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Context: Why lattice supersymmetry

At strong coupling...
—Supersymmetric gauge theories are particularly interesting:

Dualities, holography, confinement, conformality, . . .

—Nonperturbative lattice discretization is particularly useful
Numerical analysis provides complementary approach to SCGT

Proven success for QCD; many potential susy applications:
Compute Wilson loops, spectrum, scaling dimensions, etc.,

complementing perturbation theory, holography, bootstrap, . . .

Further direct checks of conjectured dualities

Predict low-energy constants from dynamical susy breaking

Validate or refine AdS/CFT-based modelling
(e.g., QCD phase diagram, condensed matter systems)
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Context: Why not lattice supersymmetry

There is a problem with supersymmetry in discrete space-time
Recall: supersymmetry extends Poincaré symmetry

by spinorial generators QI
α and Q

I
α̇ with I = 1, · · · ,N

The resulting algebra includes
{

Qα,Qα̇

}
= 2σµ

αα̇Pµ

Pµ generates infinitesimal translations, which don’t exist on the lattice
=⇒ supersymmetry explicitly broken at classical level

Consequence for lattice calculations
Quantum effects generate (typically many) susy-violating operators

Fine-tuning their couplings to restore susy is generally not practical
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Exact susy on the lattice: N = 4 SYM
In order to forbid generation of susy-violating operators

(some subset of) the susy algebra must be preserved

In four dimensions N = 4 supersymmetric Yang–Mills (SYM)
is the only known system with a supersymmetric lattice formulation

N = 4 SYM is a particularly interesting theory
SU(N) gauge theory with four fermions ΨI and six scalars ΦIJ,

all massless and in adjoint rep.

Action consists of kinetic, Yukawa and four-scalar terms

Supersymmetric: 16 supercharges QI
α and Q

I
α̇ with I = 1, · · · ,4

Fields and Q’s transform under global SU(4) ' SO(6) R symmetry

Conformal: β function is zero for all ’t Hooft couplings λ
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Exact susy on the lattice: topological twisting

What is special about N = 4 SYM

The 16 fermionic supercharges QI
α and Q

I
α̇ fill a Kähler–Dirac multiplet:

Q1
α Q2

α Q3
α Q4

α

Q
1
α̇ Q

2
α̇ Q

3
α̇ Q

4
α̇

= Q+ γµQµ + γµγνQµν + γµγ5Qµνρ + γ5Qµνρσ

−→ Q+ γaQa + γaγbQab
with a,b = 1, · · · ,5

This is a decomposition in representations of a “twisted rotation group”

SO(4)tw ≡ diag
[
SO(4)euc ⊗ SO(4)R

]
SO(4)R ⊂ SO(6)R

In this notation there is a susy subalgebra {Q,Q} = 2Q2 = 0
This can be exactly preserved on the lattice
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Twisted N = 4 SYM

SO(4)tw ≡ diag
[
SO(4)euc ⊗ SO(4)R

]
Q, Qµ, Qµν , . . . transform with integer spin – no longer spinors!

Fermion fields decompose in the same way, ΨI −→ {η, ψa, χab}

Scalar fields transform as SO(4)tw vector Bµ plus two scalars φ, φ
Combine with Aµ in complexified five-component gauge field

Aa = Aa + iBa = (Aµ, φ) + i(Bµ, φ) and similarly for Aa

Complexified gauge field =⇒ U(N) = SU(N) ⊗ U(1) gauge invariance

Irrelevant in the continuum, but will affect lattice calculations
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Twisted N = 4 SYM

SO(4)tw ≡ diag
[
SO(4)euc ⊗ SO(4)R

]
Q, Qµ, Qµν , . . . transform with integer spin – no longer spinors!

