Technicolor at the LHC

David Schaich

BU Physics and CCS

30 April 2009

- Electromagnetism and the weak force unified in electroweak gauge theory.
- Exact electroweak symmetry forbids fermion and gauge boson masses, so it must be (spontaneously) broken.
- In the standard model (SM), this is done by adding a scalar Higgs field by hand, with a
 potential engineered to produce spontaneous symmetry breaking.

$$\Phi = \left(\begin{array}{c} \phi_1 + i\phi_2 \\ v + h + i\phi_3 \end{array} \right) \qquad V\left(\Phi\right) \sim \lambda \left(\Phi^{\dagger} \Phi - v^2\right)^2$$

- The SM Higgs mechanism provides all the necessary masses, but has some issues:
 - Sensitive to highest energy scale at which SM is applicable.
 "Unnatural" fine-tuning required to maintain hierarchy.
 - Gives no dynamical explanation of electroweak symmetry breaking. Explicitly added by hand, all fermion masses remain free parameters
 - ▶ Theory is "trivial": new physics has to appear by scale Λ or else coupling λ vanishes

$$\lambda(\mu) \simeq \frac{\lambda(\Lambda)}{1 + (24/16\pi^2)\lambda(\Lambda)\log(\Lambda/\mu)} \Longrightarrow \Lambda \simeq m_h \exp\left(\frac{4\pi^2 v^2}{3m_h^2}\right)$$
 $m_h = 115 \text{ GeV} \Longrightarrow \Lambda \sim 10^{28} \text{ GeV}$
 $m_h = 700 \text{ GeV} \Longrightarrow \Lambda \sim 1000 \text{ GeV}$

- Electromagnetism and the weak force unified in electroweak gauge theory.
- Exact electroweak symmetry forbids fermion and gauge boson masses, so it must be (spontaneously) broken.
- In the standard model (SM), this is done by adding a scalar Higgs field by hand, with a
 potential engineered to produce spontaneous symmetry breaking.

$$\Phi = \left(\begin{array}{c} \phi_1 + i\phi_2 \\ v + h + i\phi_3 \end{array} \right) \qquad \qquad V\left(\Phi\right) \sim \lambda \left(\Phi^\dagger \Phi - v^2\right)^2$$

- The SM Higgs mechanism provides all the necessary masses, but has some issues:
 - Sensitive to highest energy scale at which SM is applicable. "Unnatural" fine-tuning required to maintain hierarchy.
 - Gives no dynamical explanation of electroweak symmetry breaking.
 Explicitly added by hand, all fermion masses remain free parameters
 - ▶ Theory is "trivial": new physics has to appear by scale Λ or else coupling λ vanishes

$$\lambda(\mu) \simeq \frac{\lambda(\Lambda)}{1 + (24/16\pi^2)\lambda(\Lambda)\log(\Lambda/\mu)} \Longrightarrow \Lambda \simeq m_h \exp\left(\frac{4\pi^2 v^2}{3m_h^2}\right)$$
 $m_h = 115 \text{ GeV} \Longrightarrow \Lambda \sim 10^{28} \text{ GeV}$
 $m_h = 700 \text{ GeV} \Longrightarrow \Lambda \sim 1000 \text{ GeV}$

- Electromagnetism and the weak force unified in electroweak gauge theory.
- Exact electroweak symmetry forbids fermion and gauge boson masses, so it must be (spontaneously) broken.
- In the standard model (SM), this is done by adding a scalar Higgs field by hand, with a
 potential engineered to produce spontaneous symmetry breaking.

$$\Phi = \begin{pmatrix} \phi_1 + i\phi_2 \\ v + h + i\phi_3 \end{pmatrix} \qquad V(\Phi) \sim \lambda \left(\Phi^{\dagger} \Phi - v^2\right)^2$$

