Strong Dynamics and Lattice Gauge Theory — — — Going Beyond QCD — — —

David Schaich (Syracuse)

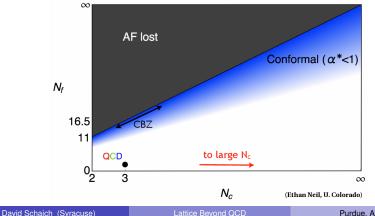
Purdue High Energy Theory Seminar, 7 April 2015

arXiv:1401.0195, arXiv:1404.0984, arXiv:1410.5886 & more to come with Anqi Cheng, Anna Hasenfratz, Greg Petropoulos and Aarti Veernala

Context: Going Beyond QCD

Focus on non-supersymmetric SU(3) gauge theories with N_F massless fundamental fermions

Much is still mysterious despite a few points of reference:



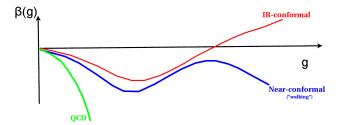
Purdue, April 2015 2 / 31

Context: Going Beyond QCD

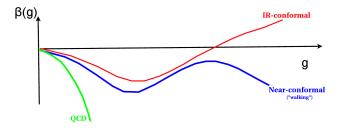
Focus on non-supersymmetric SU(3) gauge theories with N_F massless fundamental fermions

Much is still mysterious despite a few points of reference

Expect dramatically different dynamics as N_F increases:



Why strong dynamics beyond QCD

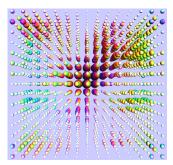


- Theoretical questions: What is the range of possible phenomena in strongly coupled systems? What are the most effective methods to study such systems?
- Phenomenological applications: What models of new strong dynamics are ruled out after LHC Run 1? What models remain viable and what do they predict for Run 2?

Why lattice gauge theory

Lattice discretization provides non-perturbative, gauge-invariant regularization of vectorlike gauge theories

Amenable to numerical analysis \longrightarrow complementary approach to study strongly coupled field theories



Evaluate observables from functional integral via importance sampling Monte Carlo

$$\langle \mathcal{O}
angle = rac{\int \mathcal{D} U \ \mathcal{O}(U) \ e^{-S[U]}}{\int \mathcal{D} U \ e^{-S[U]}}$$

U: four-dimensional field configurations *S*: action giving probability distribution e^{-S}

Why lattice gauge theory

Lattice discretization provides non-perturbative, gauge-invariant regularization of vectorlike gauge theories

Amenable to numerical analysis

 \longrightarrow complementary approach to study strongly coupled field theories

Proven success for QCD; more challenges in near-conformal contexts:

- Non-zero lattice spacing and finite volume violate conformality
- Slowly running gauge coupling complicates traditional lattice QCD analyses
- Harder to check against experiment and other techniques

Must compare multiple investigations to form a consistent picture
 Standard lattice QCD techniques likely no longer optimal

Outline: Lattice methods to go beyond QCD

Focus on $N_F = 12$ as an IR-conformal case study

- **O Running coupling** indicates IR fixed point (zero in β function)
- 2 Dirac operator eigenmode scaling predicts mass anomalous dimension $\gamma_m^{\star} = 0.235(27)$
- Sinite-size scaling predicts $\gamma_m^{\star} = 0.235(15)$ and $\gamma_g^{\star} \approx -0.5$

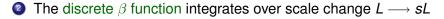
Not today: Thermal transitions also behave as expected for an IR-conformal system

For each method we had to develop novel improvements that can also be applied to lattice studies of other systems

Corresponding studies of $N_F = 8$ produce more "interesting" results No conclusive demonstration of spontaneous χ SB or IR conformality **Non-perturbative** β **function** (arXiv:1404.0984 & arXiv:1410.5886)

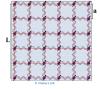
Define a scale-dependent running coupling g²_c(L; a) for lattice spacing "a" and lattice volume L⁴