Fermion fields decompose in the same way, ΨI −→ {η, ψa, χab}

Scalar fields transform as SO(4)tw vector Bµ plus two scalars φ, φ
Combine with Aµ in complexified five-component gauge field

Aa = Aa + iBa = (Aµ, φ) + i(Bµ, φ) and similarly for Aa

In flat space twisting is just a change of variables, no effect on physics

Same lattice system also results
from orbifolding / dimensional deconstruction approach
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Now we can move directly to the lattice

Twisting gives manifestly supersymmetric lattice action for N = 4 SYM

S =
N

2λlat
Q

(
χabFab + ηDaUa −

1
2
ηd

)
− N

8λlat
εabcde χabDcχde

QS = 0 follows from Q2 · = 0 and Bianchi identity

We have exact U(N) gauge invariance

We exactly preserve Q, one of 16 supersymmetries

Restoration of twisted SO(4)tw in continuum limit
guarantees recovery of other 15 Qa and Qab

The theory is almost suitable for practical numerical calculations. . .
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Stabilizing numerical calculations

We need to add two deformations to the Q-invariant action

Both deal with features required by the supersymmetric construction

Scalar potential to regulate flat directions
Gauge links Ua must be elements of algebra, like fermions

−→ Add scalar potential
( 1

N Tr
[
UaUa

]
− 1

)2
to lift flat directions

Otherwise Ua can wander far from continuum form Ua = IN +Aa

Plaquette determinant to suppress U(1) sector of U(N)

Ua complexified −→ Add approximate SU(N) projection |detPab − 1|2
where Pab is the product of four Ua around the elementary plaquette

Otherwise encounter strong-coupling U(1) confinement transition
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Soft susy breaking from naive stabilization

Directly adding scalar potential and plaquette determinant to action
explicitly breaks supersymmetry

S =
N

2λlat
Q

(
χabFab + ηDaUa −

1
2
ηd

)
− N

8λlat
εabcde χabDcχde

+
N

2λlat
µ2

(
1
N

Tr
[
UaUa

]
− 1

)2

+ κ |detPab − 1|2

Breaking is soft
Guaranteed to vanish as µ, κ −→ 0

Also suppressed ∝ 1/N2

1–10% effects in practice
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New development: Supersymmetric stabilization

Possible to construct Q-invariant scalar potential and plaquette det.

However, these result in positive vacuum energy (non-susy)

S =
N

2λlat
Q

(
χabFab + η

{
DaUa + X

}
− 1

2
ηd

)
− N

8λlat
εabcde χabDcχde

X = B2
(

1
N

Tr
[
UaUa

]
− 1

)2

+ G |detPab − 1|2
↗

Again effects vanish as B,G −→ 0

Allows access to much stronger λ
with much smaller artifacts
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Final thought on the lattice N = 4 SYM formulation

The construction
is obviously very complicated

(For experts: &100 inter-node data
transfers in the fermion operator)

To reduce this barrier to others entering the field,
we make our efficient parallel code publicly available

github.com/daschaich/susy

Evolved from MILC lattice QCD code,
presented in arXiv:1410.6971 — CPC appeared yesterday
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Physics result: Static potential is Coulombic at all λ

Static potential V (r) from r × T Wilson loops: W (r ,T ) ∝ e−V (r) T

Fit V (r) to Coulombic
or confining form

V (r) = A− C/r

V (r) = A− C/r + σr

Fits to confining form always produce vanishing string tension σ = 0

Working on standard methods to reduce noise
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Coupling dependence of V (r) = A− C/r

—Perturbation theory predicts C(λ) = λ/(4π) +O(λ2)

—AdS/CFT predicts C(λ) ∝
√
λ for N →∞, λ→∞, λ� N

We see agreement with perturbation theory for N = 2, λ . 2,
and a tantalizing discrepancy for N = 3, λ & 1

No dependence on µ or κ −→ apparently insensitive to soft Q breaking
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Recapitulation

Strongly coupled supersymmetric field theories very interesting
to study through lattice calculations

Practical numerical calculations possible for lattice N = 4 SYM
based on exact preservation of twisted susy subalgebra Q2 = 0

The construction is complicated
−→ publicly-available code to reduce barriers to entry

The static potential is always Coulombic
For N = 2 C(λ) is consistent with perturbation theory
For N = 3 an intriguing discrepancy at stronger couplings

There are many more directions to pursue in the future
I Measuring anomalous dimension of Konishi operator

I Understanding the (absence of a) sign problem
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Thank you!
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Thank you!

