Maximally supersymmetric Yang-Mills on the lattice

David Schaich (Syracuse)

Origin of Mass and Strong Coupling Gauge Theories Kobayashi-Maskawa Institute, Nagoya University, 5 March 2015
arXiv:1405.0644, arXiv:1410.6971, arXiv:1411.0166 \& more to come with Simon Catterall, Poul Damgaard, Tom DeGrand and Joel Giedt

Context: Why lattice supersymmetry

At strong coupling...

-Supersymmetric gauge theories are particularly interesting:
Dualities, holography, confinement, conformality, ...
-Nonperturbative lattice discretization is particularly useful Numerical analysis provides complementary approach to SCGT

Proven success for QCD; many potential susy applications:

- Compute Wilson loops, spectrum, scaling dimensions, etc., complementing perturbation theory, holography, bootstrap, ...
- Further direct checks of conjectured dualities
- Predict low-energy constants from dynamical susy breaking
- Validate or refine AdS/CFT-based modelling (e.g., QCD phase diagram, condensed matter systems)

Context: Why not lattice supersymmetry

There is a problem with supersymmetry in discrete space-time Recall: supersymmetry extends Poincaré symmetry by spinorial generators Q_{α}^{I} and $\bar{Q}_{\dot{\alpha}}^{\mathrm{I}}$ with $\mathrm{I}=1, \cdots, \mathcal{N}$

The resulting algebra includes $\left\{Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\right\}=2 \sigma_{\alpha \dot{\alpha}}^{\mu} P_{\mu}$
P_{μ} generates infinitesimal translations, which don't exist on the lattice
\Longrightarrow supersymmetry explicitly broken at classical level

Consequence for lattice calculations
Quantum effects generate (typically many) susy-violating operators
Fine-tuning their couplings to restore susy is generally not practical

Exact susy on the lattice: $\mathcal{N}=4$ SYM

In order to forbid generation of susy-violating operators (some subset of) the susy algebra must be preserved

In four dimensions $\mathcal{N}=4$ supersymmetric Yang-Mills (SYM)
is the only known system with a supersymmetric lattice formulation
$\mathcal{N}=4$ SYM is a particularly interesting theory

- $\operatorname{SU}(N)$ gauge theory with four fermions ψ^{I} and six scalars ϕ^{IJ}, all massless and in adjoint rep.
- Action consists of kinetic, Yukawa and four-scalar terms
- Supersymmetric: 16 supercharges Q_{α}^{I} and $\bar{Q}_{\dot{\alpha}}^{I}$ with $\mathrm{I}=1, \cdots, 4$ Fields and Q 's transform under global $\operatorname{SU}(4) \simeq \mathrm{SO}(6) \mathrm{R}$ symmetry
- Conformal: β function is zero for all 't Hooft couplings λ

Exact susy on the lattice: topological twisting

What is special about $\mathcal{N}=4$ SYM

The 16 fermionic supercharges Q_{α}^{I} and $\bar{Q}_{\dot{\alpha}}^{\mathrm{I}}$ fill a Kähler-Dirac multiplet:

$$
\left(\begin{array}{cccc}
Q_{\alpha}^{1} & Q_{\alpha}^{2} & Q_{\alpha}^{3} & Q_{\alpha}^{4} \\
\bar{Q}_{\dot{\alpha}}^{1} & Q_{\dot{\alpha}}^{2} & Q_{\dot{\alpha}}^{3} & \bar{Q}_{\dot{\alpha}}^{4}
\end{array}\right)=\begin{gathered}
\mathcal{Q}+\gamma_{\mu} \mathcal{Q}_{\mu}+\gamma_{\mu} \gamma_{\nu} \mathcal{Q}_{\mu \nu}+\gamma_{\mu} \gamma_{5} \mathcal{Q}_{\mu \nu \rho}+\gamma_{5} \mathcal{Q}_{\mu \nu \rho \sigma} \\
\longrightarrow \mathcal{Q}+\gamma_{a} \mathcal{Q}_{a}+\gamma_{a} \gamma_{\nu} \mathcal{Q}_{a b} \\
\text { with } a, b=1, \cdots, 5
\end{gathered}
$$

This is a decomposition in representations of a "twisted rotation group"

$$
\mathrm{SO}(4)_{t w} \equiv \operatorname{diag}\left[\mathrm{SO}(4)_{\mathrm{euc}} \otimes \mathrm{SO}(4)_{R}\right] \quad \mathrm{SO}(4)_{R} \subset \mathrm{SO}(6)_{R}
$$

