Maximally supersymmetric Yang–Mills on the lattice

David Schaich (Syracuse)

Origin of Mass and Strong Coupling Gauge Theories Kobayashi–Maskawa Institute, Nagoya University, 5 March 2015

arXiv:1405.0644, arXiv:1410.6971, arXiv:1411.0166 & more to come with Simon Catterall, Poul Damgaard, Tom DeGrand and Joel Giedt

Context: Why lattice supersymmetry

At strong coupling...

- -Supersymmetric gauge theories are particularly interesting: Dualities, holography, confinement, conformality, ...
- Nonperturbative lattice discretization is particularly useful Numerical analysis provides complementary approach to SCGT

Proven success for QCD; many potential susy applications:

- Compute Wilson loops, spectrum, scaling dimensions, etc., complementing perturbation theory, holography, bootstrap, ...
- Further direct checks of conjectured dualities
- Predict low-energy constants from dynamical susy breaking
- Validate or refine AdS/CFT-based modelling (e.g., QCD phase diagram, condensed matter systems)

David Schaich (Syracuse)

Context: Why not lattice supersymmetry

There is a problem with supersymmetry in discrete space-time Recall: supersymmetry extends Poincaré symmetry by spinorial generators Q^{I}_{α} and $\overline{Q}^{I}_{\dot{\alpha}}$ with $I = 1, \cdots, N$

The resulting algebra includes $\left\{ {{\it Q}_{lpha},\overline{\it Q}_{\dot lpha}}
ight\} = 2\sigma^{\mu}_{lpha \dot lpha} {\it P}_{\mu}$

 P_{μ} generates infinitesimal translations, which don't exist on the lattice \implies supersymmetry explicitly broken at classical level

Consequence for lattice calculations

Quantum effects generate (typically many) susy-violating operators

Fine-tuning their couplings to restore susy is generally not practical

Exact susy on the lattice: $\mathcal{N} = 4$ SYM

In order to forbid generation of susy-violating operators (some subset of) the susy algebra must be preserved

In four dimensions $\mathcal{N}=4$ supersymmetric Yang–Mills (SYM) is the only known system with a supersymmetric lattice formulation

- $\mathcal{N}=4$ SYM is a particularly interesting theory
 - SU(*N*) gauge theory with four fermions Ψ^{I} and six scalars Φ^{IJ} , all massless and in adjoint rep.
 - Action consists of kinetic, Yukawa and four-scalar terms
 - Supersymmetric: 16 supercharges Q^{I}_{α} and $\overline{Q}^{I}_{\dot{\alpha}}$ with $I = 1, \cdots, 4$ Fields and Q's transform under global SU(4) \simeq SO(6) R symmetry
 - Conformal: β function is zero for all 't Hooft couplings λ

Exact susy on the lattice: topological twisting

What is special about $\mathcal{N} = 4$ SYM

The 16 fermionic supercharges Q_{α}^{I} and $\overline{Q}_{\dot{\alpha}}^{I}$ fill a Kähler–Dirac multiplet:

$$\begin{pmatrix} Q_{\alpha}^{1} & Q_{\alpha}^{2} & Q_{\alpha}^{3} & Q_{\alpha}^{4} \\ \overline{Q}_{\dot{\alpha}}^{1} & \overline{Q}_{\dot{\alpha}}^{2} & \overline{Q}_{\dot{\alpha}}^{3} & \overline{Q}_{\dot{\alpha}}^{4} \end{pmatrix} = \mathcal{Q} + \gamma_{\mu}\mathcal{Q}_{\mu} + \gamma_{\mu}\gamma_{\nu}\mathcal{Q}_{\mu\nu} + \gamma_{\mu}\gamma_{5}\mathcal{Q}_{\mu\nu\rho} + \gamma_{5}\mathcal{Q}_{\mu\nu\rho\sigma} \\ \longrightarrow \mathcal{Q} + \gamma_{a}\mathcal{Q}_{a} + \gamma_{a}\gamma_{b}\mathcal{Q}_{ab} \\ \text{with } a, b = 1, \cdots, 5 \end{cases}$$

