



# Lattice Strong Dynamics Turning it up to ten

David Schaich, 19 April 2012

#### arXiv:1204.XXXX arXiv:120X.XXXX LSD Collaboration

#### **Broad Outline**

- LSD Philosophy and Program (brief review)
- Lattice gauge theory with ten light fermions: Background <u>Lattice Issues</u>

Results

# Lattice Strong Dynamics Collaboration

Argonne Heechang Na, James Osborn Berkeley Sergey Syritsyn Boston Richard Brower, Michael Cheng,



Claudio Rebbi, Oliver Witzel

Colorado DS

Fermilab Ethan Neil

Livermore Mike Buchoff, Chris Schroeder,

Pavlos Vranas, Joe Wasem

NVIDIA Ron Babich, Mike Clark

UC Davis Joseph Kiskis

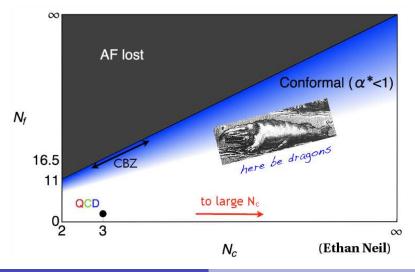
U Wash. Saul Cohen

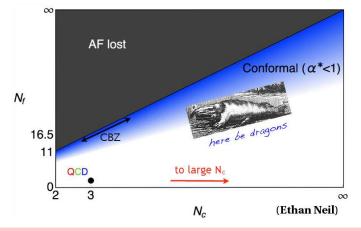
Yale Thomas Appelquist, George Fleming,

Meifeng Lin, Gennady Voronov

Performing non-perturbative studies of strongly interacting theories likely to produce observable signatures at the Large Hadron Collider What is the range of possible behavior of strongly-coupled systems?

 $SU(N_c)$  gauge theories with  $N_f$  massless fundamental fermions (similar picture for other representations)

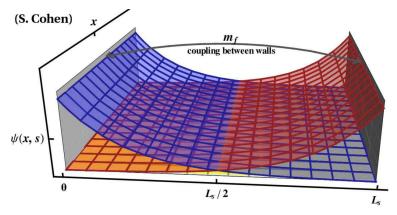




#### Dragons

- Large "theory space" N<sub>c</sub>, N<sub>f</sub>, fermion representation
- Coupling runs more slowly  $\Longrightarrow$  lattice artifacts can be more severe
- (Potentially) widely separated scales overflow the lattice volume
- We don't know the answer  $\implies$  systematic effects harder to assess

# Domain wall fermions address (some) systematics



- Form a fifth dimension from *L<sub>s</sub>* copies of the 4d gauge fields
- Exact chiral symmetry at finite lattice spacing in the limit  $L_s \rightarrow \infty$
- At finite  $L_s$ , "residual mass"  $m_{res} \ll m_f$ ;  $m = m_f + m_{res}$
- $32^3 \times 64$  with  $L_s = 16$ : significant computational expense  $m_{res} \approx 2.6 \times 10^{-5}$  [2f];  $82 \times 10^{-5}$  [6f];  $170 \times 10^{-5}$  [10f]

#### 100s of millions of core-hours on clusters and supercomputers Livermore Nat'l Lab; USQCD (DOE); XSEDE (NSF); etc.









# Lattice Strong Dynamics projects

#### Strategy

- Focus on QCD-like analyses, using lattice QCD as baseline
- Explore trends for increasing  $N_f = 2 \longrightarrow 6 \longrightarrow 10$
- Attempt to match IR scale(s) for more direct comparison
- Use domain wall fermions for good chiral and flavor symmetries

#### Goals and results

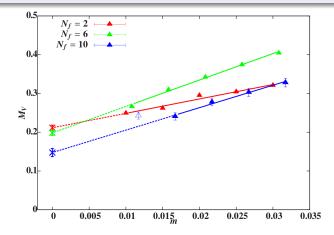
• For  $N_f = 6$ , we studied the spectrum, *S* parameter,

WW scattering and baryonic form factors

- Simultaneously ( in 2009! ), we started working on  $N_f = 10$ , planning to carry out a similar program
- The  $N_f = 10$  project encountered many issues (some anticipated)

### Attempt to match IR scales (vector meson mass)

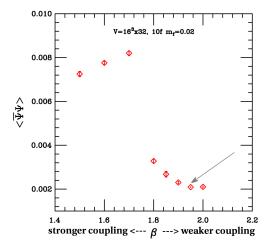
Fix coupling  $\beta = 6/g^2$ , consider a range of fermion masses *m* 