In this notation there is a susy subalgebra $\{\mathcal{Q}, \mathcal{Q}\}=2 \mathcal{Q}^{2}=0$
This can be exactly preserved on the lattice

Twisted $\mathcal{N}=4$ SYM

$$
\mathrm{SO}(4)_{t w} \equiv \operatorname{diag}\left[\mathrm{SO}(4)_{\mathrm{euc}} \otimes \mathrm{SO}(4)_{R}\right]
$$

- $\mathcal{Q}, \mathcal{Q}_{\mu}, \mathcal{Q}_{\mu \nu}, \ldots$ transform with integer spin - no longer spinors!
- Fermion fields decompose in the same way, $\Psi^{\prime} \longrightarrow\left\{\eta, \psi_{a}, \chi_{a b}\right\}$
- Scalar fields transform as $\mathrm{SO}(4)_{t w}$ vector B_{μ} plus two scalars $\phi, \bar{\phi}$ Combine with A_{μ} in complexified five-component gauge field

$$
\mathcal{A}_{a}=A_{a}+i B_{a}=\left(A_{\mu}, \phi\right)+i\left(B_{\mu}, \bar{\phi}\right) \quad \text { and similarly for } \overline{\mathcal{A}}_{a}
$$

Complexified gauge field $\Longrightarrow U(N)=S U(N) \otimes U(1)$ gauge invariance Irrelevant in the continuum, but will affect lattice calculations

Twisted $\mathcal{N}=4$ SYM

$$
\mathrm{SO}(4)_{t w} \equiv \operatorname{diag}\left[\mathrm{SO}(4)_{\mathrm{euc}} \otimes \mathrm{SO}(4)_{R}\right]
$$

- $\mathcal{Q}, \mathcal{Q}_{\mu}, \mathcal{Q}_{\mu \nu}, \ldots$ transform with integer spin - no longer spinors!
- Fermion fields decompose in the same way, $\psi^{\prime} \longrightarrow\left\{\eta, \psi_{a}, \chi_{a b}\right\}$
- Scalar fields transform as $\mathrm{SO}(4)_{t w}$ vector B_{μ} plus two scalars $\phi, \bar{\phi}$ Combine with A_{μ} in complexified five-component gauge field

$$
\mathcal{A}_{a}=A_{a}+i B_{a}=\left(A_{\mu}, \phi\right)+i\left(B_{\mu}, \bar{\phi}\right) \quad \text { and similarly for } \overline{\mathcal{A}}_{a}
$$

In flat space twisting is just a change of variables, no effect on physics
Same lattice system also results
from orbifolding / dimensional deconstruction approach

Now we can move directly to the lattice

Twisting gives manifestly supersymmetric lattice action for $\mathcal{N}=4$ SYM

$$
S=\frac{N}{2 \lambda_{\text {lat }}} \mathcal{Q}\left(\chi_{a b} \mathcal{F}_{a b}+\eta \overline{\mathcal{D}}_{a} \mathcal{U}_{a}-\frac{1}{2} \eta d\right)-\frac{N}{8 \lambda_{\text {lat }}} \epsilon_{\text {abcde }} \chi_{a b} \overline{\mathcal{D}}_{c} \chi_{d e}
$$

$\mathcal{Q} S=0$ follows from $\mathcal{Q}^{2} \cdot=0$ and Bianchi identity

- We have exact $U(N)$ gauge invariance
- We exactly preserve \mathcal{Q}, one of 16 supersymmetries
- Restoration of twisted $\mathrm{SO}(4)_{t w}$ in continuum limit guarantees recovery of other $15 \mathcal{Q}_{a}$ and $\mathcal{Q}_{a b}$

The theory is almost suitable for practical numerical calculations...

Stabilizing numerical calculations

We need to add two deformations to the \mathcal{Q}-invariant action
Both deal with features required by the supersymmetric construction

Scalar potential to regulate flat directions

Gauge links \mathcal{U}_{a} must be elements of algebra, like fermions
\longrightarrow Add scalar potential $\left(\frac{1}{N} \operatorname{Tr}\left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right]-1\right)^{2}$ to lift flat directions
Otherwise \mathcal{U}_{a} can wander far from continuum form $\mathcal{U}_{a}=\mathbb{I}_{N}+\mathcal{A}_{a}$

Plaquette determinant to suppress $\mathrm{U}(1)$ sector of $\mathrm{U}(N)$

\mathcal{U}_{a} complexified \longrightarrow Add approximate $\operatorname{SU}(N)$ projection $\left|\operatorname{det} \mathcal{P}_{a b}-1\right|^{2}$ where $\mathcal{P}_{a b}$ is the product of four \mathcal{U}_{a} around the elementary plaquette