This is a decomposition in representations of a "twisted rotation group"

$$\mathrm{SO(4)}_{tw} \equiv \mathrm{diag} \left[\mathrm{SO(4)}_{\mathrm{euc}} \otimes \mathrm{SO(4)}_R
ight] \qquad \qquad \mathrm{SO(4)}_R \subset \mathrm{SO(6)}_R$$

In this notation there is a susy subalgebra $\{Q, Q\} = 2Q^2 = 0$ This can be exactly preserved on the lattice

David Schaich (Syracuse)

Twisted $\mathcal{N} = 4$ SYM

$$\mathrm{SO(4)}_{tw} \equiv \mathrm{diag} \Big[\mathrm{SO(4)}_{\mathrm{euc}} \otimes \mathrm{SO(4)}_R \Big]$$

• Q, Q_{μ} , $Q_{\mu\nu}$, ... transform with **integer spin** – no longer spinors!

- Fermion fields decompose in the same way, $\Psi^{I} \longrightarrow \{\eta, \psi_{a}, \chi_{ab}\}$
- Scalar fields transform as SO(4)_{tw} vector B_μ plus two scalars φ, φ
 Combine with A_μ in complexified five-component gauge field

$$\mathcal{A}_a = \mathcal{A}_a + i\mathcal{B}_a = (\mathcal{A}_\mu, \phi) + i(\mathcal{B}_\mu, \overline{\phi})$$
 and similarly for $\overline{\mathcal{A}}_a$

Complexified gauge field \implies U(N) = SU(N) \otimes U(1) gauge invariance

Irrelevant in the continuum, but will affect lattice calculations

Twisted $\mathcal{N} = 4$ SYM

$$\mathrm{SO(4)}_{tw} \equiv \mathrm{diag} \Big[\mathrm{SO(4)}_{\mathrm{euc}} \otimes \mathrm{SO(4)}_R \Big]$$

• Q, Q_{μ} , $Q_{\mu\nu}$, ... transform with **integer spin** – no longer spinors!

- Fermion fields decompose in the same way, $\Psi^{I} \longrightarrow \{\eta, \psi_{a}, \chi_{ab}\}$
- Scalar fields transform as SO(4)_{tw} vector B_μ plus two scalars φ, φ
 Combine with A_μ in complexified five-component gauge field

$$\mathcal{A}_a = \mathcal{A}_a + i\mathcal{B}_a = (\mathcal{A}_\mu, \phi) + i(\mathcal{B}_\mu, \overline{\phi})$$
 and similarly for $\overline{\mathcal{A}}_a$

In flat space twisting is just a change of variables, no effect on physics

Same lattice system also results from orbifolding / dimensional deconstruction approach

Now we can move directly to the lattice

Twisting gives manifestly supersymmetric lattice action for $\mathcal{N}=4$ SYM

$$\mathbf{S} = \frac{\mathbf{N}}{2\lambda_{\text{lat}}} \mathcal{Q}\left(\chi_{ab}\mathcal{F}_{ab} + \eta \overline{\mathcal{D}}_{a}\mathcal{U}_{a} - \frac{1}{2}\eta d\right) - \frac{\mathbf{N}}{8\lambda_{\text{lat}}} \epsilon_{abcde} \ \chi_{ab} \overline{\mathcal{D}}_{c} \chi_{de}$$

QS = 0 follows from $Q^2 \cdot = 0$ and Bianchi identity

- We have exact U(N) gauge invariance
- We exactly preserve Q, one of 16 supersymmetries
- Restoration of twisted SO(4)_{tw} in continuum limit guarantees recovery of other 15 Q_a and Q_{ab}

The theory is almost suitable for practical numerical calculations...

