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Context: Why lattice supersymmetry

Lattice discretization provides non-perturbative,
gauge-invariant regularization of vectorlike gauge theories

Amenable to numerical analysis
−→ complementary approach to study strongly coupled field theories

Proven success for QCD; many potential susy applications:
Compute Wilson loops, spectrum, scaling dimensions, etc.,

complementing perturbation theory, holography, bootstrap, . . .

Further direct checks of conjectured dualities

Predict low-energy constants from dynamical susy breaking

Validate or refine AdS/CFT-based modelling
(e.g., QCD phase diagram, condensed matter systems)
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Context: Why not lattice supersymmetry

There is a problem with supersymmetry on a space-time lattice
Recall: supersymmetry extends Poincaré symmetry

by spinorial generators QI
α and Q

I
α̇ with I = 1, · · · ,N

The resulting algebra includes
{

Qα,Qα̇

}
= 2σµ

αα̇Pµ

Pµ generates infinitesimal translations, which don’t exist on the lattice
=⇒ supersymmetry explicitly broken at classical level

Consequence for lattice calculations
Quantum effects generate (typically many) susy-violating operators

Fine-tuning their couplings to restore susy is generally not practical
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Why N = 4 SYM: Exact susy on the lattice
In order to forbid generation of susy-violating operators

(some subset of) the susy algebra must be preserved

In four dimensions N = 4 SYM is the only known system
with a supersymmetric lattice formulation

N = 4 SYM is an extremely interesting theory
SU(N) gauge theory with four fermions ΨI and six scalars ΦIJ,

all massless and in adjoint rep.

Action consists of kinetic, Yukawa and four-scalar terms

Supersymmetric: 16 supercharges QI
α and Q

I
α̇ with I = 1, · · · ,4

Fields and Q’s transform under global SU(4) ' SO(6) R symmetry

Conformal: β function is zero for all ’t Hooft couplings λ
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Why lattice N = 4 SYM: Kähler–Dirac fermions

What is special about N = 4 SYM

The 16 fermionic supercharges QI
α and Q

I
α̇ of N = 4 SYM

fill a Kähler–Dirac multiplet:

QI
α,Q

I
α̇ −→ Q,Qµ,Qµν ,Qµνρ,Qµνρσ

↖all totally anti-symmetric

In this notation there is a susy subalgebra {Q,Q} = 2Q2 = 0
This can be exactly preserved on the lattice

Let’s see how. . .
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Dijkstra, “Notes on Structured Programming”, 1970
A convincing demonstration of correctness being impossible
as long as the mechanism is regarded as a black box,
our only hope lies in not regarding the mechanism as a black box.
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Kähler–Dirac fermions from topological twisting

The Kähler–Dirac representation is related to the usual QI
α,Q

I
α̇ by

Q1
α Q2

α Q3
α Q4

α

Q
1
α̇ Q

2
α̇ Q

3
α̇ Q

4
α̇

= Q+ γµQµ + γµγνQµν + γµγ5Qµνρ + γ5Qµνρσ

−→ Q+ γaQa + γaγbQab
with a,b = 1, · · · ,5

The 4× 4 matrix involves R symmetry transformations along each row
and (euclidean) Lorentz transformations along each column

=⇒ Kähler–Dirac components transform under “twisted rotation group”

SO(4)tw ≡ diag
[
SO(4)euc ⊗ SO(4)R

]
↑

only SO(4)R ⊂ SO(6)R
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Twisted N = 4 SYM

SO(4)tw ≡ diag
[
SO(4)euc ⊗ SO(4)R

]
Q, Qµ, Qµν , . . . transform with integer spin – no longer spinors!

Fermions decompose in the same way, ΨI −→ {η, ψa, χab}

Scalar fields transform as a four-vector Bµ plus two scalars φ, φ
Combine with Aµ in complexified five-component gauge field

Aa = Aa + iBa = (Aµ, φ) + i(Bµ, φ) and similarly for Aa

Complexified gauge field =⇒ U(N) = SU(N) ⊗ U(1) gauge invariance

Irrelevant in the continuum, but will affect lattice calculations
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Twisted N = 4 SYM

SO(4)tw ≡ diag
[
SO(4)euc ⊗ SO(4)R

]
Q, Qµ, Qµν , . . . transform with integer spin – no longer spinors!