- The SM Higgs mechanism provides all the necessary masses, but has some issues:
 - Sensitive to highest energy scale at which SM is applicable. "Unnatural" fine-tuning required to maintain hierarchy.
 - Gives no dynamical explanation of electroweak symmetry breaking.
 Explicitly added by hand, all fermion masses remain free parameters.
 - ▶ Theory is "trivial": new physics has to appear by scale Λ or else coupling λ vanishes

$$\lambda(\mu) \simeq \frac{\lambda(\Lambda)}{1 + (24/16\pi^2)\lambda(\Lambda)\log(\Lambda/\mu)} \Longrightarrow \Lambda \simeq m_h \exp\left(\frac{4\pi^2v^2}{3m_h^2}\right)$$
 $m_h = 115~{\rm GeV} \Longrightarrow \Lambda \sim 10^{28}~{\rm GeV}$
 $m_h = 700~{\rm GeV} \Longrightarrow \Lambda \sim 1000~{\rm GeV}$

- Electromagnetism and the weak force unified in electroweak gauge theory.
- Exact electroweak symmetry forbids fermion and gauge boson masses, so it must be (spontaneously) broken.
- In the standard model (SM), this is done by adding a scalar Higgs field by hand, with a
 potential engineered to produce spontaneous symmetry breaking.

$$\Phi = \left(\begin{array}{c} \phi_1 + i\phi_2 \\ v + h + i\phi_3 \end{array} \right) \qquad V\left(\Phi\right) \sim \lambda \left(\Phi^{\dagger}\Phi - v^2\right)^2$$

- The SM Higgs mechanism provides all the necessary masses, but has some issues:
 - Sensitive to highest energy scale at which SM is applicable. "Unnatural" fine-tuning required to maintain hierarchy.
 - Gives no dynamical explanation of electroweak symmetry breaking. Explicitly added by hand, all fermion masses remain free parameters.
 - ▶ Theory is "trivial": new physics has to appear by scale Λ or else coupling λ vanishes:

$$\lambda(\mu) \simeq \frac{\lambda(\Lambda)}{1 + (24/16\pi^2)\lambda(\Lambda)\log(\Lambda/\mu)} \Longrightarrow \Lambda \simeq m_h \exp\left(\frac{4\pi^2v^2}{3m_h^2}\right)$$
 $m_h = 115~{\rm GeV} \Longrightarrow \Lambda \sim 10^{28}~{\rm GeV}$
 $m_h = 700~{\rm GeV} \Longrightarrow \Lambda \sim 1000~{\rm GeV}.$

Dynamical electroweak symmetry breaking

- How do other physical examples of spontaneous symmetry breaking deal with these issues?
- Superconductivity.

(Approximate) chiral symmetry breaking in quantum chromo-dynamics (QCD).

Dynamics naturally explains scale of symmetry breaking.

Speculate

- Electroweak symmetry breaking
 - Originally modelled (by Salam and Weinberg) using scalar Higgs field
 - ▶ Dynamically explained (by Susskind and Weinberg) through the formation of some condensate?

Dynamical electroweak symmetry breaking

- How do other physical examples of spontaneous symmetry breaking deal with these issues?
- Superconductivity.
 - Originally modelled (by Ginzburg and Landau) using a complex scalar field.
 - Dynamically explained (by Bardeen, Cooper and Schrieffer) through the formation of electron condensate (Cooper pairs) (ee).
- (Approximate) chiral symmetry breaking in quantum chromo-dynamics (QCD).
 - \triangleright Originally modelled (by Gell-Mann and Lévy) using scalar fields (σ model).
 - ▶ Dynamically explained (by Nambu and Jona-Lasinio) through formation of guark condensate $\langle \overline{q}q \rangle$.
 - (Fun fact: QCD condensate $\langle \overline{q}q \rangle$ breaks electroweak symmetry, giving $m_W = m_Z \cos \theta_W \simeq 34$ MeV.)
- Dynamics naturally explains scale of symmetry breaking.

Speculate:

- Sector in the sector is a sector in the s
 - Originally modelled (by Salam and Weinberg) using scalar Higgs field
 - Dynamically explained (by Susskind and Weinberg) through the formation of some condensate?