For  $N_f = 10$ ,  $M_{V0} \equiv \lim_{m \to 0} M_V$  seems too small  $\implies$  We should have used a stronger coupling

# Issue: Strong-coupling lattice artifacts

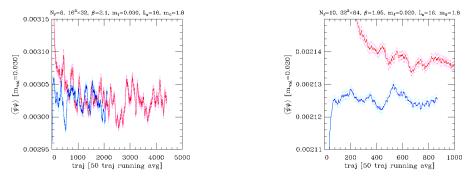
At strong couplings, lattice artifacts change behavior of the system



Visible effects in  $\langle \overline{\psi}\psi
angle$  at any stronger coupling than we used

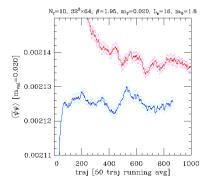
### Issue: Thermalization and autocorrelations

- We generate a Markov chain of gauge field configurations
   Nearby links in the chain are correlated
- From initial state, system thermalizes to equilibrium distribution
- Independent measurements require autocorrelations to die off

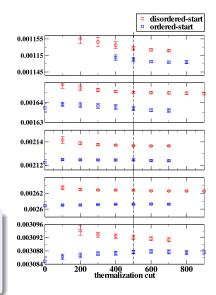


Independent ensembles starting from either random or ordered states  $\implies$  Find thermalization time from convergence to equilibrium

### Issue: Thermalization and autocorrelations

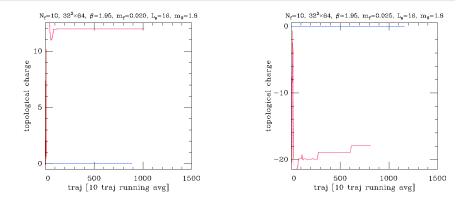


- Random and ordered initial states
   Goal: convergence to equilibrium ⇒ thermalization time
- Result: two independent samples



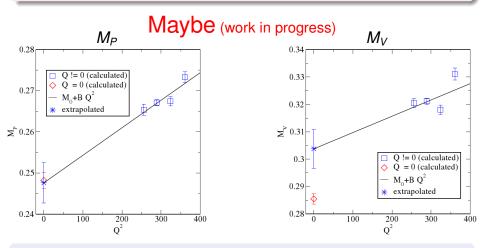
# Issue: Fixed topology

Topological observables typically have the longest autocorrelations



Topological charge is (nearly) fixed throughout each Markov chain Q = 0 from ordered starts,  $Q \neq 0$  (sometime large) for random starts  $\implies$  Could this explain why the ensembles don't converge?

# Topological charge is (nearly) fixed throughout each Markov chain $\implies$ Could this explain why the ensembles don't converge?

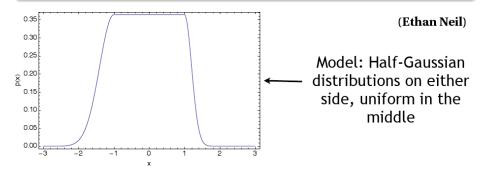


Can conclude true distribution centered between the two ensembles More robust analysis requires topological susceptibility

|  | Ten | Flav | ors | on | the | Lat | tice |
|--|-----|------|-----|----|-----|-----|------|
|--|-----|------|-----|----|-----|-----|------|

# Combination procedure

- Only two independent samples of the statistical distribution
- Estimate width of distribution from maximum difference between the two samples for each fermion mass

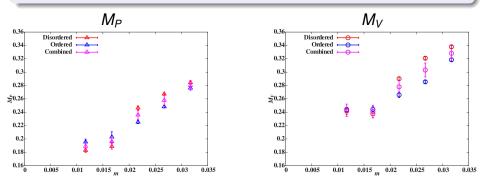


Resulting combined data agree with simple weighted averages,

but have larger error bars

# Combination procedure

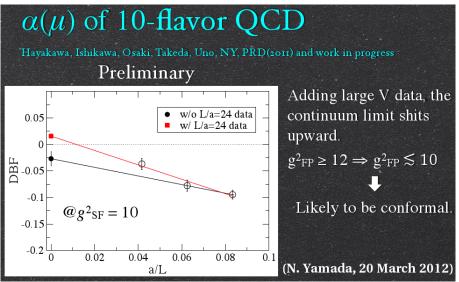
- Only two independent samples of the statistical distribution
- Estimate width of distribution from maximum difference between the two samples for each fermion mass



Resulting combined data agree with simple weighted averages, but have larger error bars

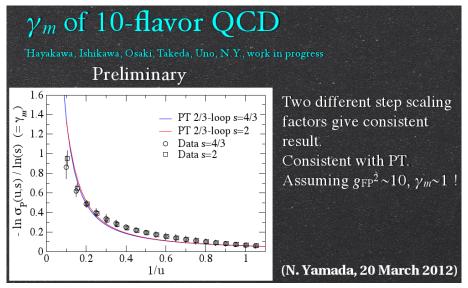
# Meanwhile, in Japan...