Fermions decompose in the same way, ΨI −→ {η, ψa, χab}

Scalar fields transform as a four-vector Bµ plus two scalars φ, φ
Combine with Aµ in complexified five-component gauge field

Aa = Aa + iBa = (Aµ, φ) + i(Bµ, φ) and similarly for Aa

,Twisting is trustworthy
In flat space just a change of variables, no effect on physics

If you’re not yet convinced. . .
You can derive precisely the same lattice system

from orbifolding / dimensional deconstruction – cf. arXiv:0903.4881
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Five-component notation lets us move to the lattice
Goal: Preserve Q supersymmetry on the lattice

1 Q2 · = 0
2 Q directly interchanges bosonic←→ fermionic d.o.f.

Both conditions are easy to verify in five-component notation:

Q Ua = ψa Q ψa = 0

Q χab = −Fab Q Ua = 0
Q η = d Q d = 0

Gauge field Ua and ψa live on links between lattice sites
Ua must be elements of algebra gl(N,C)

=⇒ Non-trivial to ensure Ua −→ I +Aa in the continuum limit

Field strength Fab and χab live on diagonals of oriented faces

Bosonic auxiliary field d and η live on sites
Usual equation of motion: d = Da Ua
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Five links in four dimensions: The A∗4 lattice

Aa = (Aµ, φ) may remind you of dimensional reduction

On the lattice we need to treat all five Ua symmetrically

—Start with hypercubic lattice
in 5d momentum space

—Symmetric constraint
∑

a ∂a = 0
projects to 4d momentum space

—Result is A4 lattice
−→ dual A∗

4 lattice in real space
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Twisted SO(4) symmetry on the A∗4 lattice

—Can picture A∗
4 lattice

as 4d analog of 2d triangular lattice

—Five basis vectors are non-orthogonal
and linearly dependent

—Preserves S5 point group symmetry

S5 irreps precisely match onto irreps of twisted SO(4)tw

5 = 4⊕ 1 : Ua −→ Aµ, φ

ψa −→ ψµ, η

10 = 6⊕ 4 : χab −→ χµν , ψµ
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Checkpoint: What we have so far

Thanks to twisting & A∗
4

we have a manifestly supersymmetric lattice action for N = 4 SYM

S =
N

2λlat
Q

(
χabFab + ηDaUa −

1
2
ηd

)
− N

8λlat
εabcde χabDcχde

QS = 0 follows from Q2 · = 0 and Bianchi identity

We have exact U(N) gauge invariance

We exactly preserve Q, one of 16 supersymmetries

The S5 point group symmetry
provides twisted R & Lorentz symmetry in the continuum limit
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Checkpoint: What we have so far

S =
N

2λlat
Q

(
χabFab + ηDaUa −

1
2
ηd

)
− N

8λlat
εabcde χabDcχde

The high degree of symmetry has important consequences
Moduli space preserved to all orders of lattice perturbation theory

−→ no scalar potential induced by radiative corrections

β function vanishes at one loop (at least)

Real-space RG blocking transformations preserve Q & S5

Only one marginal tuning to recover Qa and Qab in the continuum

The theory is almost suitable for practical numerical calculations. . .
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Stabilizing numerical calculations

We need to add two deformations to the Q-invariant action

Both deal with features required by the supersymmetric construction

Scalar potential to regulate flat directions

Ua in algebra −→ Add scalar potential
( 1

N Tr
[
UaUa

]
− 1

)2

to ensure Ua −→ I +Aa in the continuum limit

Otherwise Ua can run away along flat directions

Plaquette determinant to suppress U(1) sector of U(N)

Ua complexified −→ Add approximate SU(N) projection |detPab − 1|2
where Pab is the product of four Ua around the elementary plaquette

Otherwise encounter strong-coupling U(1) confinement transition
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Lattice action for N = 4 numerical calculations

