

Ss irreps precisely match onto irreps of twisted SO(4) 4y
5=401: Uy— A, ¢
wa = T/Ju’ ﬁ
10=694: Xap — Xw: Ep,
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Checkpoint: What we have so far

Thanks to twisting & Aj
we have a manifestly supersymmetric lattice action for N = 4 SYM

N

_ 1 _
S Q| XabFap +NDalda — znd | — z~—€abcde XabDcXde
2 8)\lat

- 2/\lat

QS = 0 follows from Q2 - = 0 and Bianchi identity

@ We have exact U(N) gauge invariance
@ We exactly preserve Q, one of 16 supersymmetries

@ The S5 point group symmetry
provides twisted R & Lorentz symmetry in the continuum limit
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Checkpoint: What we have so far

_ 1 N _
Q | xabFap +nDalda — *77d — o €abcde XabDcXde
2 8)\lat

S =
2)\lat

The high degree of symmetry has important consequences

@ Moduli space preserved to all orders of lattice perturbation theory
— no scalar potential induced by radiative corrections

@ [ function vanishes at one loop (at least)

@ Real-space RG blocking transformations preserve Q & Ss

@ Only one marginal tuning to recover Q5 and Q_, in the continuum

The theory is almost suitable for practical numerical calculations. .. J
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Stabilizing numerical calculations
We need to add two deformations to the Q-invariant action
Both deal with features required by the supersymmetric construction
Scalar potential to regulate flat directions
U, in algebra — Add scalar potential (4 Tr [Ualda] — 1)2
to ensure Uy — I + A in the continuum limit

Otherwise U, can run away along flat directions

Plaquette determinant to suppress U(1) sector of U(N)

Uz complexified — Add approximate SU(N) projection |det P, — 1 ]2
where P, is the product of four U/, around the elementary plaquette

Otherwise encounter strong-coupling U(1) confinement transition

v
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Lattice action for ' = 4 numerical calculations

Applying Q, integrating out d and adding the deformations, we have

N — 1, 5 _
S= ~FavFan+ 5 (Daua) - XabD[awb] —NDaa
2\at 2

- 8Tht5abcde Xdeﬁc)(ab

+ o (NTr (Ul a] — 1> + k |det Pgp — 1]

Deformations introduce soft supersymmetry breaking
As written, both the ;2 and « terms softly break Q

New development: Either (maybe both) can be made Q-invariant
by modifying the equation of motion for d
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Soft Q supersymmetry breaking

Exact preservation of Q by the underlying formulation
— all susy-violating operators automatically vanish as p,x — OJ

Use violations of (normalized) Ward identities (Q0O) =0
to monitor Q breaking and restoration

y=6.2 —
=03 —x—
pn=04 —g— |
pu=05 —6—

£0.02

0.04 | n=06 —— -
u=07 —o—
0.06 | u=08 —A— |
n=09 —x—
<G+F> 008 p=10 —5—
0.1

012 - N =4 SYM, U(2)
4
0.14 4

0 0.2 0.4 K 0.6 0.8 1
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Soft Q supersymmetry breaking

Use normalized Ward identity violations to monitor Q restoration

;1:()“2 —
pn=03 ——
p=04 —g—

-0.02
-0.04 |-

@ 0.06 |-
UG
G+F 008

0.1 -

22F N =4SYM, U(Q2)
44

0.14

0 0.2 0.4 0.6 0.8 1
K

Relatively narrow band
= more severe Q breaking from plaquette determinant deformation
than from scalar potential deformation

David Schaich (Syracuse) Lattice ' = 4 SYM Yale, 10 February 2015 19/35



Soft Q supersymmetry breaking

Use normalized Ward identity violations to monitor Q restoration

0 0
N =4SYM, UN) N = :“SYM, U(N)

003 l\’\‘\.s‘x\z‘" .

006 w 006
2&%) 2Gr) "

009 -

o 012

N T (11, = (0.4,0.6) o[ = (L LD
ha 05 1 15 2 25 3 o 14 3 N 12
Alat

Two more sanity tests with fixed non-zero x and x
@ Ward identity violations vanish in free-field limit A\j; — O

@ Ward identity violations suppressed oc 1/N? as N increases

Effects of soft Q-breaking are under control, at the 1-10% level J

Numerical calculations are practical
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Recap: Highlights of the formulation

@ Topological twisting puts fields in convenient form
@ A lattice provides corresponding discretization

@ Soft Q-breaking deformations allow practical numerical studies

The construction is obviously very complicated

To reduce this barrier to entry,
we make our efficient parallel code publicly available
github.com/daschaich/susy

Now for some physics results
@ Static potential from Wilson loops

@ Konishi operator scaling dimension from Monte Carlo RG

v
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N = 4 static potential from Wilson loops