Lattice spacing related to bare input coupling $eta_F \equiv 12/g_0^2$ at UV cutoff a^{-1}



$$eta_s(g_c^2;L) = rac{g_c^2(sL;a) - g_c^2(L;a)}{\log(s^2)}$$

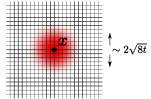
Solution Extrapolate $(a/L)^2 \rightarrow 0$ at fixed g_c^2 to obtain continuum $\beta_s(g_c^2)$



The gradient flow running coupling

The Yang–Mills gradient flow integrates an infinitesimal smoothing operation

Local observables measured after "flow time" tdepend on original fields within $r \simeq \sqrt{8t}$

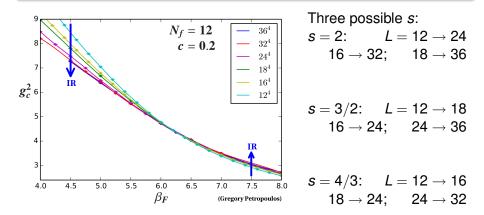


Perturbatively $g_{\overline{MS}}^2(\mu) \propto t^2 E(t)$ with $\mu = 1/\sqrt{8t}$ where $E = -\frac{1}{2} \text{Tr} [G_{\mu\nu} G^{\mu\nu}]$ is the energy density

Define running coupling $g_c^2(L; a)$ by fixing $c = L/\sqrt{8t}$

Running coupling data for $N_F = 12$

2 Evolution of g_c^2 upon scale change $L \longrightarrow sL$ produces discrete β_s

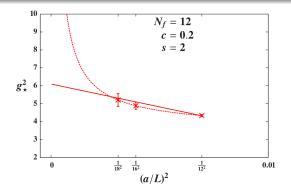


 $\beta_s(g_c^2; L)$ for each *s* and *L* vanishes around $4 \leq g_c^2 \leq 5$ Does the IR fixed point remain in the $(a/L)^2 \rightarrow 0$ continuum limit?

David Schaich (Syracuse)

Continuum extrapolation of finite-volume fixed points

Sextrapolate (a/L)² → 0 to obtain continuum result Consider g²_⋆(L) for which β_s(g²_⋆; L) = 0



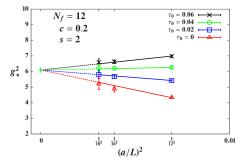
How to distinguish between two possible interpretations?1) Lattice cutoff effects lead to simple linear extrapolation2) Conformal fixed point is not a property of the continuum theory

New development: Improved continuum extrapolation

How to distinguish between two possible interpretations?

Recall that the gradient flow involves a smoothing operation that removes UV lattice artifacts

 \implies Reduce UV fluctuations with pre-smoothing before beginning flow $\implies \tilde{g}_c^2 \propto t^2 E(t + \tau_0 a^2)$ with $\tau_0 a^2 \ll t$ vanishing in continuum

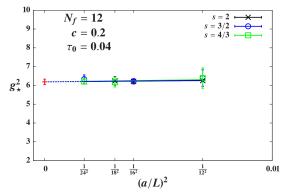


We find a conformal IR fixed point for $N_F = 12$

David Schaich (Syracuse)

Further tests of $N_F = 12$ fixed point

With fixed improvement $\tau_0 = 0.04$ we find the same fixed point for all three discrete β_s with scale change s = 2, 3/2 and 4/3



Continuum g_{\star}^2 is renormalization scheme dependent $g_{\star}^2 = 6.18(20)$ for c = 0.2 scheme $(g_{\star}^2 = 5.9$ for four-loop $\overline{\text{MS}})$ $g_{\star}^2 = 6.84(32)$ for c = 0.25 scheme $g_{\star}^2 = 7.13(48)$ for c = 0.3 scheme

David Schaich (Syracuse)

Checkpoint

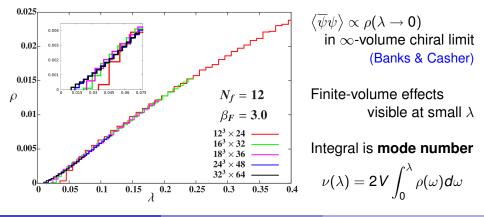
Given a conformal IR fixed point for 12-flavor SU(3) gauge theory what is the corresponding spectrum of anomalous dimensions?