Dynamical electroweak symmetry breaking

- How do other physical examples of spontaneous symmetry breaking deal with these issues?
- Superconductivity.
 - Originally modelled (by Ginzburg and Landau) using a complex scalar field.
 - Dynamically explained (by Bardeen, Cooper and Schrieffer) through the formation of electron condensate (Cooper pairs) (ee).
- (Approximate) chiral symmetry breaking in quantum chromo-dynamics (QCD).
 - Originally modelled (by Gell-Mann and Lévy) using scalar fields (σ model).
 - ▶ Dynamically explained (by Nambu and Jona-Lasinio) through formation of guark condensate $\langle \overline{q}q \rangle$.
 - (Fun fact: QCD condensate $\langle \overline{q}q \rangle$ breaks electroweak symmetry, giving $m_W = m_Z \cos \theta_W \simeq 34$ MeV.)
- Dynamics naturally explains scale of symmetry breaking.

Speculate:

- Section Electroweak symmetry breaking.
 - Originally modelled (by Salam and Weinberg) using scalar Higgs field.
 - Dynamically explained (by Susskind and Weinberg) through the formation of some condensate?

Technicolor

- Such dynamical breaking of electroweak symmetry is technicolor (TC).^{1,2,3,4}
- Originally modelled on chiral symmetry breaking in QCD.^{5,6,7} Introduce new, unbroken, asymptotically free, nonabelian gauge interaction that becomes strong around the weak scale.
- Electroweak symmetry is broken by "technifermion" condensate $\langle \overline{T}T \rangle \equiv 4\pi F_T^3 \neq 0$, giving $m_W = m_Z \cos\theta_W \propto F_T$.
- Since TC is unbroken, only technicolor-singlet states (SM particles and "technihadrons") are observable. Three lightest technipions identified as W_L[±] and Z_L.
- Can try to use QCD as an "analog computer" for technicolor.

¹Martin, 0812.1841.

²Shrock, hep-ph/0703050.

³Lane, hep-ph/0202255.

⁴Hill and Simmons, Phys. Rept. **381**:235 (2003) hep-ph/0203079.

⁵Weinberg, PRD 13:974 (1976).

⁶Weinberg, PRD 19:1277 (1979).

⁷Susskind, PRD 20:2619 (1979).

Technicolor

- Such dynamical breaking of electroweak symmetry is technicolor (TC).^{1,2,3,4}
- Originally modelled on chiral symmetry breaking in QCD.^{5,6,7} Introduce new, unbroken, asymptotically free, nonabelian gauge interaction that becomes strong around the weak scale.
- Electroweak symmetry is broken by "technifermion" condensate $\langle \overline{T}T \rangle \equiv 4\pi F_T^3 \neq 0$, giving $m_W = m_Z \cos\theta_W \propto F_T$.
- Since TC is unbroken, only technicolor-singlet states (SM particles and "technihadrons") are observable. Three lightest technipions identified as W_L[±] and Z_L.
- Can try to use QCD as an "analog computer" for technicolor.

¹Martin, 0812.1841.

²Shrock, hep-ph/0703050.

³Lane, hep-ph/0202255.

⁴Hill and Simmons, Phys. Rept. **381**:235 (2003) hep-ph/0203079.

⁵Weinberg, PRD 13:974 (1976).

⁶Weinberg, PRD 19:1277 (1979).

⁷Susskind, PRD 20:2619 (1979).

Technicolor

- Such dynamical breaking of electroweak symmetry is technicolor (TC).^{1,2,3,4}
- Originally modelled on chiral symmetry breaking in QCD.^{5,6,7} Introduce new, unbroken, asymptotically free, nonabelian gauge interaction that becomes strong around the weak scale.
- Electroweak symmetry is broken by "technifermion" condensate $\langle \overline{T}T \rangle \equiv 4\pi F_T^3 \neq 0$, giving $m_W = m_Z \cos\theta_W \propto F_T$.
- Since TC is unbroken, only technicolor-singlet states (SM particles and "technihadrons") are observable. Three lightest technipions identified as W[±]_L and Z_L.
- Can try to use QCD as an "analog computer" for technicolor.

¹Martin, 0812.1841.

²Shrock, hep-ph/0703050.