Otherwise encounter strong-coupling $\mathrm{U}(1)$ confinement transition

Soft susy breaking from naive stabilization

Directly adding scalar potential and plaquette determinant to action explicitly breaks supersymmetry

$$
\begin{aligned}
S= & \frac{N}{2 \lambda_{\text {lat }}} \mathcal{Q}\left(\chi_{a b} \mathcal{F}_{a b}+\eta \overline{\mathcal{D}}_{a} \mathcal{U}_{a}-\frac{1}{2} \eta d\right)-\frac{N}{8 \lambda_{\text {lat }}} \epsilon_{\text {abcde }} \chi_{a b} \overline{\mathcal{D}}_{c} \chi_{d e} \\
& +\frac{N}{2 \lambda_{\text {lat }}} \mu^{2}\left(\frac{1}{N} \operatorname{Tr}\left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right]-1\right)^{2}+\kappa\left|\operatorname{det} \mathcal{P}_{a b}-1\right|^{2}
\end{aligned}
$$

Breaking is soft

Guaranteed to vanish as $\mu, \kappa \longrightarrow 0$
Also suppressed $\propto 1 / N^{2}$
1-10\% effects in practice

New development: Supersymmetric stabilization

Possible to construct \mathcal{Q}-invariant scalar potential and plaquette det.
However, these result in positive vacuum energy (non-susy)

$$
\begin{aligned}
& S=\frac{N}{2 \lambda_{\text {lat }}} \mathcal{Q}\left(\chi_{a b} \mathcal{F}_{a b}+\eta\left\{\overline{\mathcal{D}}_{a} \mathcal{U}_{a}+X\right\}-\frac{1}{2} \eta d\right)-\frac{N}{8 \lambda_{\text {lat }}} \epsilon_{\text {abcde }} \chi_{a b} \overline{\mathcal{D}}_{c} \chi_{d e} \\
& X=B^{2}\left(\frac{1}{N} \operatorname{Tr}\left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right]-1\right)^{2}+G\left|\operatorname{det} \mathcal{P}_{a b}-1\right|^{2}
\end{aligned}
$$

Again effects vanish as $B, G \longrightarrow 0$
Allows access to much stronger λ with much smaller artifacts

Final thought on the lattice $\mathcal{N}=4 \mathrm{SYM}$ formulation

more complicated action with over 100 gathers in the fermion operator:
$\begin{aligned} S & =S_{\text {eract }}^{t}+S_{\text {closed }}+S_{\text {pat }}+S_{\text {det }} \\ S_{\text {eract }}^{t} & =\frac{N}{2 \lambda_{\text {lat }}} \sum_{n} \operatorname{Tr}\left[-\overline{\mathcal{F}}_{a b}(n) \mathcal{F}_{a b}(n)-\chi_{a b}(n) \mathcal{D}_{\mid a}^{(+)} \psi_{b \mid}(n)-\eta(n) \overline{\mathcal{D}}_{a}^{(-)} \psi_{a}(n)\right.\end{aligned}$
$+\frac{1}{2}\left(\overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}(n)+G \sum_{a \neq b} \left\lvert\, \operatorname{det}\left[\mathcal{P}_{a b}(n)|-1|^{2} \mathbb{I}_{N}+\frac{B^{2}}{N^{2}} \sum_{a}\left(\operatorname{Tr}\left[U_{a}(n) \bar{U}_{a}(n)\right]-N\right)^{2} \mathbb{I}_{N}\right)^{2}\right.\right]$
$S_{\text {closed }}=-\frac{N}{8 \lambda_{\text {lat }}} \sum_{n} \operatorname{Tr}\left[\epsilon_{\text {obdede }} \chi_{d e}\left(n+\widehat{\mu}_{a}+\widehat{\mu}_{b}+\widehat{\mu}_{c}\right) \overline{\mathcal{D}}_{c}^{(-)} \chi_{a b}(n)\right]$
$S_{\text {pot }}=\frac{N}{2 \lambda_{\text {lat }}} B^{2} \sum_{n} \operatorname{Tr}[\eta(n)] \sum_{a}\left(\frac{1}{N} \operatorname{Tr}\left[U_{a}(n) \bar{U}_{a}(n)\right]-1\right) \operatorname{Tr}\left[\psi_{a}(n) \bar{U}_{a}(n)\right]$
$S_{\text {det }}=\frac{N}{2 \lambda_{\text {dat }}} G \sum_{n} \operatorname{Tr}[\eta(n)] \sum_{a \neq b} \operatorname{det}\left[\mathcal{P}_{a b}(n)\right]\left\{\operatorname{Tr}\left[u_{b}^{-1}(n) \psi_{b}(n)\right]+\operatorname{Tr}\left[u_{a}^{-1}\left(n+\widehat{\mu}_{b}\right) \psi_{a}\left(n+\widehat{\mu}_{b}\right)\right]\right\}$.