Collaborators
Simon Catterall, Poul Damgaard, Tom DeGrand and Joel Giedt

Funding and computing resources
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Supplement: Konishi operator scaling dimension

Recall N = 4 SYM is conformal
=⇒ All correlation functions decay algebraically ∝ r−∆

The Konishi operator is the simplest conformal primary operator

OK =
∑

I

Tr
[
ΦIΦI] CK (r) ≡ OK (x + r)OK (x) = Ar−2∆K

There are many predictions for the scaling dim. ∆K (λ) = 2 + γK (λ)

From perturbation theory for small λ,
related to λ→∞ by S duality under 4πN

λ ←→ λ
4πN

From holography for N →∞ and λ→∞ but λ� N

Bounds on max {∆K} from the conformal bootstrap program

We will add lattice gauge theory to this list
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Konishi operator on the lattice

OK =
∑

I

Tr
[
ΦIΦI] −→ ÔK =

∑
a, b

Tr
[
ϕ̂aϕ̂b

]
with ϕ̂a = UaUa −

1
N

Tr
[
UaUa

]
I

C(r) = ÔK (x + r)ÔK (x) ∝ r−2∆K

Consistent with
power laws using perturbative ∆

Need Q-invariant plaquette det.
for reasonable C(r) on 84 lattice

Obviously not a stable way to determine ∆K — we have other tools
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Preliminary Konishi ∆K from Monte Carlo RG
Scaling dimension is eigenvalue of MCRG “stability matrix”

Simple trial (only statistical errors)
correctly finds ∆K → 2 as λ→ 0

Significant volume dependence
−→ approach perturbation theory

as L increases

Need to check systematics:
different numbers of blocking steps, different operators, different G

Need to produce consistent results from independent approach(es)
such as finite-size scaling
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Supplement: The (absence of a) sign problem

In lattice gauge theory we compute operator expectation values

〈O〉 =
1
Z

∫
[dU ][dU ]O e−SB [U ,U ] pfD[U ,U ]

pfD = |pfD|eiα is generically complex for lattice N = 4 SYM
−→ Complicates interpretation of

[
e−SB pfD

]
as Boltzmann weight

Have to reweight “phase-quenched” (pq) calculations

〈O〉pq =
1
Zpq

∫
[dU ][dU ]O e−SB [U ,U ] |pfD| 〈O〉 =

〈
Oeiα〉

pq〈
eiα

〉
pq

Sign problem: This breaks down if
〈
eiα〉

pq is consistent with zero

David Schaich (Syracuse) LatticeN = 4 SYM SCGT15, KMI Nagoya 19 / 21



Illustration of sign problem and its absence
With periodic temporal fermion boundary conditions

we have an obvious sign problem,
〈
eiα〉

pq consistent with zero

With anti-periodic BCs and all else the same
〈
eiα〉

pq ≈ 1
−→ phase reweighting not even necessary

Even stranger
Other 〈O〉pq nearly identical

despite sign problem...

Can this be understood?
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Pfaffian phase dependence on volume and N

No indication of a sign problem with anti-periodic BCs

Pfaffian P = |P|eiα is nearly real and positive, 1− 〈cos(α)〉 � 1
Fluctuations in pfaffian phase don’t grow with the lattice volume
Insensitive to number of colors N = 2, 3, 4

Hard calculations
Each 43×6 measurement

requires ∼8 days,
∼10GB memory

Parallel O(n3) algorithm
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Backup: Failure of Leibnitz rule in discrete space-time

Given that
{

Qα,Qα̇

}
= 2σµ

αα̇Pµ = 2iσµ
αα̇∂µ is problematic,

why not try
{

Qα,Qα̇

}
= 2iσµ

αα̇∇µ for a discrete translation?