³Lane, hep-ph/0202255.

⁴Hill and Simmons, Phys. Rept. **381**:235 (2003) hep-ph/0203079.

⁵Weinberg, PRD 13:974 (1976).

⁶Weinberg, PRD 19:1277 (1979).

⁷Susskind, PRD 20:2619 (1979).

Extending technicolor

- Also need fermion masses an ambitious goal!
- "Extend" technicolor with even more strong interactions, at an even higher scale, involving both SM- and techni-fermions.⁸ Produces fermion masses...

... and flavor-changing neutral currents

- Strong experimental constraints naïvely limit fermion masses $m_f \lesssim 1~{
 m MeV}$
- Also tension between experiment and "scaled-up QCD" calculations for precision electroweak observables such as the "S" and "T" parameters.⁹

⁸Eichten and Lane, PLB 90:125 (1980).

Peskin and Takeuchi, PRL 65:964 (1990); PRD 46:381 (1992).

Extending technicolor

- Also need fermion masses an ambitious goal!
- "Extend" technicolor with even more strong interactions, at an even higher scale, involving both SM- and techni-fermions. Produces fermion masses...

... and flavor-changing neutral currents.

- Strong experimental constraints naïvely limit fermion masses $m_f \lesssim 1$ MeV.
- Also tension between experiment and "scaled-up QCD" calculations for precision electroweak observables such as the "S" and "T" parameters.⁹

⁸Eichten and Lane, PLB 90:125 (1980).

Peskin and Takeuchi, PRL 65:964 (1990); PRD 46:381 (1992)

Extending technicolor

- Also need fermion masses an ambitious goal!
- "Extend" technicolor with even more strong interactions, at an even higher scale, involving both SM- and techni-fermions. Produces fermion masses...

... and flavor-changing neutral currents.

- Strong experimental constraints naïvely limit fermion masses $m_f \lesssim 1$ MeV.
- Also tension between experiment and "scaled-up QCD" calculations for precision electroweak observables such as the "S" and "T" parameters.⁹

⁸Eichten and Lane, PLB 90:125 (1980).

⁹Peskin and Takeuchi, PRL 65:964 (1990); PRD 46:381 (1992).

Walking technicolor

- "Walking" behavior can solve some of these problems. 10, 11, 12, 13
- In walking technicolor (WTC) the TC coupling (interaction strength) changes slowly between electroweak scale and ETC scale – instead of "running", it "walks".

- At a minimum, frees theory from problems of scaled-up QCD (which isn't a walking theory)
- More concretely, allows larger quark and technipion masses, lower TC scale.¹⁴
- Current work applies extra-dimensional dualities or lattice gauge theory to study walking.

¹⁰ Holdom, PRD 24:1441 (1981).

¹¹ Yamawaki, Bando and Matumoto, PRL 56:1335 (1986).

¹²Appelquist, Karabali and Wijewardhana, PRL 57:957 (1986).

¹³Akiba and Yanagida, PLB 169:432 (1986).

[&]quot;The top quark has its own special difficulties requiring something more – typically "topcolor-assisting"

Walking technicolor

- "Walking" behavior can solve some of these problems. 10, 11, 12, 13
- In walking technicolor (WTC) the TC coupling (interaction strength) changes slowly between electroweak scale and ETC scale – instead of "running", it "walks".

- At a minimum, frees theory from problems of scaled-up QCD (which isn't a walking theory).
- More concretely, allows larger quark and technipion masses, lower TC scale.¹⁴
- Current work applies extra-dimensional dualities or lattice gauge theory to study walking.

¹⁰ Holdom, PRD 24:1441 (1981).

¹¹ Yamawaki, Bando and Matumoto, PRL 56:1335 (1986).

¹²Appelquist, Karabali and Wijewardhana, PRL 57:957 (1986).

¹³Akiba and Yanagida, PLB 169:432 (1986).

¹⁴The top quark has its own special difficulties requiring something more – typically "topcolor-assisting".