David Schaich (Syracuse)

Stabilizing numerical calculations

We need to add two deformations to the Q-invariant action Both deal with features required by the supersymmetric construction

Scalar potential to regulate flat directions

Gauge links \mathcal{U}_a must be elements of algebra, like fermions

 \longrightarrow Add scalar potential $\left(\frac{1}{N} \text{Tr} \left[\mathcal{U}_a \overline{\mathcal{U}}_a\right] - 1\right)^2$ to lift flat directions

Otherwise \mathcal{U}_a can wander far from continuum form $\mathcal{U}_a = \mathbb{I}_N + \mathcal{A}_a$

Plaquette determinant to suppress U(1) sector of U(N)

 \mathcal{U}_a complexified \longrightarrow Add approximate SU(*N*) projection $|\det \mathcal{P}_{ab} - 1|^2$ where \mathcal{P}_{ab} is the product of four \mathcal{U}_a around the elementary plaquette

Otherwise encounter strong-coupling U(1) confinement transition

Soft susy breaking from naive stabilization

Directly adding scalar potential and plaquette determinant to action explicitly breaks supersymmetry

$$S = \frac{N}{2\lambda_{\text{lat}}} \mathcal{Q}\left(\chi_{ab}\mathcal{F}_{ab} + \eta \overline{\mathcal{D}}_{a}\mathcal{U}_{a} - \frac{1}{2}\eta d\right) - \frac{N}{8\lambda_{\text{lat}}}\epsilon_{abcde} \chi_{ab}\overline{\mathcal{D}}_{c}\chi_{de} + \frac{N}{2\lambda_{\text{lat}}}\mu^{2}\left(\frac{1}{N}\text{Tr}\left[\mathcal{U}_{a}\overline{\mathcal{U}}_{a}\right] - 1\right)^{2} + \kappa |\det \mathcal{P}_{ab} - 1|^{2}$$

New development: Supersymmetric stabilization

Possible to construct Q-invariant scalar potential and plaquette det.

However, these result in positive vacuum energy (non-susy)

$$S = \frac{N}{2\lambda_{\text{lat}}} \mathcal{Q}\left(\chi_{ab}\mathcal{F}_{ab} + \eta\left\{\overline{\mathcal{D}}_{a}\mathcal{U}_{a} + X\right\} - \frac{1}{2}\eta d\right) - \frac{N}{8\lambda_{\text{lat}}}\epsilon_{abcde} \chi_{ab}\overline{\mathcal{D}}_{c}\chi_{de}$$

$$X = B^{2}\left(\frac{1}{N}\text{Tr}\left[\mathcal{U}_{a}\overline{\mathcal{U}}_{a}\right] - 1\right)^{2} + G|\det\mathcal{P}_{ab} - 1|^{2}$$
Again effects vanish as $B, G \longrightarrow 0$
Allows access to much stronger λ
with much smaller artifacts
$$\int_{0}^{(s_{b})=18} \frac{1}{2}\eta d = \frac{1}{2}\eta d$$

David Schaich (Syracuse)

Final thought on the lattice $\mathcal{N} = 4$ SYM formulation

more complicated action with over 100 gathers in the fermion operator:

$$\begin{split} S &= S_{stand} + S_{shard} + S_{skd} + S_{kd} \qquad (2) \\ S_{stand} &= \frac{N}{2\lambda_{bad}} \sum_{n} \operatorname{Tr} \left[-\overline{\mathcal{F}}_{ab}(n)\mathcal{F}_{ab}(n) - \chi_{ab}(n)\mathcal{D}_{b}^{(z)}\psi_{b}(n) - \eta(n)\overline{D}_{a}^{(-)}\psi_{b}(n) \right. \\ &+ \frac{1}{2} \left(\overline{\mathcal{D}}_{a}^{(-)}U_{a}(n) + G\sum_{sq} |\det(\mathcal{P}_{ab}(n)| - 1|^{2} \|_{N} + \frac{B^{2}}{N^{2}} \sum_{a} \left(\operatorname{Tr} \left[\mathcal{U}_{a}(n)\overline{\mathcal{U}}_{a}(n) \right] - N\right)^{2} I_{N} \right)^{2} \right] \\ S_{datad} &= -\frac{N}{\delta\lambda_{bbd}} \sum_{n} \operatorname{Tr} \left[e_{abcb} \chi_{ab}(n + \overline{\mu}_{a} + \overline{\mu}_{b} + \overline{\mu}_{b} + \overline{\mu}_{b})\overline{\mathcal{P}}_{a}^{(-)} \chi_{ab}(n) \right] \\ S_{pd} &= \frac{N}{\delta\lambda_{bbd}} \sum_{n} \operatorname{Tr} \left[\eta(n) \sum_{adb} \left(\frac{1}{N} \operatorname{Tr} \left[\mathcal{U}_{a}(n)\overline{\mathcal{U}}_{a}(n) \right] - 1 \operatorname{Tr} \left[\psi_{a}(n)\overline{\mathcal{U}}_{a}(n) \right] \\ S_{add} &= \frac{N}{2\lambda_{bbd}} \sum_{n} \operatorname{Tr} \left[\eta(n) \sum_{adb} det(\overline{\mathcal{P}}_{ab}(n)) \left(\operatorname{Tr} \left[\mathcal{U}_{b}^{(-)}(n)\psi_{b}(n) \right] + \operatorname{Tr} \left[\mathcal{U}_{a}^{(-)}(n + \overline{\mu}_{b})\psi_{a}(n + \overline{\mu}_{b}) \right] \right\}. \end{split}$$