Applying Q, integrating out d and adding the deformations, we have

S =
N

2λlat

[
−FabFab +

1
2

(
DaUa

)2 − χabD[aψb] − ηDaψa

]
− N

8λlat
εabcde χdeDcχab

+
N

2λlat
µ2

(
1
N

Tr
[
UaUa

]
− 1

)2

+ κ |detPab − 1|2

Deformations introduce soft supersymmetry breaking

As written, both the µ2 and κ terms softly break Q

New development: Either (maybe both) can be made Q-invariant
by modifying the equation of motion for d
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Soft Q supersymmetry breaking

Exact preservation of Q by the underlying formulation
=⇒ all susy-violating operators automatically vanish as µ, κ −→ 0

Use violations of (normalized) Ward identities 〈QO〉 = 0
to monitor Q breaking and restoration
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Soft Q supersymmetry breaking

Use normalized Ward identity violations to monitor Q restoration

Relatively narrow band
=⇒ more severe Q breaking from plaquette determinant deformation

than from scalar potential deformation
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Soft Q supersymmetry breaking
Use normalized Ward identity violations to monitor Q restoration

Two more sanity tests with fixed non-zero µ and κ
Ward identity violations vanish in free-field limit λlat → 0

Ward identity violations suppressed ∝ 1/N2 as N increases

Effects of soft Q-breaking are under control, at the 1–10% level

Numerical calculations are practical
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Recap: Highlights of the formulation

Topological twisting puts fields in convenient form

A∗
4 lattice provides corresponding discretization

Soft Q-breaking deformations allow practical numerical studies

The construction is obviously very complicated

To reduce this barrier to entry,
we make our efficient parallel code publicly available

github.com/daschaich/susy

Now for some physics results
Static potential from Wilson loops

Konishi operator scaling dimension from Monte Carlo RG
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N = 4 static potential from Wilson loops

Extract static potential V (r)
from r × T Wilson loops: W (r ,T ) ∝ e−V (r) T

Coulomb gauge trick from lattice QCD reduces A∗
4 lattice complications
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Potential should be Coulombic at all couplings

Current results for V (r) from W (r ,T ) ∝ e−V (r) T are fairly noisy

Fit V (r) to Coulombic
or confining form

V (r) = A− C/r

V (r) = A− C/r + σr

Always find vanishing string tension σ = 0
−→ V (r) is Coulombic for all λ, as expected
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Coupling dependence of N = 4 static potential

We have a Coulombic potential V (r) = A− C/r for all λ

Perturbation theory predicts

C(λ) = λ/(4π) +O(λ2)

Although noisy, for U(2)
our results agree for λ . 2

(The
√

5 comes from A∗
4)

No dependence on µ or κ −→ apparently insensitive to soft Q breaking
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Coulomb coefficients for larger U(N)

For N = 3 we still have Coulombic V (r) = A− C/r

Our results now deviate from (well-convergent) perturbation theory

Are we seeing onset of expected large-N strong-coupling behavior?

AdS/CFT predicts

C(λ) ∝
√
λ

for N →∞, λ→∞, λ� N

In QCD, SU(3) is ‘large N ’
for some quantities. . .
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Konishi operator scaling dimension

Recall N = 4 SYM is conformal
=⇒ All correlation functions decay algebraically ∝ r−∆

The Konishi operator is the simplest conformal primary operator

OK =
∑

I

Tr
[
ΦIΦI] CK (r) ≡ OK (x + r)OK (x) = Ar−2∆K

There are many predictions for the scaling dim. ∆K (λ) = 2 + γK (λ)

From perturbation theory for small λ,
related to λ→∞ by S duality under 4πN

λ ←→ λ
4πN

From holography for N →∞ and λ→∞ but λ� N

Bounds on max {∆K} from the conformal bootstrap program

We will add lattice gauge theory to this list
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Konishi operator on the lattice

OK =
∑

I

Tr
[
ΦIΦI]

On the lattice the scalars ΦI are twisted
and wrapped up in the complexified gauge field Ua

Since Ua ≈ I +Aa the most obvious way to extract the scalars is

ϕ̂a = UaUa −
1
N

Tr
[
UaUa

]
I

This is still twisted, so all {a,b} contribute to R-singlet Konishi

ÔK =
∑
a, b

Tr
[
ϕ̂aϕ̂b

]
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Small-volume lattice Konishi sanity test