The construction
is obviously very complicated
(For experts: $\gtrsim 100$ inter-node data transfers in the fermion operator)

To reduce this barrier to others entering the field, we make our efficient parallel code publicly available github.com/daschaich/susy

Evolved from MILC lattice QCD code, presented in arXiv:1410.6971 — CPC appeared yesterday

Physics result: Static potential is Coulombic at all λ

Static potential $V(r)$ from $r \times T$ Wilson loops: $W(r, T) \propto e^{-V(r) T}$

Fit $V(r)$ to Coulombic

Fits to confining form always produce vanishing string tension $\sigma=0$
Working on standard methods to reduce noise

Coupling dependence of $V(r)=A-C / r$

—Perturbation theory predicts $C(\lambda)=\lambda /(4 \pi)+\mathcal{O}\left(\lambda^{2}\right)$
—AdS/CFT predicts $C(\lambda) \propto \sqrt{\lambda}$ for $N \rightarrow \infty, \lambda \rightarrow \infty, \lambda \ll N$

We see agreement with perturbation theory for $N=2, \lambda \lesssim 2$, and a tantalizing discrepancy for $N=3, \lambda \gtrsim 1$

No dependence on μ or $\kappa \longrightarrow$ apparently insensitive to soft \mathcal{Q} breaking

Recapitulation

- Strongly coupled supersymmetric field theories very interesting to study through lattice calculations
- Practical numerical calculations possible for lattice $\mathcal{N}=4$ SYM based on exact preservation of twisted susy subalgebra $\mathcal{Q}^{2}=0$
- The construction is complicated
\longrightarrow publicly-available code to reduce barriers to entry
- The static potential is always Coulombic

For $N=2 C(\lambda)$ is consistent with perturbation theory
For $N=3$ an intriguing discrepancy at stronger couplings

- There are many more directions to pursue in the future
- Measuring anomalous dimension of Konishi operator
- Understanding the (absence of a) sign problem

Thank you!

Thank you!

Collaborators
 Simon Catterall, Poul Damgaard, Tom DeGrand and Joel Giedt

Funding and computing resources

USQCD

Supplement: Konishi operator scaling dimension

Recall $\mathcal{N}=4$ SYM is conformal
\Longrightarrow All correlation functions decay algebraically $\propto r^{-\Delta}$
The Konishi operator is the simplest conformal primary operator

$$
\mathcal{O}_{K}=\sum_{\mathrm{I}} \operatorname{Tr}\left[\Phi^{\mathrm{I}} \Phi^{\mathrm{I}}\right] \quad C_{K}(r) \equiv \mathcal{O}_{K}(x+r) \mathcal{O}_{K}(x)=A r^{-2 \Delta_{K}}
$$

There are many predictions for the scaling dim. $\Delta_{K}(\lambda)=2+\gamma_{K}(\lambda)$

- From perturbation theory for small λ, related to $\lambda \rightarrow \infty$ by S duality under $\frac{4 \pi N}{\lambda} \longleftrightarrow \frac{\lambda}{4 \pi N}$
- From holography for $N \rightarrow \infty$ and $\lambda \rightarrow \infty$ but $\lambda \ll N$
- Bounds on $\max \left\{\Delta_{K}\right\}$ from the conformal bootstrap program

We will add lattice gauge theory to this list

Konishi operator on the lattice

$$
\begin{aligned}
& \mathcal{O}_{K}=\sum_{\mathrm{I}} \operatorname{Tr}\left[\phi^{\mathrm{I}} \Phi^{\mathrm{I}}\right] \longrightarrow \widehat{\mathcal{O}}_{K}=\sum_{a, b} \operatorname{Tr}\left[\widehat{\varphi}^{a} \widehat{\varphi}^{b}\right] \\
& \text { with } \widehat{\varphi}^{a}=\mathcal{U}_{a} \overline{\mathcal{U}}_{a}-\frac{1}{N} \operatorname{Tr}\left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right] \mathbb{I} \\
& \begin{array}{l}
C(r)=\widehat{\mathcal{O}}_{K}(x+r) \widehat{\mathcal{O}}_{K}(x) \propto r^{-2 \Delta_{K}}
\end{array} \\
& \begin{array}{l}
\text { Consistent with } \\
\text { power laws using perturbative } \Delta
\end{array} \\
& \begin{array}{l}
\text { Need } \mathcal{Q} \text {-invariant plaquette det. } \\
\text { for reasonable } C(r) \text { on } 8^{4} \text { lattice }
\end{array}
\end{aligned}
$$