The construction is obviously very complicated

(For experts: ≳100 inter-node data transfers in the fermion operator)

To reduce this barrier to others entering the field, we make our efficient parallel code publicly available github.com/daschaich/susy

Evolved from MILC lattice QCD code, presented in arXiv:1410.6971 — CPC appeared yesterday

Physics result: Static potential is Coulombic at all λ

Static potential V(r) from $r \times T$ Wilson loops: $W(r, T) \propto e^{-V(r) T}$

Fits to confining form always produce vanishing string tension $\sigma = 0$

Working on standard methods to reduce noise

David Schaich (Syracuse)

Coupling dependence of V(r) = A - C/r

—Perturbation theory predicts $C(\lambda) = \lambda/(4\pi) + O(\lambda^2)$

—AdS/CFT predicts $C(\lambda) \propto \sqrt{\lambda}$ for $N \to \infty$, $\lambda \to \infty$, $\lambda \ll N$

We see agreement with perturbation theory for N = 2, $\lambda \leq 2$, and a tantalizing discrepancy for N = 3, $\lambda \gtrsim 1$

No dependence on μ or $\kappa \longrightarrow$ apparently insensitive to soft $\mathcal Q$ breaking

David Schaich (Syracuse)

Recapitulation

- Strongly coupled supersymmetric field theories very interesting to study through lattice calculations
- Practical numerical calculations possible for lattice $\mathcal{N}=4$ SYM based on exact preservation of twisted susy subalgebra $\mathcal{Q}^2=0$
- The construction is complicated
 → publicly-available code to reduce barriers to entry
- The static potential is always Coulombic
 For N = 2 C(λ) is consistent with perturbation theory
 For N = 3 an intriguing discrepancy at stronger couplings
- There are many more directions to pursue in the future
 - Measuring anomalous dimension of Konishi operator
 - Understanding the (absence of a) sign problem

Thank you!

Thank you!

Collaborators

Simon Catterall, Poul Damgaard, Tom DeGrand and Joel Giedt

Funding and computing resources

Supplement: Konishi operator scaling dimension

$\begin{array}{l} \mbox{Recall } \mathcal{N} = \mbox{4 SYM is conformal} \\ \implies \mbox{All correlation functions decay algebraically} \propto r^{-\Delta} \end{array}$

The Konishi operator is the simplest conformal primary operator

$$\mathcal{O}_{\mathcal{K}} = \sum_{\mathrm{I}} \mathrm{Tr} \left[\Phi^{\mathrm{I}} \Phi^{\mathrm{I}} \right] \qquad \mathcal{C}_{\mathcal{K}}(r) \equiv \mathcal{O}_{\mathcal{K}}(x+r) \mathcal{O}_{\mathcal{K}}(x) = \mathcal{A}r^{-2\Delta_{\mathcal{K}}}$$

There are many predictions for the scaling dim. $\Delta_{\mathcal{K}}(\lambda) = 2 + \gamma_{\mathcal{K}}(\lambda)$