OK =
∑

I

Tr
[
ΦIΦI] −→ ÔK =

∑
a, b

Tr
[
ϕ̂aϕ̂b

]
ĈK (r) ≡ ÔK (x + r)ÔK (x) ∝ r−2∆K

Qualitative agreement with
power laws using perturbative ∆

“SUGRA” operator is R-nonsinglet
with protected ∆S = 2

Need Q-invariant SU(N) projection
for test to pass on 84 lattice volume

Obviously not a stable way to determine ∆K — we have other tools
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Scaling dimensions from Monte Carlo RG

Couplings flow under RG blocking transformation Rb

n-times-blocked system is H(n) = RbH(n−1) =
∑

i c(n)
i O

(n)
i

Consider linear expansion around fixed point H? with couplings c?
i

c(n)
i − c?

i =
∑

j

∂c(n)
i

∂c(n−1)
j

∣∣∣∣∣∣
H?

(
c(n−1)

j − c?
j

)
≡

∑
j

T ?
ij

(
c(n−1)

j − c?
j

)

T ?
ij is the “stability matrix”

Eigenvalues of T ?
ij are scaling dimensions of corresponding operators
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Initial Konishi ∆K from Monte Carlo RG

Eigenvalues of T ?
ij are scaling dimensions of corresponding operators

Simplest possible trial:
One operator (ÔK )
One blocking n = 1

Correctly find ∆K → 2 as λ→ 0

Significant volume dependence
−→ approach perturbation theory

as L increases

Many refinements (and other approaches) currently in the works
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Recapitulation

Lattice gauge theory provides a complementary approach
to study strongly coupled supersymmetric field theories

Lattice N = 4 SYM based on topological twisting
exactly preserves subset of susy algebra, Q2 = 0

Allows practial numerical calculations

The construction is complicated
−→ publicly-available code to reduce barriers to entry

The static potential is always Coulombic
For N = 2 C(λ) is consistent with perturbation theory
For N = 3 an intriguing discrepancy at stronger couplings

Work is progressing to predict the Konishi scaling dimension

There are many more directions to pursue in the future
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One future direction: Understanding the sign problem

In lattice gauge theory we compute operator expectation values

〈O〉 =
1
Z

∫
[dU ][dU ]O e−SB [U ,U ] pfD[U ,U ]

pfD = |pfD|eiα is generically complex for lattice N = 4 SYM
−→ Complicates interpretation of

[
e−SB pfD

]
as Boltzmann weight

Still possible to “reweight” “phase-quenched (pq)” calculations

〈O〉pq =
1
Zpq

∫
[dU ][dU ]O e−SB [U ,U ] |pfD| 〈O〉 =

〈
Oeiα〉

pq〈
eiα

〉
pq

Sign problem: This breaks down if
〈
eiα〉

pq consistent with zero
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Illustration of sign problem and its absence

With periodic temporal fermion boundary conditions
we have an obvious sign problem,

〈
eiα〉

pq consistent with zero

With anti-periodic BCs and all else the same
〈
eiα〉

pq ≈ 1
−→ phase reweighting not even necessary

Even stranger
Other 〈O〉pq nearly identical

despite sign problem...

Can this be understood?
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Numerical results for volume & N dependence

No indication of a sign problem with anti-periodic BCs

Pfaffian P = |P|eiα is nearly real and positive, 1− 〈cos(α)〉 � 1
Fluctuations in pfaffian phase don’t grow with the lattice volume
Insensitive to number of colors N = 2, 3, 4

Hard calculations
Each 43×6 measurement

requires ∼8 days,
∼10GB memory

Parallel O(n3) algorithm
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Thank you!
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Thank you!

Collaborators
Simon Catterall, Poul Damgaard, Tom DeGrand and Joel Giedt

Funding and computing resources
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Backup: Failure of Leibnitz rule on lattice

Given that
{

Qα,Qα̇

}
= 2σµ

αα̇Pµ = 2iσµ
αα̇∂µ is problematic,

why not try
{

Qα,Qα̇

}
= 2iσµ

αα̇∇µ for a discrete translation?