- Running coupling indicates IR fixed point (zero in β function) New development: Improved continuum extrapolation (arXiv:1404.0984 & arXiv:1410.5886)
- 2 Dirac operator eigenmode scaling predicts mass anomalous dimension $\gamma_m^* = 0.235(27)$
- **③** Finite-size scaling predicts $\gamma_m^{\star} = 0.235(15)$ and $\gamma_g^{\star} \approx -0.5$

Dirac operator eigenvalues (arXiv:1301.1355 & arXiv:1311.1287)

 $\mathcal{L} \supset \overline{\Psi} (\not D + m) \Psi$ where $\not D$ is the **massless** Dirac operator *m* has scaling dimension $y_m = 1 + \gamma_m^* \Longrightarrow \dim \left[\overline{\Psi}\Psi\right] = 3 - \gamma_m^*$

Spectral density $\rho(\lambda)$ is histogram of eigenvalues λ

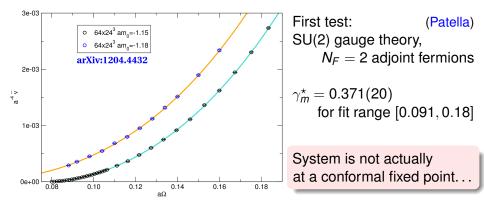


David Schaich (Syracuse)

γ_m^{\star} from eigenvalue mode number $\nu(\lambda)$

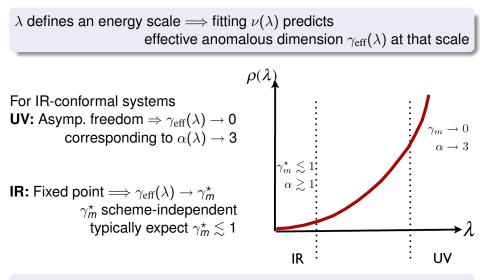
At a conformal fixed point $\rho(\lambda) \propto \lambda^{\alpha} \Longrightarrow \nu(\lambda) \propto V \int \rho(\omega) d\omega \propto V \lambda^{1+\alpha}$

Renormalization group relates $1 + \gamma_m^{\star} = \frac{4}{1 + \alpha}$ (Del Debbio & Zwicky)



David Schaich (Syracuse)

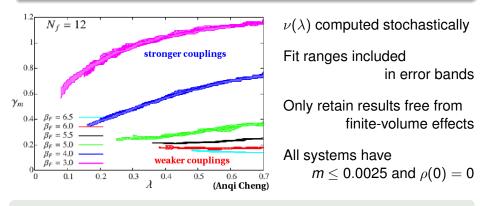
New development: Scale-dependent $\gamma_{\text{eff}}(\lambda)$



Ideally monitor evolution from perturbative UV to strongly coupled IR

$\gamma_{ m eff}(\lambda)$ from eigenmodes for $N_{ m F}=$ 12

Fit $\nu(\lambda) \propto \lambda^{1+\alpha}$ in a limited range of λ to find $1 + \gamma_{\text{eff}}(\lambda) = \frac{4}{1 + \alpha(\lambda)}$

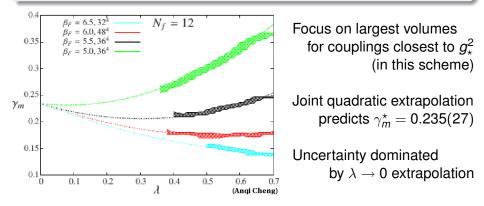


• Strong dependence on irrelevant gauge coupling $\beta_F \simeq 12/g_0^2$

• γ_{eff} increasing with λ is a sort of "backward flow" at strong coupling

$\gamma_m^{\star}(\lambda)$ from eigenmodes for $N_F = 12$

Extrapolate $\lim_{\lambda \to 0} \gamma_{\text{eff}}(\lambda)$ to find γ_m^{\star} at conformal fixed point in IR limit