- From perturbation theory for small λ , related to $\lambda \to \infty$ by S duality under $\frac{4\pi N}{\lambda} \longleftrightarrow \frac{\lambda}{4\pi N}$
- From holography for $N \to \infty$ and $\lambda \to \infty$ but $\lambda \ll N$
- Bounds on max $\{\Delta_K\}$ from the conformal bootstrap program

We will add lattice gauge theory to this list

David Schaich (Syracuse)

Konishi operator on the lattice

$$\mathcal{O}_{\mathcal{K}} = \sum_{I} \operatorname{Tr} \left[\Phi^{I} \Phi^{I} \right] \longrightarrow \widehat{\mathcal{O}}_{\mathcal{K}} = \sum_{a, b} \operatorname{Tr} \left[\widehat{\varphi}^{a} \widehat{\varphi}^{b} \right]$$

with $\widehat{\varphi}^{a} = \mathcal{U}_{a} \overline{\mathcal{U}}_{a} - \frac{1}{N} \operatorname{Tr} \left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a} \right] \mathbb{I}$

$$\mathcal{C}(r) = \widehat{\mathcal{O}}_{\mathcal{K}}(x+r)\widehat{\mathcal{O}}_{\mathcal{K}}(x) \propto r^{-2\Delta_{\mathcal{K}}}$$

Consistent with power laws using perturbative Δ

Need Q-invariant plaquette det. for reasonable C(r) on 8⁴ lattice

Obviously not a stable way to determine Δ_K — we have other tools

David Schaich (Syracuse)

Preliminary Konishi Δ_K from Monte Carlo RG

Scaling dimension is eigenvalue of MCRG "stability matrix"

Need to check systematics: different numbers of blocking steps, different operators, different *G* Need to produce consistent results from independent approach(es) such as finite-size scaling

Supplement: The (absence of a) sign problem

In lattice gauge theory we compute operator expectation values

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int [d\mathcal{U}] [d\overline{\mathcal{U}}] \mathcal{O} e^{-S_{\mathcal{B}}[\mathcal{U},\overline{\mathcal{U}}]} \text{ pf } \mathcal{D}[\mathcal{U},\overline{\mathcal{U}}]$$

pf $\mathcal{D} = |\text{pf } \mathcal{D}| e^{i\alpha}$ is generically complex for lattice $\mathcal{N} = 4$ SYM \longrightarrow Complicates interpretation of $[e^{-S_B} \text{ pf } \mathcal{D}]$ as Boltzmann weight

Have to reweight "phase-quenched" (pq) calculations

$$\langle \mathcal{O}
angle_{pq} = rac{1}{\mathcal{Z}_{pq}} \int [d\mathcal{U}] [d\overline{\mathcal{U}}] \mathcal{O} \ e^{-S_{\mathcal{B}}[\mathcal{U},\overline{\mathcal{U}}]} \ |\text{pf} \ \mathcal{D}| \qquad \langle \mathcal{O}
angle = rac{\langle \mathcal{O} e^{i\alpha}
angle_{pq}}{\langle e^{i\alpha}
angle_{pq}}$$

Sign problem: This breaks down if $\langle e^{i\alpha} \rangle_{pq}$ is consistent with zero

David Schaich (Syracuse)

Illustration of sign problem and its absence

- With periodic temporal fermion boundary conditions we have an obvious sign problem, $\langle e^{i\alpha} \rangle_{pq}$ consistent with zero
- With anti-periodic BCs and all else the same $\langle e^{i\alpha} \rangle_{pq} \approx 1$ \longrightarrow phase reweighting not even necessary

Pfaffian phase dependence on volume and N

No indication of a sign problem with anti-periodic BCs

- Pfaffian $P = |P|e^{i\alpha}$ is nearly real and positive, $1 \langle \cos(\alpha) \rangle \ll 1$
- Fluctuations in pfaffian phase don't grow with the lattice volume
- Insensitive to number of colors N = 2, 3, 4

Backup: Failure of Leibnitz rule in discrete space-time

Given that
$$\left\{ Q_{\alpha}, \overline{Q}_{\dot{\alpha}} \right\} = 2\sigma^{\mu}_{\alpha\dot{\alpha}}P_{\mu} = 2i\sigma^{\mu}_{\alpha\dot{\alpha}}\partial_{\mu}$$
 is problematic,
why not try $\left\{ Q_{\alpha}, \overline{Q}_{\dot{\alpha}} \right\} = 2i\sigma^{\mu}_{\alpha\dot{\alpha}}\nabla_{\mu}$ for a discrete translation?