Obviously not a stable way to determine Δ_{K} - we have other tools

Preliminary Konishi Δ_{K} from Monte Carlo RG

Scaling dimension is eigenvalue of MCRG "stability matrix"

Simple trial (only statistical errors) correctly finds $\Delta_{K} \rightarrow 2$ as $\lambda \rightarrow 0$

Significant volume dependence
\longrightarrow approach perturbation theory as L increases

Need to check systematics:
different numbers of blocking steps, different operators, different G
Need to produce consistent results from independent approach(es) such as finite-size scaling

Supplement: The (absence of a) sign problem

In lattice gauge theory we compute operator expectation values

$$
\langle\mathcal{O}\rangle=\frac{1}{\mathcal{Z}} \int[d \mathcal{U}][d \overline{\mathcal{U}}] \mathcal{O} e^{-S_{B}[\mathcal{U}, \overline{\mathcal{U}}]} \operatorname{pf} \mathcal{D}[\mathcal{U}, \overline{\mathcal{U}}]
$$

$\operatorname{pf} \mathcal{D}=|\operatorname{pf} \mathcal{D}| e^{i \alpha}$ is generically complex for lattice $\mathcal{N}=4$ SYM
\longrightarrow Complicates interpretation of $\left[e^{-S_{B}}\right.$ pf \mathcal{D}] as Boltzmann weight
Have to reweight "phase-quenched" (pq) calculations

$$
\langle\mathcal{O}\rangle_{p q}=\frac{1}{\mathcal{Z}_{p q}} \int[d \mathcal{U}][d \bar{U}] \mathcal{O} e^{-S_{B}[\mathcal{U}, \bar{u}]}|\operatorname{pf} \mathcal{D}| \quad\langle\mathcal{O}\rangle=\frac{\left\langle\mathcal{O} e^{i \alpha}\right\rangle_{p q}}{\left\langle e^{i \alpha}\right\rangle_{p q}}
$$

Sign problem: This breaks down if $\left\langle e^{i \alpha}\right\rangle_{p q}$ is consistent with zero

Illustration of sign problem and its absence

- With periodic temporal fermion boundary conditions we have an obvious sign problem, $\left\langle e^{i \alpha}\right\rangle_{p q}$ consistent with zero
- With anti-periodic BCs and all else the same $\left\langle e^{i \alpha}\right\rangle_{p q} \approx 1$
\longrightarrow phase reweighting not even necessary

Even stranger

Other $\langle\mathcal{O}\rangle_{p q}$ nearly identical despite sign problem...

Can this be understood?

Pfaffian phase dependence on volume and N

No indication of a sign problem with anti-periodic BCs

- Pfaffian $P=|P| e^{i \alpha}$ is nearly real and positive, $1-\langle\cos (\alpha)\rangle \ll 1$
- Fluctuations in pfaffian phase don't grow with the lattice volume
- Insensitive to number of colors $N=2,3,4$

Hard calculations
Each $4^{3} \times 6$ measurement requires ~ 8 days, ~10GB memory

Parallel $\mathcal{O}\left(n^{3}\right)$ algorithm

Backup: Failure of Leibnitz rule in discrete space-time

Given that $\left\{Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\right\}=2 \sigma_{\alpha \dot{\alpha}}^{\mu} P_{\mu}=2 i \sigma_{\alpha \dot{\alpha}}^{\mu} \partial_{\mu}$ is problematic, why not try $\left\{Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\right\}=2 i \sigma_{\alpha \dot{\alpha}}^{\mu} \nabla_{\mu}$ for a discrete translation?