A single fit for some range of $\lambda > 0$ would give a precise result but generally not γ_m^* at the $\lambda \to 0$ IR fixed point

David Schaich (Syracuse)

Checkpoint

 Running coupling indicates IR fixed point (zero in β function) New development: Improved continuum extrapolation (arXiv:1404.0984 & arXiv:1410.5886)

Dirac operator eigenmode scaling

predicts mass anomalous dimension $\gamma_m^{\star} = 0.235(27)$ New development: Scale-dependent $\gamma_{\text{eff}}(\lambda)$ and IR extrapolation (arXiv:1301.1355, arXiv:1311.1287 & work in progress)

3 Finite-size scaling predicts $\gamma_m^\star=$ 0.235(15) and $\gamma_q^\starpprox-$ 0.5

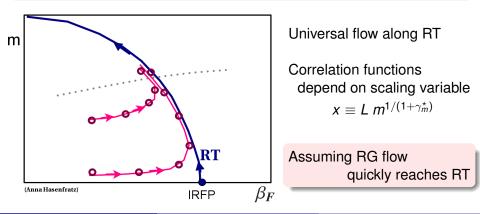
Finite-size scaling

(arXiv:1401.0195)

Wilson RG picture of finite-size scaling

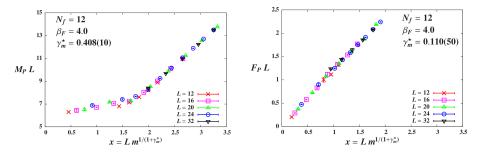
Fermion mass *m* is relevant coupling; gauge coupling β_F is irrelevant

End up at same point on renormalized trajectory (RT) by increasing *m* while decreasing amount of RG flow (*L*)



Finite-size scaling for $N_F = 12$

Correlation lengths only depend on scaling variable $x \equiv L m^{1/(1+\gamma_m^*)}$ \implies Predict γ_m^* by optimizing "curve collapse" where $\xi_H^{-1}L = f_H(x)$



Despite reasonable curve collapse

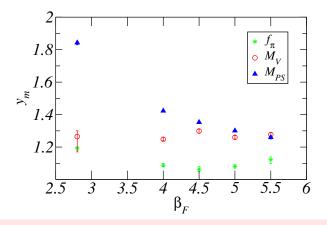
different observables prefer very different γ_m^{\star}

Non-universal γ_m^{\star} is inconsistent with conformal scaling

David Schaich (Syracuse)

Inconsistent finite-size scaling results for $N_F = 12$

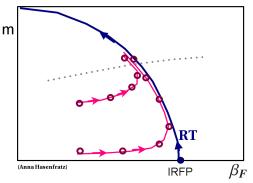
Different observables and (irrelevant) β_F prefer very different γ_m^*



How to distinguish between two possible interpretations? 1) Near-marginal gauge coupling \implies significant corrections to scaling 2) The theory does not have a conformal fixed point

New development: Approximate corrections to scaling

How to distinguish between two possible interpretations?



If gauge coupling runs slowly RG flow may not reach RT \implies No universal behavior

Leading correction to scaling: $\xi_H^{-1}L = f_H(x, gm^{\omega})$ where $\omega = -\gamma_g^{\star}/(1 + \gamma_m^{\star})$

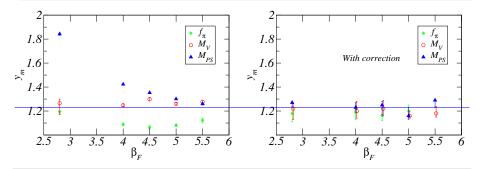
Two-loop $\overline{\text{MS}}$: small $\omega \approx 0.2$

Not practical to extract both γ_m^* and γ_g^* from curve collapse Instead approximate $f_H(x, gm^\omega) \approx f_H(x) [1 + c_a m^\omega]$