Here $\nabla_{\mu}\phi(x) = \frac{1}{a} \left[\phi(x + a\hat{\mu}) - \phi(x)\right] = \partial_{\mu}\phi(x) + \frac{a}{2}\partial_{\mu}^{2}\phi(x) + \mathcal{O}(a^{2})$

Essential difference between ∂_{μ} and ∇_{μ} on the lattice (a > 0) $\nabla_{\mu} [\phi(x)\chi(x)] = a^{-1} [\phi(x + a\hat{\mu})\chi(x + a\hat{\mu}) - \phi(x)\chi(x)]$ $= [\nabla_{\mu}\phi(x)]\chi(x) + \phi(x)\nabla_{\mu}\chi(x) + a[\nabla_{\mu}\phi(x)]\nabla_{\mu}\chi(x)$

We only recover the Leibnitz rule $\partial_{\mu}(fg) = (\partial_{\mu}f)g + f\partial_{\mu}g$ when $a \to 0$ \implies "Discrete supersymmetry" breaks down on the lattice (Dondi & Nicolai, "Lattice Supersymmetry", 1977)

The Kähler–Dirac representation is related to the usual $Q^{I}_{\alpha}, \overline{Q}^{I}_{\dot{\alpha}}$ by

$$\begin{pmatrix} Q_{\alpha}^{1} & Q_{\alpha}^{2} & Q_{\alpha}^{3} & Q_{\alpha}^{4} \\ \overline{Q}_{\dot{\alpha}}^{1} & \overline{Q}_{\dot{\alpha}}^{2} & \overline{Q}_{\dot{\alpha}}^{3} & \overline{Q}_{\dot{\alpha}}^{4} \end{pmatrix} = \mathcal{Q} + \gamma_{\mu}\mathcal{Q}_{\mu} + \gamma_{\mu}\gamma_{\nu}\mathcal{Q}_{\mu\nu} + \gamma_{\mu}\gamma_{5}\mathcal{Q}_{\mu\nu\rho} + \gamma_{5}\mathcal{Q}_{\mu\nu\rho\sigma} \\ \longrightarrow \mathcal{Q} + \gamma_{a}\mathcal{Q}_{a} + \gamma_{a}\gamma_{b}\mathcal{Q}_{ab} \\ \text{with } a, b = 1, \cdots, 5 \end{cases}$$

The 4 \times 4 matrix involves R symmetry transformations along each row and (euclidean) Lorentz transformations along each column

⇒ Kähler–Dirac components transform under "twisted rotation group"

$$\begin{split} \text{SO(4)}_{tw} \equiv \text{diag} \begin{bmatrix} \text{SO(4)}_{\text{euc}} \otimes \text{SO(4)}_{R} \end{bmatrix} \\ \uparrow_{\text{only SO(4)}_{R} \subset \text{SO(6)}_{R}} \end{split}$$

Backup: Details of $Q^2 = 0$ on the lattice

Goal: Preserve \mathcal{Q} supersymmetry on the lattice

- 2 Q directly interchanges bosonic \longleftrightarrow fermionic d.o.f.

Both conditions are easy to verify in five-component notation:

$$\begin{array}{ll} \mathcal{Q} \ \mathcal{U}_{a} = \psi_{a} & \mathcal{Q} \ \psi_{a} = 0 \\ \mathcal{Q} \ \chi_{ab} = -\overline{\mathcal{F}}_{ab} & \mathcal{Q} \ \overline{\mathcal{U}}_{a} = 0 \\ \mathcal{Q} \ \eta = d & \mathcal{Q} \ d = 0 \end{array}$$

Gauge field U_a and ψ_a live on links between lattice sites
 U_a must be elements of algebra gl(N, C) ∋ ψ_a
 ⇒ Non-trivial to ensure U_a → I + A_a in the continuum limit