Here ∇µφ(x) = 1
a [φ(x + aµ̂)− φ(x)] = ∂µφ(x) + a

2∂
2
µφ(x) +O(a2)

Essential difference between ∂µ and ∇µ on the lattice (a > 0)

∇µ [φ(x)χ(x)] = a−1 [φ(x + aµ̂)χ(x + aµ̂)− φ(x)χ(x)]

= ∇µ [φ(x)]χ(x) + φ(x)∇µχ(x) + a∇µ [φ(x)]∇µχ(x)

We only recover the Leibnitz rule ∂µ(fg) = ∂µ(f )g + f∂µg when a→ 0
=⇒ “Discrete supersymmetry” breaks down on the lattice

(Dondi & Nicolai, “Lattice Supersymmetry”, 1977)
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Backup: Hypercubic basis for A∗4 lattice

It is very convenient to represent the A∗
4 lattice

as a hypercube with a backwards diagonal
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Backup: Code performance—weak and strong scaling

Left: Strong scaling for U(2) and U(3) 163 × 32 RHMC

Right: Weak scaling for O(N3
Ψ) pfaffian calculation (fixed local volume)

Both plots on log–log axes with power-law fits
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Backup: Code performance for 2, 3 and 4 colors

Red: Find RHMC costs scaling ∼N5 (recall 16N2 fermion components)

Blue: Pfaffian costs consistent with expected N6 scaling
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Backup: Thermalization

Thermalization becomes increasingly painful as N and L increase
Example: Evolution of smallest D†D eigenvalue |λ0|2

Shouldn’t be too hard to address this with better initial configuration
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Backup: The problem with flat directions
Gauge fields can move far away from Ua −→ I +Aa

if Nµ/(2λlat) becomes too small

Example for two-color (λlat, µ, κ) = (5, 0.2, 0.8) on 83× 24 volume

Left: Ward identity violations are stable at ∼10% level

Right: Polyakov loop wanders off to ∼109
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Backup: Lattice phase due to U(1) sector

1 Polyakov loop collapses =⇒ confining phase
(not present in continuum N = 4 SYM)

2 Plaquette determinant is variable in U(1) sector
Drops at same coupling λ as Polyakov loop

3 ρM is density of U(1) monopole world lines (DeGrand & Toussaint)
Non-zero when Polyakov loop and plaq. determinant collapse
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Backup: Suppressing the U(1) sector

∆S = κ|detP − 1|2 suppresses the strongly-coupled lattice phase

Produces 2κFµνFµν term in U(1) sector
=⇒ QED critical βc = 0.99 −→ critical κc ≈ 0.5
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Backup: Plaquette and determinant distributions

Price of Q-invariant
determinant deformation:

Distributions tend to
broaden out, at least for
parameters currently in use
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Backup: Restoration of Qa and Qab supersymmetries

Restoration of the other 15 Qa and Qab in the continuum limit
follows from restoration of R symmetry (motivation for A∗

4 lattice)

Modified Wilson loops test R symmetries at non-zero lattice spacing
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Backup: Perturbation theory for Coulomb coefficient

For range of λlat currently being studied, the perturbative series
for the U(3) Coulomb coefficient appears well convergent
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Backup: More tests of the U(2) static potential

Left: Projecting Wilson loops from U(2) −→ SU(2)
=⇒ factor of N2−1

N2 = 3/4

Right: Unitarizing links removes scalars =⇒ factor of 1/2

Both expected factors present, although (again) noisily
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Backup: More tests of the U(3) static potential

Left: Projecting Wilson loops from U(3) −→ SU(3)
=⇒ factor of N2−1

N2 = 8/9

Right: Unitarizing links removes scalars =⇒ factor of 1/2

Ratios look slightly higher than expected,
less noise in SU(3)-projected results
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Backup: Smearing for noise reduction

Smearing may reduce noise in static potential (etc.) measurements
—Stout smearing implemented and tested
—APE or HYP (without unitary projection) may work better for Konishi
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Backup: Pfaffian phase dependence on λlat, µ, κ

We observe little dependence on κ

Fluctuations in phase grow as λlat increases
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