Here $\nabla_{\mu} \phi(x)=\frac{1}{a}[\phi(x+a \widehat{\mu})-\phi(x)]=\partial_{\mu} \phi(x)+\frac{a}{2} \partial_{\mu}^{2} \phi(x)+\mathcal{O}\left(a^{2}\right)$
Essential difference between ∂_{μ} and ∇_{μ} on the lattice ($a>0$)

$$
\begin{aligned}
\nabla_{\mu}[\phi(x) \chi(x)] & =a^{-1}[\phi(x+a \widehat{\mu}) \chi(x+a \widehat{\mu})-\phi(x) \chi(x)] \\
& =\left[\nabla_{\mu} \phi(x)\right] \chi(x)+\phi(x) \nabla_{\mu} \chi(x)+a\left[\nabla_{\mu} \phi(x)\right] \nabla_{\mu} \chi(x)
\end{aligned}
$$

We only recover the Leibnitz rule $\partial_{\mu}(f g)=\left(\partial_{\mu} f\right) g+f \partial_{\mu} g$ when $a \rightarrow 0$ \Longrightarrow "Discrete supersymmetry" breaks down on the lattice
(Dondi \& Nicolai, "Lattice Supersymmetry", 1977)

Backup: Twisting \longleftrightarrow Kähler-Dirac fermions

The Kähler-Dirac representation is related to the usual $Q_{\alpha}^{\mathrm{I}}, \bar{Q}_{\dot{\alpha}}^{\mathrm{I}}$ by
$\left(\begin{array}{cccc}Q_{\alpha}^{1} & Q_{\alpha}^{2} & Q_{\alpha}^{3} & Q_{\alpha}^{4} \\ \bar{Q}_{\dot{\alpha}}^{1} & \bar{Q}_{\dot{\alpha}}^{2} & \bar{Q}_{\dot{\alpha}}^{3} & \bar{Q}_{\dot{\alpha}}^{4}\end{array}\right)=\begin{gathered}\mathcal{Q}+\gamma_{\mu} \mathcal{Q}_{\mu}+\gamma_{\mu} \gamma_{\nu} \mathcal{Q}_{\mu \nu}+\gamma_{\mu} \gamma_{5} \mathcal{Q}_{\mu \nu \rho}+\gamma_{5} \mathcal{Q}_{\mu \nu \rho \sigma} \\ \longrightarrow \mathcal{Q}+\gamma_{a} \mathcal{Q}_{a}+\gamma_{a} \gamma_{b} \mathcal{Q}_{a b} \\ \text { with } a, b=1, \cdots, 5\end{gathered}$
The 4×4 matrix involves R symmetry transformations along each row and (euclidean) Lorentz transformations along each column
\Longrightarrow Kähler-Dirac components transform under "twisted rotation group"

$$
\begin{aligned}
\mathrm{SO}(4)_{t w} \equiv \operatorname{diag}\left[\mathrm{SO}(4)_{\mathrm{euc}} \otimes\right. & \left.\mathrm{SO}(4)_{R}\right] \\
& \uparrow_{\text {only }} \mathrm{SO}(4)_{R} \subset \mathrm{SO}(6)_{R}
\end{aligned}
$$

Backup: Details of $\mathcal{Q}^{2}=0$ on the lattice

Goal: Preserve \mathcal{Q} supersymmetry on the lattice
(1) $\mathcal{Q}^{2} \cdot=0$
(2) \mathcal{Q} directly interchanges bosonic \longleftrightarrow fermionic d.o.f.

Both conditions are easy to verify in five-component notation:
$\mathcal{Q} \mathcal{U}_{a}=\psi_{a}$
$\mathcal{Q} \psi_{a}=0$
$\mathcal{Q} \chi_{a b}=-\overline{\mathcal{F}}_{a b}$
$\mathcal{Q} \overline{\mathcal{U}}_{a}=0$
$\mathcal{Q} \eta=d$
$\mathcal{Q} d=0$

- Gauge field \mathcal{U}_{a} and ψ_{a} live on links between lattice sites \mathcal{U}_{a} must be elements of algebra $\mathfrak{g l}(N, \mathbb{C}) \ni \psi_{a}$
\Longrightarrow Non-trivial to ensure $\mathcal{U}_{a} \longrightarrow \mathbb{I}+\mathcal{A}_{a}$ in the continuum limit
- Field strength $\overline{\mathcal{F}}_{a b}$ and $\chi_{a b}$ live on diagonals of oriented faces
- Bosonic auxiliary field d and η live on sites Usual equation of motion: $d=\overline{\mathcal{D}}_{a} \mathcal{U}_{a}$