Searching for technicolor in collider experiments

- Since technicolor involves new strong dynamics, will not see individual technifermions.
- Look for bound states, analogous to the π , ρ , ω of QCD.
- Technivector resonances (ρ_T, a_T, ω_T) expected to be relatively narrow and easy to see.
- Main discovery channel at the Tevatron is $\rho_T \to W^{\pm} \pi_T \to \ell^{\pm} \nu_{\ell} b j$.

Current limits

ullet Results from DØ and CDF: $M_{\pi_T} \gtrsim$ 125 GeV, $M_{
ho_T} \gtrsim$ 215 GeV at 95% CL. 15, 16, 17

• Run II expected to probe up to $M_{\rho_T} \simeq 400$ GeV, ¹⁸ should be able to discover or rule out $M_{\rho_T} \lesssim 250$ GeV, $M_{\pi_T} \lesssim 150$ GeV with data collected as of mid-2008. ¹⁹

¹⁵DØ, PRL 98:221801 (2007) hep-ex/0612013.

¹⁶CDF, Public Note 9302 (2008).

¹⁷Nagai, Masubuchi, Kim and Yao, 0808.0226 (2008).

¹⁸Lane, PRD 60:075007 (1999) hep-ph/9903369.

¹⁹Eichten and Lane, PLB 669:235 (2008) 0706.2339.

LHC discovery channels

- At the LHC the $\rho_T \to W^\pm \pi_T$ channel will be swamped by $t\bar{t}$ and W+ heavy flavor backgrounds.
- Best discovery channels are diboson decays of vector resonances, with leptons in the final state: clean signals and relatively low backgrounds.

• Main backgrounds to $\rho_T \to WZ \to 3\ell + \nu$ are

$$t \overline{t}
ightarrow 2 \ell 2
u b \overline{b}$$
 $WZ
ightarrow 3 \ell +
u$ $ZZ
ightarrow 4 \ell$ $Zb \overline{b}
ightarrow 2 \ell b$

- Backgrounds have larger cross sections, but can be removed by cutting on $|M(\ell^+\ell^-) m_Z|$, $|\eta(Z) \eta(W)|$, and $p_T(W)$, $p_T(Z)$, and $\not\!\!E_T$.
- Should be able to see signal up to 600 GeV with $\mathcal{O}(1\text{-}10)$ fb $^{-1}.^{20}$

²⁰ Azuelos, Black, Bose, Ferland, Gershtein, Lane and Martin, in Brooijmans et al., 0802.3715.

LHC discovery channels

- At the LHC the $\rho_T \to W^\pm \pi_T$ channel will be swamped by $t\bar t$ and W+ heavy flavor backgrounds.
- Best discovery channels are diboson decays of vector resonances, with leptons in the final state: clean signals and relatively low backgrounds.

• Main backgrounds to $\rho_T \to WZ \to 3\ell + \nu$ are

$$t ar{t}
ightarrow 2 \ell 2
u b ar{b} \hspace{1cm} WZ
ightarrow 3 \ell +
u \hspace{1cm} ZZ
ightarrow 4 \ell \hspace{1cm} Zb ar{b}
ightarrow 2 \ell b ar{b}$$

- Backgrounds have larger cross sections, but can be removed by cutting on $|M(\ell^+\ell^-) m_Z|$, $|\eta(Z) \eta(W)|$, and $p_T(W)$, $p_T(Z)$, and $\not\!\!E_T$.
- Should be able to see signal up to 600 GeV with $\mathcal{O}(1\text{-}10)$ fb $^{-1}.^{20}$

²⁰ Azuelos, Black, Bose, Ferland, Gershtein, Lane and Martin, in Brooijmans et al., 0802.3715.

• Should we see some signal, how do we decide it's actually technicolor?

- Distinctive angular distributions of W and Z show that they come from decay of spin-one resonance. Would need O(10-100) fb⁻¹ to check.
- The patterns of masses and widths of resonances can also provide (more model-dependent) evidence.
- Direct observation of technipions (besides W_L^{\pm} and Z_L) in addition to vector resonances could be especially conclusive (if it doesn't trick people into thinking they've found a Higgs...)
- Most promising technipion channel is

$$ho_T^\pm, a_T^\pm o Z^0 \pi_T^\pm o \ell^+ \ell^-$$
bj.