Extract static potential V(r)
from r x T Wilson loops: W(r,T) x e V()T

Coulomb gauge trick from lattice QCD reduces A} lattice complications
/\ -
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Potential should be Coulombic at all couplings

Current results for V(r) from W(r, T) < = Y() T are fairly noisy )

0.04

N = 438YM, uQR)
Fit V(r) to Coulombic 0035 8" x24
or confining form 4431

PP ot

V 0.025 |
V(r):A—C/r 0.02 |
0.015 | ’ 1
V(ir=A—-C/r+or (Aats 1, €) = (0.5,0.2,0.6) =S
o 05 1 15 2 25 3
r
Always find vanishing string tension ¢ = 0
— V/(r) is Coulombic for all A, as expectedJ
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Coupling dependence of N/ = 4 static potential

We have a Coulombic potential V(r) = A— C/r for all A J
0.2 T T T
p=02,=06 —o— N =4 SYM, U(2)
| . Hbrz08 X 824
Perturbation theory predicts wisl H-04c-08 o T
u=08«=06 —5—
=0.8,«x=0. {
C(\) = \/(47) + O()?) “ Pertubative 1
C o1t tmin = 6 2
Although noisy, for U(2) 005 | ®
our results agree for A < 2 -
(The v/5 comes from A;) ‘ ‘ .
0 0.5 1 1.5 2
/llat / \/g

No dependence on p or kK — apparently insensitive to soft O breakingJ
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Coulomb coefficients for larger U(N)

For N = 3 we still have Coulombic V(r) =A— C/r

Our results now deviate from (well-convergent) perturbation theory

Are we seeing onset of expected large-N strong-coupling behavior?

0.12
AdS/CFT predicts 01l
C(\) x VA
for N = oo, A —» oo, A< N &
0.04
0.02
In QCD, SU(3) is ‘large N’
0

for some quantities. . .
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1=02,k=06 —~A— N =4SYM, UQ3)
u=02k=08 —¢— 3

1=04,k=06 —B— 8’ %24 _
n=04,k=08 —o— )

LO
0.08 iy =6 NLO wcoeoeeeeee e 1

NNLO eoeeeeeeens et *
./"'/
% |
. , ( _ PRELIMINARY
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Konishi operator scaling dimension

Recall N = 4 SYM is conformal
— All correlation functions decay algebraically oc r—2 J

The Konishi operator is the simplest conformal primary operator

Ok =Y T[] Ck(r) = Ok(x + r)Ox(x) = Ar—28x

There are many predictions for the scaling dim. Ak () = 2 + yx(A)

@ From perturbation theory for small A,

related to A — oo by S duality under 2% «— Ao
@ From holography for N — co and A — oo but A < N

@ Bounds on max {Ak} from the conformal bootstrap program

We will add lattice gauge theory to this list ]
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Konishi operator on the lattice

Ok =) Tr[o'o]]

On the lattice the scalars ®' are twisted
and wrapped up in the complexified gauge field U/,

Since U, ~ T+ A, the most obvious way to extract the scalars is

@a - Uaaa - 1NTF [Z/{aaa] ]I

This is still twisted, so all {a, b} contribute to R-singlet Konishi

Ox = ZTr [Aaﬂ

David Schaich (Syracuse) Lattice " = 4 SYM Yale, 10 February 2015 27/35



Small-volume lattice Konishi sanity test

Ok = ZTF ¢I¢I:| — OK = ZTI‘ [Aa’\b]

o~

Ck(r) = (’)K(x + 1)Ok(x) o r-28K

0.01

Qualitative agreement with 8
power laws using perturbative A oo

N = 4SYM, UQ2)
(A, 14,G6)=(1,04,0.1) |

0.0001 +

“SUGRA” operator is R-nonsinglet ¢
with protected Ag =2 1057

1e-06 -

Need Q-invariant SU(N) projection i —

for test to pass on 8 lattice volume "3 1 : 3

Obviously not a stable way to determine Ax — we have other tools J
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Scaling dimensions from Monte Carlo RG

Couplings flow under RG blocking transformation Ry,

n-times-blocked system is H() = R,H(-1) = 3, MO J

Consider linear expansion around fixed point H* with couplings c;

R R EDLICRR
/ 1

H*

T} is the “stability matrix”

Eigenvalues of T* are scaling dimensions of corresponding operators J

David Schaich (Syracuse) Lattice ' = 4 SYM Yale, 10 February 2015 29/35



Initial Konishi Ak from Monte Carlo RG

Eigenvalues of T,]* are scaling dimensions of corresponding operators J

Simplest possible trial:
One operator (Ok)
One blocking n =1

45

IS

N =4SYM, U2)
=01

[ ALREADY OUTDATED

Correctly find Ak —2as A — 0 o 3f pontin b ]
PG e
Significant volume dependence * b |
— approach perturbation theory — .
as L increases
Many refinements (and other approaches) currently in the works J
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Recapitulation