Backup: A_{4}^{*} lattice with five links in four dimensions

$A_{a}=\left(A_{\mu}, \phi\right)$ may remind you of dimensional reduction
On the lattice we need to treat all five \mathcal{U}_{a} symmetrically
-Start with hypercubic lattice in 5d momentum space
—Symmetric constraint $\sum_{a} \partial_{a}=0$ projects to 4d momentum space
—Result is A_{4} lattice
\longrightarrow dual A_{4}^{*} lattice in real space

Backup: Twisted $\mathrm{SO}(4)$ symmetry on the A_{4}^{*} lattice

-Can picture A_{4}^{*} lattice as $4 d$ analog of 2d triangular lattice
-Five basis vectors are non-orthogonal and linearly dependent
-Preserves S_{5} point group symmetry

S_{5} irreps precisely match onto irreps of twisted $\mathrm{SO}(4)_{t w}$

$$
\begin{array}{rc}
\mathbf{5}=\mathbf{4} \oplus \mathbf{1}: & \mathcal{U}_{a} \longrightarrow \mathcal{A}_{\mu}, \phi \\
& \psi_{a} \longrightarrow \psi_{\mu}, \quad \eta_{\mu \nu \rho \sigma} \\
\mathbf{1 0 = 6} \oplus \mathbf{4}: & \chi_{a b} \longrightarrow \chi_{\mu \nu}, \psi_{\mu \nu \rho}
\end{array}
$$

Backup: Analytic results for exact lattice susy

$$
S=\frac{N}{2 \lambda_{\text {lat }}} \mathcal{Q}\left(\chi_{a b} \mathcal{F}_{a b}+\eta \overline{\mathcal{D}}_{a} \mathcal{U}_{a}-\frac{1}{2} \eta d\right)-\frac{N}{8 \lambda_{\text {lat }}} \epsilon_{a b c d e} \chi_{a b} \overline{\mathcal{D}}_{c} \chi_{d e}
$$

Gauge invariant, \mathcal{Q} supersymmetric, S_{5} symmetric

The high degree of symmetry has important consequences

- Moduli space preserved to all orders of lattice perturbation theory \longrightarrow no scalar potential induced by radiative corrections
- β function vanishes at one loop (at least)
- Real-space RG blocking transformations preserve $\mathcal{Q} \& S_{5}$
- Only one marginal tuning to recover \mathcal{Q}_{a} and $\mathcal{Q}_{a b}$ in the continuum

Backup: Hypercubic basis for A_{4}^{*} lattice

It is very convenient to represent the A_{4}^{*} lattice
as a hypercube with a backwards diagonal

Backup: Code performance-weak and strong scaling

Left: Strong scaling for $U(2)$ and $U(3) 16^{3} \times 32$ RHMC
Right: Weak scaling for $\mathcal{O}\left(N_{\Psi}^{3}\right)$ pfaffian calculation (fixed local volume) $N_{\Psi} \equiv 16 N^{2} L^{3} N_{T}$ is number of fermion degrees of freedom

Both plots on log-log axes with power-law fits

Backup: Code performance for 2, 3 and 4 colors

Red: Find RHMC costs scaling $\sim N^{5}$ (recall adjoint fermion d.o.f. $\propto N^{2}$)
Blue: Pfaffian costs consistent with expected N^{6} scaling

Backup: Thermalization

Thermalization becomes increasingly painful as N or $L^{3} \times N_{T}$ increase Example: Evolution of smallest $\mathcal{D}^{\dagger} \mathcal{D}$ eigenvalue $\left|\lambda_{0}\right|^{2}$

Should be possible to address this with better initial configuration

Backup: The problem with flat directions

Gauge fields \mathcal{U}_{a} can move far away from continuum form $\mathbb{I}+\mathcal{A}_{a}$ if $N \mu^{2} /\left(2 \lambda_{\text {lat }}\right)$ becomes too small

Example for two-color $\left(\lambda_{\text {lat }}, \mu, \kappa\right)=(5,0.2,0.8)$ on $8^{3} \times 24$ volume

Left: Ward identity violations are stable at $\sim 9 \%$
Right: Polyakov loop wanders off to $\sim 10^{9}$

Backup: Lattice phase due to $\mathrm{U}(1)$ sector

(1) Polyakov loop collapses \Longrightarrow confining phase (not present in continuum $\mathcal{N}=4$ SYM)
(2) Plaquette determinant is variable in $\mathrm{U}(1)$ sector Drops at same coupling λ as Polyakov loop
(3) ρ_{M} is density of $\mathrm{U}(1)$ monopole world lines (DeGrand \& Toussaint) Non-zero when Polyakov loop and plaquette det. collapse

