Status and prospects for supersymmetry on the lattice

David Schaich (Syracuse)

USQCD All Hands Meeting, JLab, 19 April 2014

Proposal: Lattice N = 4 supersymmetric Yang–Mills with 2, 3 and 4 colors S. Catterall, P. H. Damgaard, T. DeGrand, J. Giedt, D. Schaich, A. Veernala

David Schaich (Syracuse)

Context: Why lattice supersymmetry

Supersymmetry is extremely interesting, especially non-perturbatively

 More generally, symmetries improve analytic control

 Insight into confinement, dynamical symmetry breaking, conformal field theories (conformal window, dilatons), etc.

Dualities: gauge–gauge (Seiberg) & gauge–gravity (AdS/CFT)
 — potential non-perturbative definition of string theory

• AdS/CFT-inspired modelling of quark–gluon plasma, finite-density phase diagram, condensed matter systems, etc.

Context: Why not lattice supersymmetry

There is a problem with supersymmetry on the lattice Recall: supersymmetry extends Poincaré symmetry by spinorial generators Q^i_{α} and $\overline{Q}^i_{\dot{\alpha}}$ with $i = 1, \dots, N$

The resulting algebra includes $\{Q, \overline{Q}\} \propto \sigma_{\mu} P^{\mu}$

 P^{μ} generates infinitesimal translations, which don't exist on the lattice

Consequence for lattice calculations

Quantum effects generate (typically many) susy-breaking operators

Fine-tuning their couplings to restore susy is generally not practical

Two special cases in four dimensions

Minimal ($\mathcal{N} = 1$) supersymmetric Yang–Mills

Theory of SU(N) gauge field and its fermionic superpartner gaugino, a massless Majorana fermion in the adjoint rep.

Only relevant supersymmetry-breaking operator is gaugino mass \implies chiral symmetry (Ginsparg–Wilson fermions) ensures susy

When there are scalar fields

we must preserve some susy sub-algebra on the lattice

Possible for only one (particularly interesting) 4-dim. system:

Maximal ($\mathcal{N} = 4$) supersymmetric Yang–Mills

Theory of SU(N) gauge field, four gauginos and six adjoint scalars

SciDAC-supported USQCD program pursues both these directions

David Schaich (Syracuse)

$\mathcal{N} = 1$ super Yang–Mills status and prospects

Current status

(computations on non-USQCD resources)

Domain wall fermions in CPS for SYM with SU(2) gauge group (SU(2) adjoint rep. in SU(3) fundamental rep. data structures)

-Revisiting gaugino condensation (Giedt et al., Endres 2009) -Starting to explore low-lying spectrum \rightarrow disconnected correlators

Next steps

Immediate: CPS \longrightarrow QHMC for general SU(*N*) with Möbius DWF

Later: Add N_F fundamental quark+squark fields \implies super QCD —Must fine-tune scalar sector of SQCD —Possible (but not easy) via reweighting

$\mathcal{N}=4$ supersymmetric Yang–Mills on the lattice

MILC-based software available through usqcd.org

۰ چ	• 🛆					Lattice Quantum Chromodynamics - Mozilla Firefox	•	п×
Elle	Edit	View Higtory	Bookmarks	3pols	Helb			
÷	-2	🛞 usqcd-so	ftware.github	io/More	Software	html 🔅 🕫 🚱 🖬 🖬 Google 🛛 🔍 😓 🚳 🕈 🔞	۵ ۱	
0	JSQCD	US Lattice Qu	antum Chro	+				- 22
						Authors: Tom DeGrand and David Schaich More information: project website		
				LAI	TICE	Note information: project website		
					-Mills	CE is parallel code for RHMC simulations of extended-supersymm theories in two and four dimensions, including related	etrie	;
			,	neası	iremei	nts. Historically based on the MILC code, this package supersede: code written by Simon Catterall and Anosh Joseph	s the	, L

$\mathcal{N}=4$ supersymmetric Yang–Mills on the lattice

MILC-based software available through usqcd.org

Why four-dimensional $\mathcal{N} = 4$ SYM is special

Four Majorana gauginos \longrightarrow 16 fermionic components \Longrightarrow Gauge&fermion&scalar fields can be discretized on equal footing

 \implies Lattice can exactly preserve one of 16 supersymmetries

The construction is straightforward, but too messy for this talk

Skip to the consequences:

- Need **five** links in four dimensions $\implies A_4^*$ lattice (analog of triangular lattice in two dimensions)
- Links are not unitarized ⇒ gauge group U(N) ≃ SU(N)⊗U(1), must suppress strong-coupling lattice phase in U(1) sector

Lattice action for $\mathcal{N} = 4$ numerical computations

Schematic lattice action: $(\lambda = g^2 N, a = 1, \cdots, 5)$

$$S = \frac{N}{\lambda} \left[F_{ab}^{2} + (\mathcal{D}_{a}\mathcal{U}_{a})^{2} + \chi_{ab}\mathcal{D}_{a}\psi_{b} + \eta\mathcal{D}_{a}\psi_{a} + \epsilon_{abcde}\chi_{de}\mathcal{D}_{c}\chi_{ab} \right] \\ + \mu^{2} \left(\mathcal{U}_{a}^{2} - 1 \right)^{2} + \kappa |\det \mathcal{P} - 1|^{2}$$

-First line preserves single supersymmetry Q, other 15 broken U_a are links, η , ψ_a and χ_{ab} are fermion components - μ term regulates flat directions, stabilizes continuum limit - κ term suppresses lattice phase from U(1) sector (P is plaquette) -All simulations are pfaffian-phase-guenched (more later)

Both μ and κ deformations break Q supersymmetry but are required to carry out numerical computations

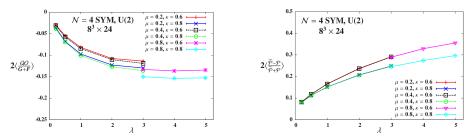
Also need to lift fermion zero modes \longrightarrow anti-periodic temporal BCs

Preservation / restoration of supersymmetries

Need observables to monitor supersymmetry

 $\begin{array}{l} \mbox{Exactly preserved } \mathcal{Q} \mbox{ supersymmetry } \longrightarrow \mbox{Ward identity } \langle \mathcal{Q}\mathcal{O} \rangle = 0 \\ \implies \mbox{Ward identity violations measure } \mathcal{Q} \mbox{ breaking (left)} \end{array}$

Restoration of other 15 supersymmetries follows from restoration of discrete "R" symmetries (**right**)



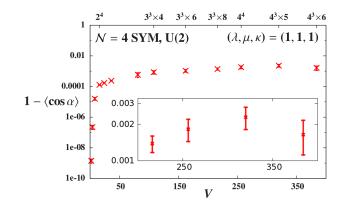
Both plots show O(10%) supersymmetry breaking,

little dependence on μ or κ

Majorana fermions — complex pfaffian

No indication of a sign problem

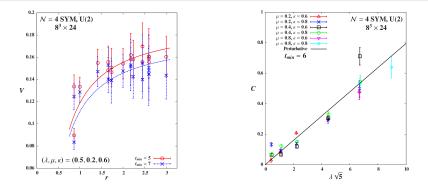
- Pfaffian $P = |P|e^{i\alpha}$ is nearly real and positive, $1 \langle \cos(\alpha) \rangle \ll 1$
- Fluctuations in pfaffian phase don't grow with the lattice volume
- Insensitive to number of colors N = 2, 3, 4



Static potential, comparison with continuum theory

Coulombic at both weak and strong coupling, as expected

Coulomb coefficient agrees with leading-order perturbation theory



Results fairly noisy \longrightarrow working on smearing for A_4^* lattice

David Schaich (Syracuse)

Lattice Supersymmetry

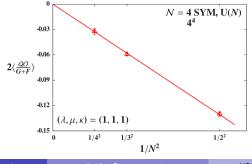
USQCD, 19 April 2014 11 / 13

2014 proposal: $\mathcal{N} = 4$ SYM with 2, 3 and 4 colors

So far we have focused on the simplest case U(2), but continuum theory is anchored in the large-*N* limit

Code allows U(N) with arbitrary N; we have tested N = 2, 3 and 4

First results indicate susy breaking suppressed $\propto 1/N^2$, computational costs scale $\propto N^5$ (empirically)



Recapitulation

 Strongly-coupled supersymmetric field theories very interesting to study through lattice calculations

• Barriers to 4d lattice supersymmetry have been overcome for both N = 1 and N = 4 supersymmetric Yang–Mills (Not discussed: lower-dim. systems also worth further study)

• SciDAC-supported USQCD program studying N = 1 and N = 4 SYM, eventually N = 1 SQCD 2014 proposal: N = 4 SYM with 2, 3 and 4 colors

David Schaich (Syracuse)

SPC Q1: Where is the continuum limit?