@ Lattice gauge theory provides a complementary approach
to study strongly coupled supersymmetric field theories

@ Lattice /' =4 SYM based on topological twisting
exactly preserves subset of susy algebra, 9> =0
Allows practial numerical calculations

@ The construction is complicated
— publicly-available code to reduce barriers to entry

@ The static potential is always Coulombic
For N =2 C()\) is consistent with perturbation theory
For N = 3 an intriguing discrepancy at stronger couplings

@ Work is progressing to predict the Konishi scaling dimension

@ There are many more directions to pursue in the future
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One future direction: Understanding the sign problem

In lattice gauge theory we compute operator expectation values

(0) = % / [aU][dtd] © &S 3 pi Dl T1]

pf D = |pf D|e'® is generically complex for lattice ' = 4 SYM
— Complicates interpretation of [e~%6 pf D] as Boltzmann weight

Still possible to “reweight” “phase-quenched (pq)” calculations

B B Oeia
(Olpg = 5 [ QU O S ptD] (0] = O o
Zpq (€)pq
Sign problem: This breaks down if (e"a> g consistent with zero J

David Schaich (Syracuse) Lattice ' = 4 SYM Yale, 10 February 2015 32/35



lllustration of sign problem and its absence

@ With periodic temporal fermion boundary conditions
we have an obvious sign problem, (e’a>pq consistent with zero

@ With anti-periodic BCs and all else the same <e’°‘>pq ~ 1

— phase reweighting not even necessary

b S 0500y
L1G) = (1,08,0.1) . Perodic BCs X

/-«

KX Kg
Even stranger x :XS*
Other (O),, nearly identical % ¢ 8
despite sign problem... 3 ;
X
Can this be understood? X, o
X X
a1 oK
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Numerical results for volume & N dependence

No indication of a sign problem with anti-periodic BCs
o Pfaffian P = |P|e/® is nearly real and positive, 1 — (cos(a)) < 1

@ Fluctuations in pfaffian phase don’t grow with the lattice volume

@ Insensitive to number of colors N =2, 3, 4

Fx4  Fx6 3Px8 4 43x5

£x6

"N = 4SYM, U(N)
(Aat, o1, 6) = (1,1,1) |

x X

x x

X

I

250

350

2d
M y———
. N=3 —o—
Hard calculations oo (V=4 —a—
x @
Each 43 x 6 measurement 0.0001
requires ~8 days, | 1-(s® ooy
~10GB memory 0.002
1e-08 }
3 . 0.001
Parallel O(n°) algorithm el
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Thank you!
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Thank you!

Collaborators
Simon Catterall, Poul Damgaard, Tom DeGrand and Joel Giedt J

Funding and computing resources J

usQcb
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Backup: Failure of Leibnitz rule on lattice
Given that {Oa,éd} = 20", P, = 2ic" .0, is problematic,

why not try {Qa,bd} = 2i0!,V,, for a discrete translation?
Here V,6(x) = 3 [o(x + afi) — ¢(x)] = 9.6(x) + §056(x) + O(&%)
Essential difference between 9, and V,, on the lattice (a > 0)

Vi [60)x (0] = @' [¢(x + an)x(x + an) — (x)x(x)]
= Vi [¢()] x(X) + ¢(X)Vux(X) + @V, [6(x)] Vux(X)

We only recover the Leibnitz rule 0,(fg) = 0,.(f)g + f0,g when a — 0
— “Discrete supersymmetry” breaks down on the lattice
(Dondi & Nicolai, “Lattice Supersymmetry”, 1977)
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Backup: Hypercubic basis for A} lattice

It is very convenient to represent the A; lattice
as a hypercube with a backwards diagonaIJ
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Backup: Code performance—weak and strong scaling

Left: Strong scaling for U(2) and U(3) 16° x 32 RHMC

Right: Weak scaling for O(N3) pfaffian calculation (fixed local volume)

Local volume: 8! 4 x8 4 x4 3x6 3P x8
A N =4SYM, UN) 0L A/ = 4 SYM, U(2)
10 A 163 x 32 (A, 0) = (1,1,1)
5 e (Ap6) = (1,1,1) 50
o,
2 S
Hours O, v Core-hours
per MDTU 1 o v 20
05 Q
o 10
02 y_3 e ©
,x :i —e— S} s Power: 2.86(7)
0.1 =
8 16 32 64 128 256 512 100 150 200 250
# of cores |4

Both plots on log—log axes with power-law fits
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Backup: Code performance for 2, 3 and 4 colors

Red: Find RHMC costs scaling ~N°® (recall 16/N? fermion components)

Blue: Pfaffian costs consistent with expected N® scaling

100

10 -

Core-hours

0.1

David Schaich (Syracuse)

N = 4SYM, U(N)

Awo =@LLY '
....... v
------------------- e
A
@ g
X 24 HMC —s—
2 x 4 plaffian ——
2 3 4

N

Lattice N = 4 SYM
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Backup: Thermalization

Thermalization becomes increasingly painful as N and L increase
Example: Evolution of smallest DD eigenvalue | \|?