Backup: Suppressing the $\mathrm{U}(1)$ sector

$\Delta S=\kappa|\operatorname{det} \mathcal{P}-1|^{2}$ suppresses the lattice strong-coupling phase
Produces $2 \kappa F_{\mu \nu} F^{\mu \nu}$ term in $\mathrm{U}(1)$ sector
\Longrightarrow QED critical $\beta_{c}=0.99 \longrightarrow$ critical $\kappa_{c} \approx 0.5$

Backup: Plaquette and determinant distributions

Backup: Restoration of \mathcal{Q}_{a} and $\mathcal{Q}_{a b}$ supersymmetries

Restoration of the other $15 \mathcal{Q}_{a}$ and $\mathcal{Q}_{a b}$ in the continuum limit follows from restoration of R symmetry (motivation for A_{4}^{*} lattice)

Modified Wilson loops test R symmetries at non-zero lattice spacing

Backup: $\mathcal{N}=4$ static potential from Wilson loops

Extract static potential $V(r)$ from $r \times T$ Wilson loops: $W(r, T) \propto e^{-V(r) T}$

Coulomb gauge trick from lattice QCD reduces A_{4}^{*} lattice complications

Backup: Perturbation theory for Coulomb coefficient

For range of $\lambda_{\text {lat }}$ currently being studied, the perturbative series for the $U(3)$ Coulomb coefficient appears well convergent

Backup: More tests of the $U(2)$ static potential

Left: Projecting Wilson loops from $\mathrm{U}(2) \longrightarrow \mathrm{SU}(2)$

$$
\Longrightarrow \text { factor of } \frac{N^{2}-1}{N^{2}}=3 / 4
$$

Right: Unitarizing links removes scalars \Longrightarrow factor of $1 / 2$

Both expected factors present, although (again) noisily

Backup: More tests of the $U(3)$ static potential

Left: Projecting Wilson loops from $\mathrm{U}(3) \longrightarrow \mathrm{SU}(3)$
\Longrightarrow factor of $\frac{N^{2}-1}{N^{2}}=8 / 9$
Right: Unitarizing links removes scalars \Longrightarrow factor of $1 / 2$

Ratios look slightly higher than expected, less noise in SU(3)-projected results

Backup: Smearing for noise reduction

Smearing may reduce noise in static potential (etc.) measurements -Stout smearing implemented and tested
—APE or HYP (without unitary projection) may work better for Konishi

Backup: Konishi operator on the lattice

$$
\mathcal{O}_{K}=\sum_{\mathrm{I}} \operatorname{Tr}\left[\phi^{\mathrm{I}} \Phi^{\mathrm{I}}\right]
$$

On the lattice the scalars ϕ^{I} are twisted and wrapped up in the complexified gauge field \mathcal{U}_{a}

Given $\mathcal{U}_{a} \approx \mathbb{I}+\mathcal{A}_{a}$ the most obvious way to extract the scalars is

$$
\widehat{\varphi}^{a}=\mathcal{U}_{a} \overline{\mathcal{U}}_{a}-\frac{1}{N} \operatorname{Tr}\left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right] \mathbb{I}
$$

This is still twisted, so all $\{a, b\}$ contribute to R-singlet Konishi

$$
\widehat{\mathcal{O}}_{K}=\sum_{a, b} \operatorname{Tr}\left[\widehat{\varphi}^{a} \widehat{\varphi}^{b}\right]
$$

Backup: Scaling dimensions from Monte Carlo RG

Couplings flow under RG blocking transformation R_{b}
n-times-blocked system is $H^{(n)}=R_{b} H^{(n-1)}=\sum_{i} c_{i}^{(n)} \mathcal{O}_{i}^{(n)}$

Consider linear expansion around fixed point H^{\star} with couplings c_{i}^{\star}

$$
c_{i}^{(n)}-c_{i}^{\star}=\left.\sum_{j} \frac{\partial c_{i}^{(n)}}{\partial c_{j}^{(n-1)}}\right|_{H^{\star}}\left(c_{j}^{(n-1)}-c_{j}^{\star}\right) \equiv \sum_{j} T_{i j}^{\star}\left(c_{j}^{(n-1)}-c_{j}^{\star}\right)
$$

$T_{i j}^{\star}$ is the "stability matrix"

Eigenvalues of $T_{i j}^{\star}$ are scaling dimensions of corresponding operators

Backup: Pfaffian phase dependence on $\lambda_{\text {lat }}, \mu, \kappa$

We observe little dependence on κ
Fluctuations in phase grow as $\lambda_{\text {lat }}$ increases