Consistent corrected scaling for $N_F = 12$

With approximate corrections to scaling $\xi_H^{-1}L = f_H(x) \left[1 + c_g m^{\omega}\right]$ different observables and β_F predict consistent γ_m^{\star}

Quality of curve collapse also improves (not surprising)



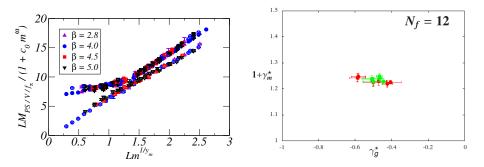
Carry out combined analyses of multiple data sets to better constrain γ_m^* and γ_a^* ...

David Schaich (Syracuse)

Consistent corrected scaling for $N_F = 12$

With approximate corrections to scaling $\xi_H^{-1}L = f_H(x) \left[1 + c_g m^{\omega}\right]$ different observables and β_F predict consistent γ_m^*

Combined analyses of multiple data sets better constrain γ_m^{\star} and γ_q^{\star}



Result from green points: $\gamma_m^{\star} = 0.235(15)$ and $\gamma_a^{\star} \approx -0.5$

David Schaich (Syracuse)

Recapitulation: Going beyond QCD on the lattice

Lattice studies of strongly coupled systems beyond QCD are theoretically interesting and phenomenologically important

Multiple independent methods produce a consistent picture of IR conformality for 12-flavor SU(3) gauge theory

- Running coupling indicates IR fixed point (zero in β function) New development: Improved continuum extrapolation (arXiv:1404.0984 & arXiv:1410.5886)
- **O Dirac operator eigenmode scaling** predicts mass anomalous dimension $\gamma_m^{\star} = 0.235(27)$ New development: Scale-dependent $\gamma_{\text{eff}}(\lambda)$ and IR extrapolation (arXiv:1301.1355, arXiv:1311.1287 & work in progress)
- Similar Scaling predicts $\gamma_m^{\star} = 0.235(15)$ and $\gamma_g^{\star} \approx -0.5$ New development: Corrections to scaling from nearly marginal *g* (arXiv:1401.0195)

Recapitulation: Going beyond QCD on the lattice

Lattice studies of strongly coupled systems beyond QCD are theoretically interesting and phenomenologically important

 Running coupling indicates IR fixed point (zero in β function) New development: Improved continuum extrapolation (arXiv:1404.0984 & arXiv:1410.5886)

- **O Dirac operator eigenmode scaling** predicts mass anomalous dimension $\gamma_m^{\star} = 0.235(27)$ New development: Scale-dependent $\gamma_{\text{eff}}(\lambda)$ and IR extrapolation (arXiv:1301.1355, arXiv:1311.1287 & work in progress)
- Similar Scaling predicts $\gamma_m^{\star} = 0.235(15)$ and $\gamma_g^{\star} \approx -0.5$ New development: Corrections to scaling from nearly marginal g(arXiv:1401.0195)

Methods can be applied to other systems, further tested and refined (e.g., studying lattice universality of anomalous dimensions)

Thank you!

Thank you!

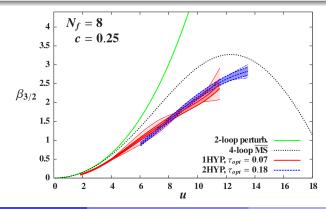
Collaborators Anqi Cheng, Anna Hasenfratz, Yuzhi Liu, Gregory Petropoulos, Aarti Veernala

Funding and computing resources

Supplement: Discrete β function for $N_F = 8$

Continuum extrapolated $\beta_s(g_c^2)$ with scale change s = 3/2increases monotonically for $g_c^2 \lesssim 14$

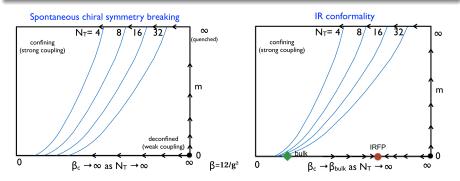
Although β_s is even smaller than IR-conformal four-loop \overline{MS} prediction any IR fixed point must be at stronger coupling