Indication of strongly-coupled IR fixed point for  $N_f = 10$ 

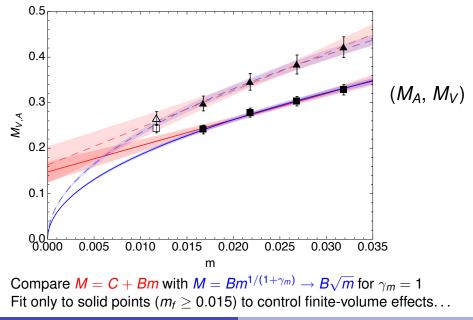


# Meanwhile, in Japan...

Indication of large mass anomalous dimension  $\gamma_m \sim 1$  for  $N_f = 10$ 

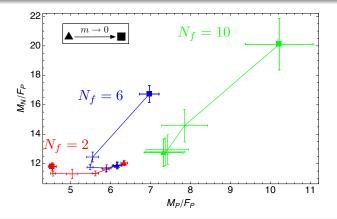


### Issue: How to decide IR conformality from spectrum?



### Issue: Finite-volume effects

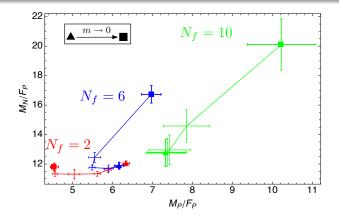
#### Range of accessible masses determined by lattice volume If masses get too small, finite-volume effects significant



In this diagnostic, finite-volume effects push points up and to the right by increasing the masses but decreasing  $F_P$ 

#### **Expectations**

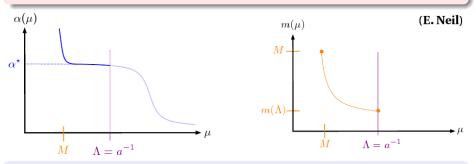
QCD-like:  $M_P \rightarrow 0$  as  $m \rightarrow 0$ , while  $F_P > 0$  and  $M_N > 0$  (cf.  $N_f = 2$ ) IR conformal: All  $\propto m^{1/[1+\gamma_m]} \implies$  ratios should stay roughly constant



 $N_f = 10$  ratios are roughly constant: consistent with IR-conformality **as well as** QCD-like dynamics with large *m* and finite-volume effects

# Mass-deformed IR-conformal spectrum analysis

Conformality explicitly broken by lattice spacing, volume, fermion mass

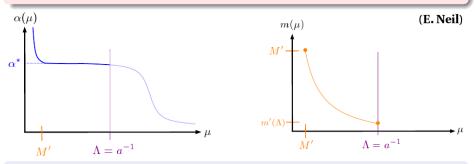


- IR fixed point governs physics up to lattice cutoff  $\Lambda = a^{-1}$
- Small fermion mass  $m(\Lambda) = m$  at cutoff runs according to  $\gamma_{\star}$
- Fermions screen out around m(M) = M, inducing confinement All masses and decay constants scale  $\sim m^{1/(1+\gamma_*)}$

A slowly-running theory will look IR-conformal for m too large

# Mass-deformed IR-conformal spectrum analysis

Conformality explicitly broken by lattice spacing, volume, fermion mass

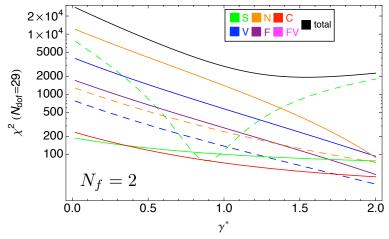


- IR fixed point governs physics up to lattice cutoff  $\Lambda = a^{-1}$
- Small fermion mass m(Λ) = m at cutoff runs according to γ<sub>\*</sub>
- Fermions screen out around m(M) = M, inducing confinement All masses and decay constants scale  $\sim m^{1/(1+\gamma_*)}$