0.03
0.027 - i
N =4 SYM, U(2)
0.024 124
[Ao[?
0.021
0.018 Cold start ———
potstart (A p,6) = (1L, 1,1)
0013 0 l()IOO 2(;00 3(;00 4(;00 5000
MDTU

Shouldn’t be too hard to address this with better initial configuration
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Backup: The problem with flat directions

Gauge fields can move far away from U, — I+ A,
if Np/(2\a) becomes too small

Example for two-color (A, s, &) = (5,0.2,0.8) on 82 x 24 volume
Left: Ward identity violations are stable at ~10% level

Right: Polyakov loop wanders off to ~10°

0 le+10
N = 4JSYM, uQ2)
8 x24
003 le+08
1e+06
0.06
252 APLL) L oo0
£0.09
100
012 N =4SYM, U(2)
83 x24
(1,6 = (5,0.2,0.8) ! (4, K) = (5,0.2,0.8)
s 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
MDTU
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Backup: Lattice phase due to U(1) sector

03

o —

N =4SYM, U2) ) N =4SYM,U2) = ot 3
(. x) = (1,0) BA 8 x24 —e— N-q_e—qyw ve
- (%) = (1,0) =4SYM, U(2)
u " (1K) = (1,0) R

®
02 =

06 06 °

PL)y (Re detP) {oa)

o

04 04

x [

o®

@ Polyakov loop collapses = confining phase
(not present in continuum A/ = 4 SYM)

© Plaquette determinant is variable in U(1) sector
Drops at same coupling A as Polyakov loop

© o is density of U(1) monopole world lines (DeGrand & Toussaint)
Non-zero when Polyakov loop and plaqg. determinant collapse
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Backup: Suppressing the U(1) sector

AS = k|detP — 1|2 suppresses the strongly-coupled lattice phase

Produces 2xF,, F*” term in U(1) sector
— QED critical 8, = 0.99 — critical k¢ ~ 0.5

1

"N =4SYM, UQ2)

08 L ‘:.:; " VoV V V% 64 |
0.6 -
(Re detP)
04+
u=1
K=2 —F—i
ozl =05 —o—
- k=035 —A—
k=025 —83—
ol PR ErEE k=0 —¥%—
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Backup: Plaquette and determinant distributions

3nt4_APBC

Price of Q-invariant
determinant deformation:

Distributions tend to
broaden out, at least for
parameters currently in use ) Re(det

m 11.0_b1.0_G1.0]]
= 11.0_b1.0_k1.0|]

Im(det)
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Backup: Restoration of Q, and Qg supersymmetries

Restoration of the other 15 Q4 and Q4 in the continuum limit
follows from restoration of R symmetry (motivation for Ay lattice)

Modified Wilson loops test R symmetries at non-zero lattice spacing
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Backup: Perturbation theory for Coulomb coefficient

For range of A\, currently being studied, the perturbative series
for the U(3) Coulomb coefficient appears well convergent
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Backup: More tests of the U(2) static potential

Left: Projecting Wilson loops from U(2) — SU(2)

— factor of X1 — 3/4

N2

Right: Unitarizing links removes scalars — factor of 1/2
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Both expected factors present, although (again) noisily
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Backup: More tests of the U(3) static potential

Left: Projecting Wilson loops from U(3) — SU(3)

N2—1 _
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Right: Unitarizing links removes scalars —> factor of 1/2
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Ratios look slightly higher than expected,
less noise in SU(3)-projected results
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Backup: Smearing for noise reduction

Smearing may reduce noise in static potential (etc.) measurements
—Stout smearing implemented and tested
—APE or HYP (without unitary projection) may work better for Konishi

2.05

N =4SYM, UQ2)
6000 163 x 32

Twice-smeared
Once-smeared A
Unsmeared - - - - - -

0 0.05 0.1 0.15 0.2

David Schaich (Syracuse) Lattice N = 4 SYM Yale, 10 February 2015 35/35



Backup: Pfaffian phase dependence on Ay, u,

We observe little dependence on

Fluctuations in phase grow as A, increases
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