• Backgrounds ($t\bar{t}$ and Z+jets) not as bad as for $W^{\pm}\pi_{T}$ channel since no $\not\!\!E_{T}$ helps kill $t\bar{t}$ background, but still need $\mathcal{O}(10\text{-}100)$ fb⁻¹.

- Should we see some signal, how do we decide it's actually technicolor?
- Distinctive angular distributions of W and Z show that they come from decay of spin-one resonance. Would need O(10-100) fb⁻¹ to check.
- The patterns of masses and widths of resonances can also provide (more model-dependent) evidence.
- Direct observation of technipions (besides W_{\perp}^{\pm} and Z_{L}) in addition to vector resonances could be especially conclusive (if it doesn't trick people into thinking they've found a Higgs...)
- Most promising technipion channel is

$$ho_T^\pm, a_T^\pm o Z^0 \pi_T^\pm o \ell^+ \ell^-$$
 bj.

• Backgrounds ($t\bar{t}$ and Z+jets) not as bad as for $W^{\pm}\pi_{T}$ channel since no $\not\!\!E_{T}$ helps kill $t\bar{t}$ background, but still need $\mathcal{O}(10\text{-}100)$ fb⁻¹.

- Should we see some signal, how do we decide it's actually technicolor?
- Distinctive angular distributions of W and Z show that they come from decay of spin-one resonance. Would need $\mathcal{O}(10\text{-}100)$ fb⁻¹ to check.
- The patterns of masses and widths of resonances can also provide (more model-dependent) evidence.
- Direct observation of technipions (besides W_L[±] and Z_L) in addition to vector resonances could be especially conclusive (if it doesn't trick people into thinking they've found a Higgs...)
- Most promising technipion channel is

$$ho_T^\pm, a_T^\pm o Z^0 \pi_T^\pm o \ell^+ \ell^-$$
 bj.

• Backgrounds ($t\bar{t}$ and Z+jets) not as bad as for $W^{\pm}\pi_{T}$ channel since no $\not\!\!E_{T}$ helps kill $t\bar{t}$ background, but still need $\mathcal{O}(10\text{-}100)$ fb⁻¹.

- Should we see some signal, how do we decide it's actually technicolor?
- Distinctive angular distributions of W and Z show that they come from decay of spin-one resonance. Would need $\mathcal{O}(10\text{-}100)$ fb⁻¹ to check.
- The patterns of masses and widths of resonances can also provide (more model-dependent) evidence.
- Direct observation of technipions (besides W_L[±] and Z_L) in addition to vector resonances could be especially conclusive (if it doesn't trick people into thinking they've found a Higgs...)
- Most promising technipion channel is

$$ho_T^\pm, a_T^\pm
ightarrow Z^0 \pi_T^\pm
ightarrow \ell^+ \ell^- \emph{bj}.$$

Backgrounds (tt̄ and Z+jets) not as bad as for W[±]π_T channel since no ∉_T helps kill tt̄ background, but still need O(10-100) fb⁻¹.

Take-away messages

- Technicolor is a long-standing, viable, ambitious and attractive concept, for which no fully realistic model has yet been developed.
- Technicolor involves strong interactions, which are tough to work with.
- Technicolor will be stringently tested at the LHC.
- Much remains to be done in collider studies of technicolor.
 - Only a few specific models have been considered, typically at only a few benchmark points
 - Some processes and signals have yet to be studied
 - ▶ Many collider analyses still need to include detector effects, pileup, fakes, systematics

Take-away messages

- Technicolor is a long-standing, viable, ambitious and attractive concept, for which no fully realistic model has yet been developed.
- Technicolor involves strong interactions, which are tough to work with.
- Technicolor will be stringently tested at the LHC.
- Much remains to be done in collider studies of technicolor.
 - ▶ Only a few specific models have been considered, typically at only a few benchmark points.
 - Some processes and signals have yet to be studied.
 - Many collider analyses still need to include detector effects, pileup, fakes, systematics.