A slowly-running theory will look IR-conformal for m too large

# Conformal fit $\chi^2$ vs. $\gamma_m$ , $N_f = 2$

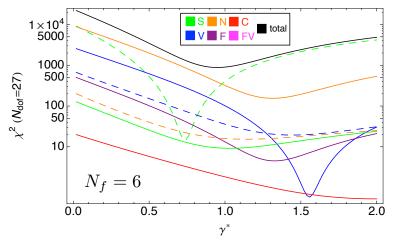
As  $N_f$  increases, minima develop and move to smaller  $\gamma_m$ 



 $N_f = 2$  is QCD; only  $M_P$  shows a minimum:  $\gamma_m \approx 1 \implies M_P \sim m^{1/2}$ 

# Conformal fit $\chi^2$ vs. $\gamma_m$ , $N_f = 6$

As  $N_f$  increases, minima develop and move to smaller  $\gamma_m$ 



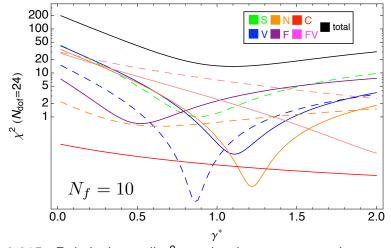
 $N_f = 6$  is QCD-like;

minima around  $\gamma_m \approx$  1.5 are spurious

Ten Flavors on the Lattice

# Conformal fit $\chi^2$ vs. $\gamma_m$ , $N_f = 10$

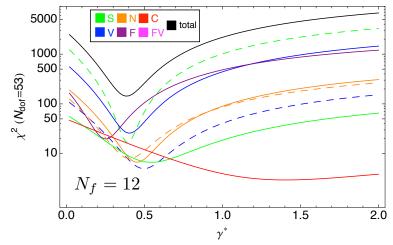
As  $N_f$  increases, minima develop and move to smaller  $\gamma_m$ 



 $m_f \ge 0.015$ ; Relatively small  $\chi^2$  may be due to conservative error bars

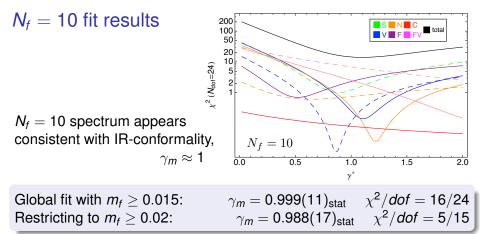
# Conformal fit $\chi^2$ vs. $\gamma_m$ , $N_f = 12$ comparison

As  $N_f$  increases, minima develop and move to smaller  $\gamma_m$ 



*N<sub>f</sub>* = 12 data from Fodor *et al.*, PLB 703:348 (2011) [1104.3124]

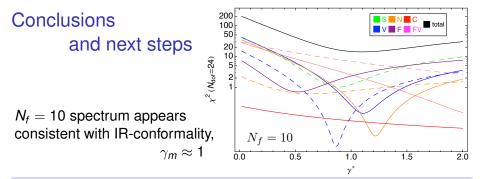
Ten Flavors on the Lattice



Compare quality of joint NLO chiral fits to  $M_P$ ,  $F_P$  and  $\langle \overline{\psi}\psi \rangle$  $m_f \ge 0.015$ :  $\chi^2/dof = 176/7$   $m_f \ge 0.02$ :  $\chi^2/dof = 85/4$ 

However, NLO chiral fit needs  $m \lesssim 0.005$  to converge  $\implies$  Cannot rule out spontaneous chiral symmetry breaking

Ten Flavors on the Lattice



#### What is to be done?

- Improve analysis of topological effects
- Investigate smaller volumes to understand finite-volume effects and perform finite-volume scaling analyses
- Explore different couplings on smaller volumes

It is not clear whether more expensive analyses will be worthwhile (S parameter, WW scattering, form factors)



#### Scale matching

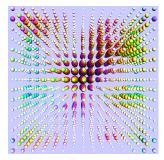
- Data combination
- IR-conformal analysis



- Backup
- Lattice topics
- Scale matching
- Finite-volume effects
- Mass-deformed IR-conformal spectrum analysis
- Condensate enhancement
- S parameter
- Finite-volume scaling

## Backup: Hybrid Monte Carlo algorithm

- Generate random "momenta" with gaussian distribution
- Molecular dynamics evolution through fictitious MD "time" to produce new four-dimensional field configuration
- Use MD discretization errors in Metropolis accept/reject step



