Extremely supersymmetric lattice gauge theory

David Schaich (Syracuse University) arXiv:1405.0644 with Simon Catterall, Poul Damgaard, Tom DeGrand, Joel Giedt

Maximally ($\mathcal{N} = 4$) supersymmetric Yang–Mills theory on the lattice

Superconformal $\mathcal{N} = 4$ SYM is cornerstone of AdS/CFT duality, & admits a natural lattice formulation **Field content:** Gauge field A_{μ} , four Majorana fermions Ψ and six scalars Φ all in adjoint rep. **Lattice formulation:** Gauge & scalar fields in **five** complex links $\mathcal{U}_a \in \mathfrak{gl}(N, \mathbb{C})$ with field strength \mathcal{F}_{ab}

Fermion field components grouped into singlet η , vector ψ_a and anti-symmetric tensor χ_{ab}

$$S = \frac{N}{\lambda_{\text{lat}}} \sum_{\chi} \left[-\overline{\mathcal{F}}_{ab} \mathcal{F}_{ab} + \frac{1}{2} \left(\overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a} \right)^{2} - \chi_{ab} \mathcal{D}_{[a}^{(+)} \psi_{b]} - \eta \overline{\mathcal{D}}_{a}^{(-)} \psi_{a} - \frac{1}{4} \epsilon_{abcde} \chi_{de} \overline{\mathcal{D}}_{c}^{(-)} \chi_{ab} \right]$$
$$+ \mu^{2} \sum_{\chi, a} \left(\frac{1}{N} \text{Tr} \left[\overline{\mathcal{U}}_{a} \mathcal{U}_{a} \right] - 1 \right)^{2} + \kappa \sum_{\mathcal{P}} |\det \mathcal{P} - 1|^{2}$$
(\$\mathcal{P}\$ is plaquette)

—First line exactly preserves a single supersymmetry Q (other 15 broken) \rightarrow practical lattice susy $-\mu$ term regulates flat directions, stabilizes continuum limit, acts like bosonic mass $-\kappa$ term approximately reduces U(N) \rightarrow SU(N), suppressing U(1) confinement lattice phase

Complex pfaffian $P = |P|e^{i\alpha} \longrightarrow$ potential sign problem in numerical simulations

Our calculations are all "phase-quenched": Omit $e^{I\alpha}$ in RHMC, measure *P* on saved configs

With new parallel software (github.com/daschaich/susy) $4^3 \times 6$ measurement takes ~8 days, ~10GB memory

P is nearly real and positive \rightarrow no sign problem?

Fluctuations don't grow with lattice volume or N

<i>V</i> = 32	U(2)	U(3)	U(4)
$\langle \cos \alpha \rangle$	0.99978(4)	-0.99980(3)	0.99989(4)

Coulombic static potential V(r) = A - C/r

Agreement with perturbative $C = \lambda_{\text{lat}} / (4\pi\sqrt{5})$

Details of discretization on A_4^* lattice

5 links symmetrically span 4d Analog of 2d triangular lattice

 \implies continuum $\lambda = \lambda_{\text{lat}} / \sqrt{5}$

Non-orthogonal links

 A_{Δ}^* lattice has S_5 point group symmetry S_5 irreducible representations of lattice fields \longrightarrow continuum SO(4) euclidean Lorentz irreps.

$$1/2 - 4 \oplus 1 \longrightarrow 1/4$$

Supersymmetry breaking from μ and κ

-Exact $\mathcal{Q} \Longrightarrow$ Ward identity $\langle \mathcal{Q} \mathcal{O} \rangle = 0$ —Ward identity violations from non-zero μ , κ suggest O(10%) supersymmetry breaking

Towards the large-*N* **limit**

—Important for contact with continuum theory —Challenge: computational costs grow $\propto N^5$ —Benefit: supersymmetry breaking $\propto 1/N^2$