- Field strength $\overline{\mathcal{F}}_{ab}$ and χ_{ab} live on diagonals of oriented faces
- Bosonic auxiliary field *d* and η live on sites Usual equation of motion: $d = \overline{D}_a U_a$

Backup: A_4^* lattice with five links in four dimensions

 $A_a = (A_\mu, \phi)$ may remind you of dimensional reduction On the lattice we need to treat all five U_a symmetrically

Backup: Twisted SO(4) symmetry on the A_4^* lattice

—Can picture A_4^* lattice as 4d analog of 2d triangular lattice

—Five basis vectors are non-orthogonal and linearly dependent

—Preserves S₅ point group symmetry

 S_5 irreps precisely match onto irreps of twisted SO(4)_{tw}

$$5 = \mathbf{4} \oplus \mathbf{1} : \quad \mathcal{U}_{\mathbf{a}} \longrightarrow \mathcal{A}_{\mu}, \quad \phi$$
$$\psi_{\mathbf{a}} \longrightarrow \psi_{\mu}, \quad \eta_{\mu\nu\rho\sigma}$$
$$\mathbf{10} = \mathbf{6} \oplus \mathbf{4} : \quad \chi_{\mathbf{ab}} \longrightarrow \chi_{\mu\nu}, \quad \psi_{\mu\nu\rho}$$

Backup: Analytic results for exact lattice susy

$$S = \frac{N}{2\lambda_{\text{lat}}} \mathcal{Q}\left(\chi_{ab}\mathcal{F}_{ab} + \eta \overline{\mathcal{D}}_{a}\mathcal{U}_{a} - \frac{1}{2}\eta d\right) - \frac{N}{8\lambda_{\text{lat}}} \epsilon_{abcde} \ \chi_{ab} \overline{\mathcal{D}}_{c} \chi_{de}$$

Gauge invariant, Q supersymmetric, S_5 symmetric

The high degree of symmetry has important consequences

- β function vanishes at one loop (at least)
- Real-space RG blocking transformations preserve Q & S₅
- Only one marginal tuning to recover Q_a and Q_{ab} in the continuum

Backup: Hypercubic basis for A_4^* lattice

It is very convenient to represent the A_4^* lattice as a hypercube with a backwards diagonal

Backup: Code performance—weak and strong scaling

Left: Strong scaling for U(2) and U(3) $16^3 \times 32$ RHMC

Right: Weak scaling for $\mathcal{O}(N_{\Psi}^3)$ pfaffian calculation (fixed local volume) $N_{\Psi} \equiv 16N^2L^3N_T$ is number of fermion degrees of freedom

Both plots on log-log axes with power-law fits

David Schaich (Syracuse)

Backup: Code performance for 2, 3 and 4 colors

Red: Find RHMC costs scaling $\sim N^5$ (recall adjoint fermion d.o.f. $\propto N^2$)

Blue: Pfaffian costs consistent with expected N⁶ scaling

Backup: Thermalization

Thermalization becomes increasingly painful as *N* or $L^3 \times N_T$ increase Example: Evolution of smallest $D^{\dagger}D$ eigenvalue $|\lambda_0|^2$

Should be possible to address this with better initial configuration

David Schaich (Syracuse)

Backup: The problem with flat directions

Gauge fields U_a can move far away from continuum form $\mathbb{I} + A_a$ if $N\mu^2/(2\lambda_{\text{lat}})$ becomes too small

Example for two-color $(\lambda_{\text{lat}}, \mu, \kappa) = (5, 0.2, 0.8)$ on $8^3 \times 24$ volume

Left: Ward identity violations are stable at ${\sim}9\%$

Right: Polyakov loop wanders off to $\sim 10^9$

David Schaich (Syracuse)

Backup: Lattice phase due to U(1) sector

Polyakov loop collapses \implies confining phase (not present in continuum $\mathcal{N} = 4$ SYM)

- Plaquette determinant is variable in U(1) sector Drops at same coupling λ as Polyakov loop

David Schaich (Syracuse)

Backup: Suppressing the U(1) sector

 $\Delta S = \kappa |\det \mathcal{P} - 1|^2$ suppresses the lattice strong-coupling phase