Numerically evaluate observables from the defining functional integral

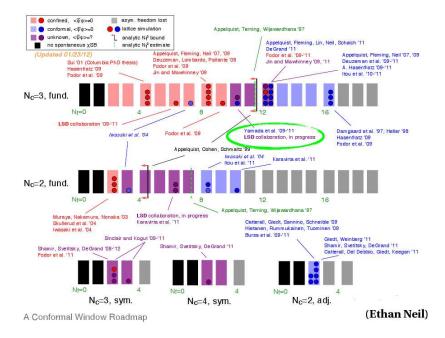
$$\langle \mathcal{O} \rangle = \frac{\int \mathcal{D}U \ \mathcal{O}(U) \ e^{-S(U)}}{\int \mathcal{D}U \ e^{-S(U)}}$$

*U*: four-dimensional field configurations *S*: action giving probability distribution  $e^{-S}$ 

### Backup: Domain wall Dirac operator

$$D_{x,y}^{W}(M_{5}) = (4 - M_{5})\delta_{x,y} - \frac{1}{2} \left[ (1 + \gamma^{\mu})U_{x,\mu}^{\dagger}\delta_{x,y+\mu} + (1 - \gamma^{\mu})U_{x,\mu}\delta_{x+\mu,y} \right]$$
$$D_{s,s'}(m) = \left[ D^{W}(M_{5}) + 1 \right] \delta_{s,s'} + P_{L} \left[ (1 + m)\delta_{s,L_{s}-1}\delta_{s',0} - \delta_{s+1,s'} \right] + P_{R} \left[ (1 + m)\delta_{s,0}\delta_{s',L_{s}-1} - \delta_{s,s'+1} \right]$$
$$D(m) = \begin{pmatrix} D^{W} + 1 & -P_{L} & 0 & \cdots & mP_{R} \\ -P_{R} & D^{W} + 1 & -P_{L} & \cdots & 0 \\ 0 & -P_{R} & D^{W} + 1 & \cdots & 0 \\ 0 & -P_{R} & D^{W} + 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ mP_{L} & 0 & 0 & \cdots & D^{W} + 1 \end{pmatrix}$$

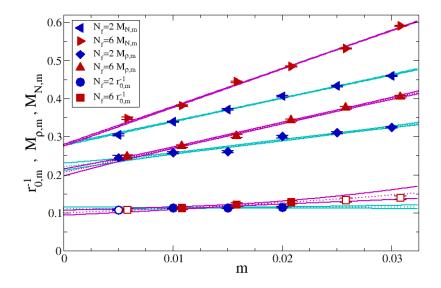
 $P_L = \frac{1}{2}(1 - \gamma_5), P_R = \frac{1}{2}(1 + \gamma_5);$   $M_5 < 2$  is height of domain wall



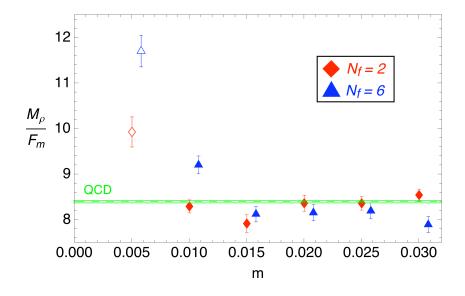
# Light Scalar

- LHC may have discovery-level (5 $\sigma$ ) signal of m=125 GeV resonance by end of 2012.
- Is this SM Higgs? Still need to verify all decay channels...
- Technicolor can produce fake Higgs signals Martin, Phys. Rev. D84 (2011)
- · Light scalar in low-scale technicolor Delgado, et. al., Phys. Lett. B696 (2011)
- Light Dilaton in walking theories? Appelquist, Bai, Phys. Rev. D82 (2010)
- Accessing 0<sup>++</sup> state in QCD a major challenge. Nature of lightest 0<sup>++</sup> state  $\sigma(600)$  is still unknown.
- Evaluation of fermionic correlation function requires quark-line disconnected diagrams
- Mixing between scalar meson, glueballs, meson-meson bound states.
- Challenging, but important to investigate.