Short answer: We must look at large distances, extrapolating $1/L \rightarrow 0$

More details

- λ can be fixed: $\mathcal{N} = 4$ SYM has line of conformal fixed points
- Want µ → 0 as 1/L → 0 to restore supersymmetry Due to form of flat directions, fixed µ²V should maintain stability
- κ is coupling of $F_{\mu\nu}F^{\mu\nu}$ term in U(1) sector, which decouples
- So far we observe little dependence on μ or κ

We have developed observables to monitor $\mathcal{N}=4$ susy restoration in case we have to tune any couplings

Q2: What are plans for smearing?

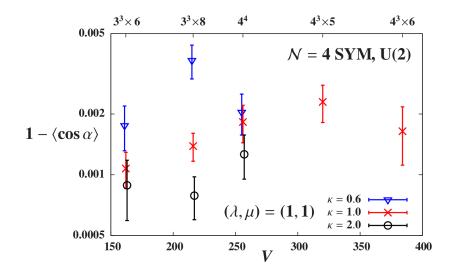
Short answer: Just improving measurements, not smearing the action

More details

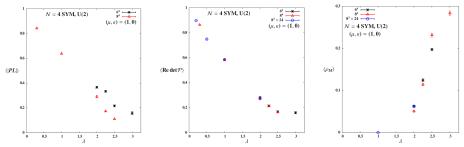
- Non-trivial to smear on A^{*}₄ lattice with five non-unitarized links
- Initial HYP-based tests indicate more careful work needed
- Currently studying stout- and APE-like approaches
- Smearing the $\mathcal{N} = 4$ SYM lattice action appears more challenging Any smeared action **must** preserve susy sub-algebra

Q3: How does the pfaffian phase depend on λ , μ , κ ?

Short answer: Little dependence on κ , fluctuations grow with λ



Backup: Lattice phase due to U(1) sector



Polyakov loop collapses \implies confining phase (**not** present in continuum $\mathcal{N} = 4$ SYM)

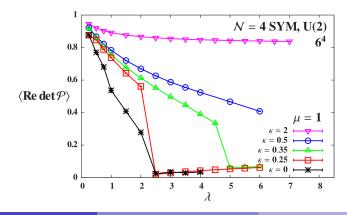
- Plaquette determinant is variable in U(1) sector Drops at same coupling λ as Polyakov loop
- ρ_M is density of U(1) monopole world lines (DeGrand & Toussaint) Non-zero when Polyakov loop and plaq. determinant collapse

David Schaich (Syracuse)

Backup: Suppressing the U(1) sector

 $\Delta S = \kappa |\det \mathcal{P} - 1|^2$ suppresses the strongly-coupled lattice phase

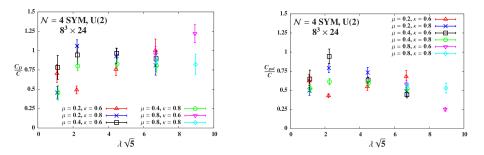
Produces $2\kappa F_{\mu\nu}F^{\mu\nu}$ term in U(1) sector \implies QED critical $\beta_c = 0.99 \longrightarrow$ critical $\kappa_c \approx 0.5$



Backup: More tests of the static potential

Left: Projecting Wilson loops from U(N)
$$\longrightarrow$$
 SU(N)
 \implies factor of $\frac{N^2-1}{N^2} = 3/4$

Right: Unitarizing links removes scalars \implies factor of 1/2



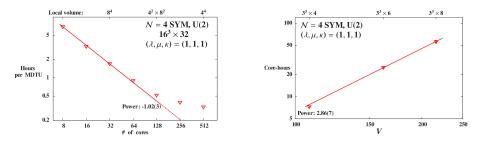
Both expected factors present, although (again) noisily

David Schaich (Syracuse)

Backup: $\mathcal{N} = 4$ SYM code performance at Fermilab

Left: Strong scaling for U(2) $16^3 \times 32$ RHMC gauge generation

Right: Weak scaling for $\mathcal{O}(N_{\Psi}^3)$ pfaffian calculation (fixed local volume)



Both plots on log-log axes with power-law fits