Here ∇µφ(x) = 1
a [φ(x + aµ̂)− φ(x)] = ∂µφ(x) + a

2∂
2
µφ(x) +O(a2)

Essential difference between ∂µ and ∇µ on the lattice (a > 0)

∇µ [φ(x)χ(x)] = a−1 [φ(x + aµ̂)χ(x + aµ̂)− φ(x)χ(x)]

= [∇µφ(x)]χ(x) + φ(x)∇µχ(x) + a [∇µφ(x)]∇µχ(x)

We only recover the Leibnitz rule ∂µ(fg) = (∂µf )g + f∂µg when a→ 0
=⇒ “Discrete supersymmetry” breaks down on the lattice

(Dondi & Nicolai, “Lattice Supersymmetry”, 1977)
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Backup: Twisting←→ Kähler–Dirac fermions

The Kähler–Dirac representation is related to the usual QI
α,Q

I
α̇ by

Q1
α Q2

α Q3
α Q4

α

Q
1
α̇ Q

2
α̇ Q

3
α̇ Q

4
α̇

= Q+ γµQµ + γµγνQµν + γµγ5Qµνρ + γ5Qµνρσ

−→ Q+ γaQa + γaγbQab
with a,b = 1, · · · ,5

The 4× 4 matrix involves R symmetry transformations along each row
and (euclidean) Lorentz transformations along each column

=⇒ Kähler–Dirac components transform under “twisted rotation group”

SO(4)tw ≡ diag
[
SO(4)euc ⊗ SO(4)R

]
↑

only SO(4)R ⊂ SO(6)R
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Backup: Details of Q2 = 0 on the lattice
Goal: Preserve Q supersymmetry on the lattice

1 Q2 · = 0
2 Q directly interchanges bosonic←→ fermionic d.o.f.

Both conditions are easy to verify in five-component notation:

Q Ua = ψa Q ψa = 0

Q χab = −Fab Q Ua = 0
Q η = d Q d = 0

Gauge field Ua and ψa live on links between lattice sites
Ua must be elements of algebra gl(N,C) 3 ψa

=⇒ Non-trivial to ensure Ua −→ I +Aa in the continuum limit

Field strength Fab and χab live on diagonals of oriented faces

Bosonic auxiliary field d and η live on sites
Usual equation of motion: d = Da Ua
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Backup: A∗4 lattice with five links in four dimensions

Aa = (Aµ, φ) may remind you of dimensional reduction

On the lattice we need to treat all five Ua symmetrically

—Start with hypercubic lattice
in 5d momentum space

—Symmetric constraint
∑

a ∂a = 0
projects to 4d momentum space

—Result is A4 lattice
−→ dual A∗

4 lattice in real space
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Backup: Twisted SO(4) symmetry on the A∗4 lattice

—Can picture A∗
4 lattice

as 4d analog of 2d triangular lattice

—Five basis vectors are non-orthogonal
and linearly dependent

—Preserves S5 point group symmetry

S5 irreps precisely match onto irreps of twisted SO(4)tw

5 = 4⊕ 1 : Ua −→ Aµ, φ

ψa −→ ψµ, ηµνρσ

10 = 6⊕ 4 : χab −→ χµν , ψµνρ
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Backup: Analytic results for exact lattice susy

S =
N

2λlat
Q

(
χabFab + ηDaUa −

1
2
ηd

)
− N

8λlat
εabcde χabDcχde

Gauge invariant, Q supersymmetric, S5 symmetric
The high degree of symmetry has important consequences

Moduli space preserved to all orders of lattice perturbation theory
−→ no scalar potential induced by radiative corrections

β function vanishes at one loop (at least)

Real-space RG blocking transformations preserve Q & S5

Only one marginal tuning to recover Qa and Qab in the continuum
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Backup: Hypercubic basis for A∗4 lattice

It is very convenient to represent the A∗
4 lattice

as a hypercube with a backwards diagonal
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Backup: Code performance—weak and strong scaling

Left: Strong scaling for U(2) and U(3) 163×32 RHMC

Right: Weak scaling for O(N3
Ψ) pfaffian calculation (fixed local volume)

NΨ ≡ 16N2L3NT is number of fermion degrees of freedom

Both plots on log–log axes with power-law fits
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Backup: Code performance for 2, 3 and 4 colors

Red: Find RHMC costs scaling ∼N5 (recall adjoint fermion d.o.f. ∝N2)