David Schaich (Syracuse)

Supplement: Thermal transitions to identify $S\chi SB$

May distinguish between chirally broken and IR-conformal cases from scaling $\Delta \beta_F$ of finite-temperature transitions as N_T increases



Plots show transitions and some RG flow lines in space of fermion mass *m* and gauge coupling β_F

Contrast only clear near critical surface at m = 0

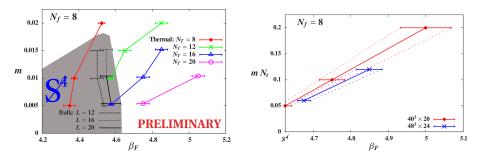
David Schaich (Syracuse)

Supplement: Search for $N_F = 8$ spontaneous χ SB

QCD-like scaling at large-*m* does not persist as *m* decreases

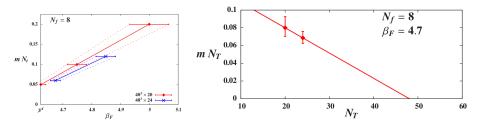
Thermal transitions run into lattice phase before reaching chiral limit

Even large lattice volumes up to $48^3 \times 24$ are insufficient to establish spontaneous chiral symmetry breaking



Supplement: Search for $N_F = 8$ spontaneous χ SB

Extrapolating $m \rightarrow 0$ at fixed $\beta_F = 4.7$ suggests $N_T \gtrsim 48$ needed to observe spontaneous chiral symmetry breaking

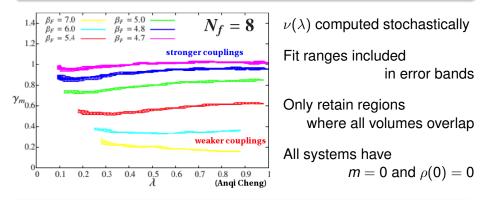


This behavior is extremely different from QCD but not sufficient to establish IR conformality

David Schaich	(Syracuse)
---------------	------------

Supplement: $\gamma_{\text{eff}}(\lambda)$ from eigenmodes for $N_F = 8$

Fit $\nu(\lambda) \propto \lambda^{1+\alpha}$ in a limited range of λ to find $1 + \gamma_{\text{eff}}(\lambda) = \frac{4}{1 + \alpha(\lambda)}$



Behaves very differently compared to $N_F = 12$ (and compared to QCD)

 γ_{eff} appears to run very slowly across a wide range of scales

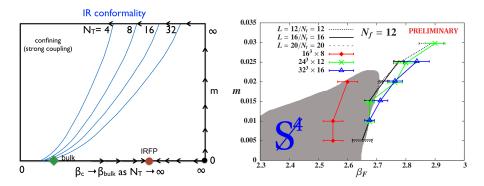
David Schaich (Syracuse)

Backup: Thermal transitions for $N_F = 12$

Behave as expected for an IR-conformal system

Accumulate at zero-temperature bulk transition for small enough m

 $N_T = 12$ and $N_T = 16$ transitions are indistinguishable



Backup: A bit about the Wilson flow

Evolution of gauge links $U(x, \mu)$ in a "flow time" *t*:

$$rac{d}{dt}V_t(x,\mu) = -g_0^2\left[rac{\delta}{\delta V_t(x,\mu)}S_W(V_t)
ight]V_t(x,\mu),$$

where $V_{t=0}(x,\mu) = U(x,\mu)$ and S_W is the Wilson gauge action

$$S_W(U) = rac{2N}{g_0^2} \sum_{\{P\}} \operatorname{ReTr}\left[1 - P(U)
ight]$$
 $P_{x,\mu
u}(U) = U_{x,\mu}U_{x+\widehat{\mu},
u}U_{x+\widehat{
u},\mu}^\dagger U_{x,
u}^\dagger$

Solution:

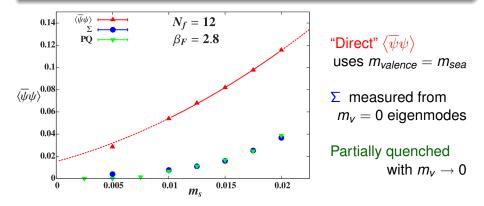
$$V_t(x,\mu) = \exp\left[-tg_0^2 \frac{\delta}{\delta U(x,\mu)} S_W(U)
ight] U(x,\mu)$$

 \implies numerical integration of infinitesimal stout smearing steps

David Schaich (Syracuse)

Backup: $\langle \overline{\psi}\psi \rangle$ in three ways for $N_F = 12$

The chiral condensate directly probes chiral symmetry, but is explicitly broken by non-zero fermion mass on lattice



Minimal example of sensitivity to method: Same quantity extracted from same gauge field configurations

David Schaich (Syracuse)

Backup: Fermion mass dependence of $\langle \overline{\psi}\psi \rangle$

 $\langle \overline{\psi}\psi \rangle$ depends on both valence mass m_v and sea mass m_s For massless Dirac operator, $\rho(\lambda)$ depends only on m_s

$$\langle \overline{\psi}\psi \rangle_{m_{\nu}; m_{s}} = m_{\nu} \int \frac{\rho(\lambda, m_{s})}{\lambda^{2} + m_{\nu}^{2}} d\lambda + m_{\nu}^{5} \int \frac{\rho(\lambda, m_{s})}{(\lambda^{2} + m_{\nu}^{2}) \lambda^{4}} d\lambda$$
$$+ \gamma_{1} m_{\nu} \Lambda^{2} + \gamma_{2} m_{\nu} + \mathcal{O} (1/\Lambda)$$

where $\Lambda = a^{-1}$ is the UV cutoff

(Leutwyler & Smilga)

Quadratic UV divergence complicates chiral extrapolation

Can address with partially-quenched ($m_v \neq m_s$) measurements, to extrapolate $m_v \rightarrow 0$ with fixed m_s

Can also remove m_v dependence via $\Sigma_{m_s} = \pi \rho(0, m_s) = \langle \overline{\psi} \psi \rangle_{m_v=0; m_s}$

It is a good check that these two approaches agree!

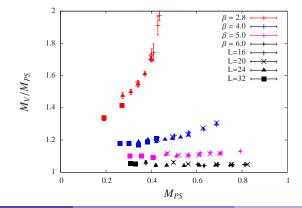
Backup: Dependence on gauge coupling for $N_F = 12$

Look at simple ratio M_V/M_P

plotted against relevant parameter (fermion mass $m \rightsquigarrow M_P$)

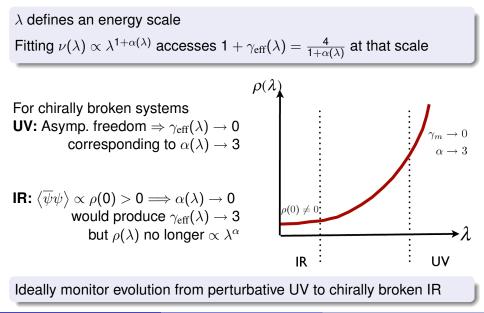
Even though β_F is formally irrelevant

it has significant effects for $M_P\gtrsim 0.2a^{-1}$



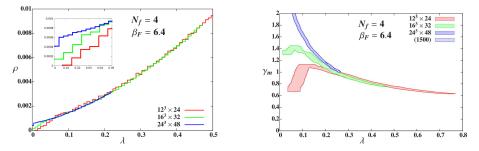
David Schaich (Syracuse)

Backup: $\gamma_{\text{eff}}(\lambda)$ for chirally broken systems



David Schaich (Syracuse)

Backup: Finite-volume effects in $\gamma_{\text{eff}}(\lambda)$ from $\nu(\lambda)$