Produces $2\kappa F_{\mu\nu}F^{\mu\nu}$ term in U(1) sector \implies QED critical $\beta_c = 0.99 \longrightarrow$ critical $\kappa_c \approx 0.5$

Backup: Plaquette and determinant distributions

Larger couplings *B* and *G* produce the desired sharper peaks

Price: Larger Ward identity violations and larger computational costs

Backup: Restoration of Q_a and Q_{ab} supersymmetries

Restoration of the other 15 Q_a and Q_{ab} in the continuum limit follows from restoration of R symmetry (motivation for A_4^* lattice)

Modified Wilson loops test R symmetries at non-zero lattice spacing

Backup: $\mathcal{N} = 4$ static potential from Wilson loops

Extract static potential V(r)from $r \times T$ Wilson loops: $W(r, T) \propto e^{-V(r) T}$

Coulomb gauge trick from lattice QCD reduces A_4^* lattice complications

Backup: Perturbation theory for Coulomb coefficient

For range of λ_{lat} currently being studied, the perturbative series for the U(3) Coulomb coefficient appears well convergent

Backup: More tests of the U(2) static potential

Left: Projecting Wilson loops from U(2)
$$\longrightarrow$$
 SU(2)
 \implies factor of $\frac{N^2-1}{N^2} = 3/4$
Right: Unitarizing links removes scalars \implies factor of 1/2

Both expected factors present, although (again) noisily

David Schaich (Syracuse)

Backup: More tests of the U(3) static potential

Left: Projecting Wilson loops from U(3)
$$\longrightarrow$$
 SU(3)
 \implies factor of $\frac{N^2-1}{N^2} = 8/9$

Right: Unitarizing links removes scalars \implies factor of 1/2

Ratios look slightly higher than expected,

less noise in SU(3)-projected results

David Schaich (Syracuse)

Backup: Smearing for noise reduction

Smearing may reduce noise in static potential (etc.) measurements —Stout smearing implemented and tested —APE or HYP (without unitary projection) may work better for Konishi

Backup: Konishi operator on the lattice

$$\mathcal{O}_{\mathcal{K}} = \sum_{I} \text{Tr} \left[\Phi^{I} \Phi^{I} \right]$$

On the lattice the scalars Φ^I are twisted and wrapped up in the complexified gauge field U_a

Given $\mathcal{U}_a \approx \mathbb{I} + \mathcal{A}_a$ the most obvious way to extract the scalars is

$$\widehat{\varphi}^{a} = \mathcal{U}_{a}\overline{\mathcal{U}}_{a} - \frac{1}{N}\text{Tr}\left[\mathcal{U}_{a}\overline{\mathcal{U}}_{a}\right]\mathbb{I}$$

This is still twisted, so all $\{a, b\}$ contribute to R-singlet Konishi

$$\widehat{\mathcal{O}}_{\mathcal{K}} = \sum_{a, b} \operatorname{Tr} \left[\widehat{\varphi}^{a} \widehat{\varphi}^{b} \right]$$

Backup: Scaling dimensions from Monte Carlo RG

Couplings flow under RG blocking transformation R_b

n-times-blocked system is
$$H^{(n)} = R_b H^{(n-1)} = \sum_i c_i^{(n)} \mathcal{O}_i^{(n)}$$

Consider linear expansion around fixed point H^* with couplings c_i^*

$$\left. c_{i}^{(n)} - c_{i}^{\star} = \sum_{j} \left. \frac{\partial c_{i}^{(n)}}{\partial c_{j}^{(n-1)}} \right|_{H^{\star}} \left(c_{j}^{(n-1)} - c_{j}^{\star} \right) \equiv \sum_{j} T_{ij}^{\star} \left(c_{j}^{(n-1)} - c_{j}^{\star} \right)$$

T_{ii}^{\star} is the "stability matrix"

Eigenvalues of T_{ii}^{\star} are scaling dimensions of corresponding operators

Backup: Pfaffian phase dependence on λ_{lat} , μ , κ

We observe little dependence on κ

Fluctuations in phase grow as λ_{lat} increases