Blue: Pfaffian costs consistent with expected N6 scaling
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Backup: Thermalization
Thermalization becomes increasingly painful as N or L3×NT increase

Example: Evolution of smallest D†D eigenvalue |λ0|2

Should be possible to address this with better initial configuration
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Backup: The problem with flat directions
Gauge fields Ua can move far away from continuum form I +Aa

if Nµ2/(2λlat) becomes too small

Example for two-color (λlat, µ, κ) = (5, 0.2, 0.8) on 83×24 volume

Left: Ward identity violations are stable at ∼9%

Right: Polyakov loop wanders off to ∼109
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Backup: Lattice phase due to U(1) sector

1 Polyakov loop collapses =⇒ confining phase
(not present in continuum N = 4 SYM)

2 Plaquette determinant is variable in U(1) sector
Drops at same coupling λ as Polyakov loop

3 ρM is density of U(1) monopole world lines (DeGrand & Toussaint)
Non-zero when Polyakov loop and plaquette det. collapse
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Backup: Suppressing the U(1) sector

∆S = κ|detP − 1|2 suppresses the lattice strong-coupling phase

Produces 2κFµνFµν term in U(1) sector
=⇒ QED critical βc = 0.99 −→ critical κc ≈ 0.5
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Backup: Plaquette and determinant distributions

Larger couplings B and G produce
the desired sharper peaks

Price: Larger Ward identity violations
and larger computational costs
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Backup: Restoration of Qa and Qab supersymmetries

Restoration of the other 15 Qa and Qab in the continuum limit
follows from restoration of R symmetry (motivation for A∗

4 lattice)

Modified Wilson loops test R symmetries at non-zero lattice spacing
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Backup: N = 4 static potential from Wilson loops

Extract static potential V (r)
from r × T Wilson loops: W (r ,T ) ∝ e−V (r) T

Coulomb gauge trick from lattice QCD reduces A∗
4 lattice complications
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Backup: Perturbation theory for Coulomb coefficient

For range of λlat currently being studied, the perturbative series
for the U(3) Coulomb coefficient appears well convergent
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Backup: More tests of the U(2) static potential

Left: Projecting Wilson loops from U(2) −→ SU(2)
=⇒ factor of N2−1

N2 = 3/4

Right: Unitarizing links removes scalars =⇒ factor of 1/2

Both expected factors present, although (again) noisily
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Backup: More tests of the U(3) static potential

Left: Projecting Wilson loops from U(3) −→ SU(3)
=⇒ factor of N2−1

N2 = 8/9

Right: Unitarizing links removes scalars =⇒ factor of 1/2

Ratios look slightly higher than expected,
less noise in SU(3)-projected results
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Backup: Smearing for noise reduction

Smearing may reduce noise in static potential (etc.) measurements
—Stout smearing implemented and tested
—APE or HYP (without unitary projection) may work better for Konishi
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Backup: Konishi operator on the lattice

OK =
∑

I

Tr
[
ΦIΦI]

On the lattice the scalars ΦI are twisted
and wrapped up in the complexified gauge field Ua

Given Ua ≈ I +Aa the most obvious way to extract the scalars is

ϕ̂a = UaUa −
1
N

Tr
[
UaUa

]
I

This is still twisted, so all {a,b} contribute to R-singlet Konishi

ÔK =
∑
a, b

Tr
[
ϕ̂aϕ̂b

]
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Backup: Scaling dimensions from Monte Carlo RG

Couplings flow under RG blocking transformation Rb

n-times-blocked system is H(n) = RbH(n−1) =
∑

i c(n)
i O

(n)
i

Consider linear expansion around fixed point H? with couplings c?
i

c(n)
i − c?

i =
∑

j

∂c(n)
i

∂c(n−1)
j

∣∣∣∣∣∣
H?

(
c(n−1)

j − c?
j

)
≡

∑
j

T ?
ij

(
c(n−1)

j − c?
j

)

T ?
ij is the “stability matrix”

Eigenvalues of T ?
ij are scaling dimensions of corresponding operators
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Backup: Pfaffian phase dependence on λlat, µ, κ

We observe little dependence on κ

Fluctuations in phase grow as λlat increases
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