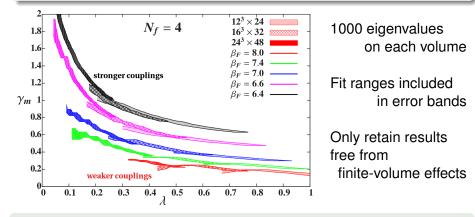


• As discussed above, $\langle \overline{\psi}\psi \rangle \propto \rho(\lambda \to 0) > 0 \Longrightarrow \gamma_{\text{eff}} \nearrow 3$, but scaling $\rho(\lambda) \propto \lambda^{\alpha}$ breaks down in this situation

- Finite-volume effects can produce a "gap" with $\rho(0) = 0$ This is a different breakdown of the scaling, leading to $\gamma_{eff} \searrow 0$
- Both of these effects are unphysical; we remove the finite-volume transients from most $\gamma_{\rm eff}$ plots

Backup: $\gamma_{\rm eff}(\lambda)$ for QCD-like $N_F = 4$

Fit $\nu(\lambda) \propto \lambda^{1+\alpha}$ in a limited range of λ to find $1 + \gamma_{\text{eff}}(\lambda) = \frac{4}{1 + \alpha(\lambda)}$

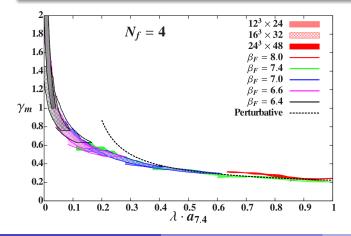


m = 0 except for chirally broken systems at $\beta_F = 6.6$ and 6.4 where $\gamma_{\rm eff} \nearrow$ 2, becoming unphysically large

David Schaich (Syracuse)

Backup: Rescaled $\gamma_{\rm eff}(\lambda)$ for QCD-like $N_F = 4$

- Rescale $\lambda \to \left(\frac{a_{7.4}}{a}\right)^{1+\gamma_{\text{eff}}(\lambda)} \lambda$ to plot with lattice spacing fixed
- Relative lattice spacings from gradient flow & MCRG matching
- Match to one-loop perturbation theory at $\lambda \cdot a_{7.4} = 0.8$



Universal curve from χ SB to asymp. freedom

Strong test of method & control over systematics

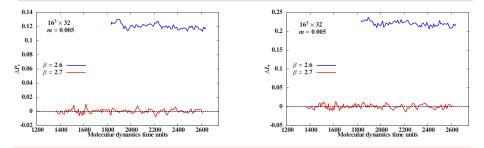
David Schaich (Syracuse)

Backup: Order parameters for S^4 phase

Staggered lattice actions possess exact single-site shift symmetry which is spontaneously broken in a novel lattice phase we encountered

Order parameters (any or all μ)

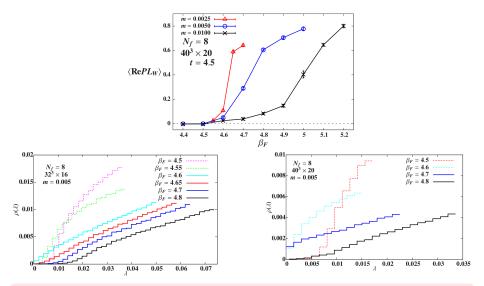
$$\Delta P_{\mu} = \langle \operatorname{ReTr} \Box_{n} - \operatorname{ReTr} \Box_{n+\mu} \rangle_{n_{\mu} \text{ even}}$$
$$\Delta L_{\mu} = \left\langle \alpha_{\mu,n} \overline{\chi}_{n} U_{\mu,n} \chi_{n+\mu} - \alpha_{\mu,n+\mu} \overline{\chi}_{n+\mu} U_{\mu,n+\mu} \chi_{n+2\mu} \right\rangle_{n_{\mu} \text{ even}}$$



S^4 has never been seen before, but is clear in our data

David Schaich (Syracuse)

Backup: Sample $N_F = 8$ transition signals



Need $N_T = 20$ to observe chirally broken phase at m = 0.005

David Schaich (Syracuse)