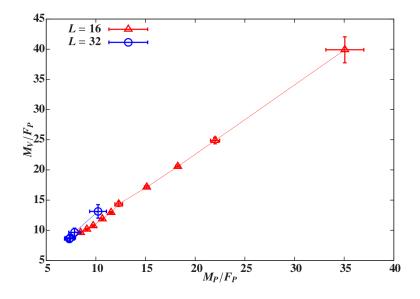
Backup: Other IR scales for  $N_f = 2$  and 6



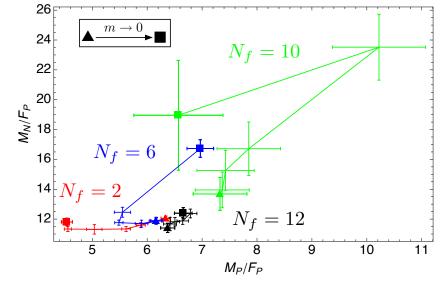
# Backup: $M_V/F_P$ compared to QCD



Backup: Edinburgh plot including L = 16



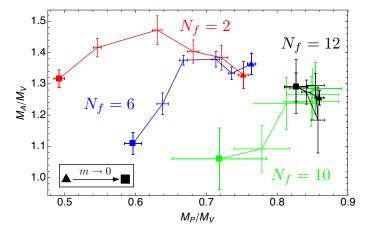
Backup: Edinburgh plot including  $N_f = 12$ 



*N<sub>f</sub>* = 12 data from Fodor *et al.*, PLB 703:348 (2011) [1104.3124]

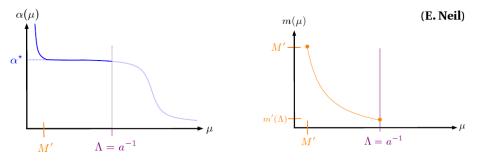
Ten Flavors on the Lattice

Backup: Edinburgh-style plot for  $M_A/M_V$  vs.  $M_P/M_V$ 



Edinburgh-style plot illustrates (spurious?) parity doubling, less change in  $M_P/M_V$  as  $N_f$  increases  $N_f = 12$  data from Fodor *et al.*, PLB 703:348 (2011) [1104.3124]

# Mass-deformed IR-conformal spectrum analysis



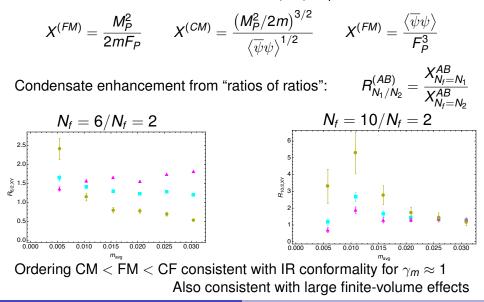
- Leading order:  $M_X = C_X m^{1/(1+\gamma_*)}$
- Higher order:  $M_X = C_X m^{1/(1+\gamma_*)} + D_X m$
- Finite volume:  $M_X = C_X M \left[1 + \frac{Z_X}{ML}\right] + D_X m$
- $\langle \overline{\psi}\psi \rangle = A_C m + B_C m^{[(3-\gamma_*)/(1+\gamma_*)]} + C_C m^{[3/(1+\gamma_*)]} + D_C m^3$

For now, we neglect higher-order and finite-volume corrections

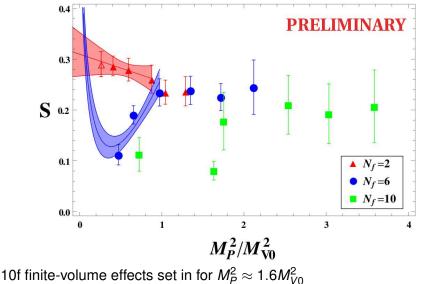
A slowly-running theory will look IR-conformal for m too large

### Backup: Condensate enhancement ratios

Three dimensionless ratios all approach  $\langle \overline{\psi}\psi\rangle/F_P^3$  in the chiral limit:



### Backup: 10f results for S parameter NB: <u>assumes</u> $M_{V0} > 0$



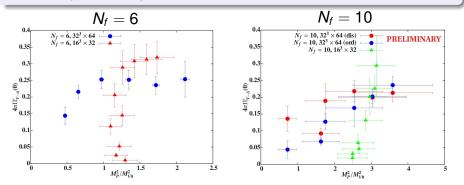
Expect (and observe) naïve scaling for  $M_P^2 > \tilde{M}_{V0}^2$ 

### Backup: Spurious $S \rightarrow 0$ from finite-volume effects

If *m* too small compared to *L*, system deconfines  $\implies$  chiral symmetry restored, parity doubling

$$4\pi\Pi_{V-A}^{\prime}(0)=rac{1}{3\pi}\int_{0}^{\infty}rac{ds}{s}\left[R_{V}(s)-R_{A}(s)
ight]\longrightarrow0$$

Also clearly distorts spectrum



# Backup: Finite-volume scaling not yet viable

