



# Electroweak Symmetry Breaking

An enduring mystery of the standard model of particle physics and how we hope to solve it

#### **David Schaich**

Department of Physics and Center for Computational Science Boston University

Amherst College Colloquium

1 October 2009

#### Motivation

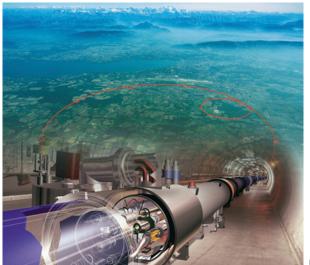



Image credit: CERN

The LHC is coming!

#### **Outline**

- The mystery at the heart of the standard model
  - The standard model of particle physics
  - Electroweak symmetry breaking
- Decades of detective work
  - The usual suspects: what theory has to say
  - Smoking guns and fingerprints: experiments weigh in
- 3 Solving the mystery at the Large Hadron Collider
  - I am covering a lot of ground, and must do so superficially.
  - So please interrupt if you have any comments or questions!

## Elementary particles: a "tour de force"

The standard model describes the properties and interactions of elementary particles.

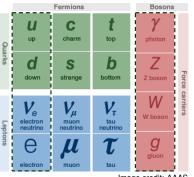



Image credit: AAAS

- Matter made of spin-1 quarks and leptons
- Forces carried by spin-1 bosons
- Electromagnetism: photon  $\gamma$
- Weak force: Z and  $W^{\pm}$  bosons
- Strong force: gluons g
- Gravity not included!

### The standard model of particle physics

- The standard model is a relativistic quantum field theory.
- Composed of two interconnected sectors:

#### QCD

- Quantum chromodynamics, the "color theory"
- Strongly binds quarks into protons, pions, etc.
- No free "colored" particles (quarks and gluons)

#### Electroweak

- Unifies weak and EM: described by common symmetry principle
- Left- and right-handed particles treated differently
- Both sectors gradually constructed in light of experiments.
- Have been precisely tested by vast array of experiments.

# Consequences of electroweak symmetry

- Electroweak symmetry
   unifies weak interaction and quantum electrodynamics.
- Seems surprising at first glance:

#### Electromagnetism

- Infinite range
- Massless photon
- Conserves parity

#### Weak interaction

- Extremely short range (≤ 10<sup>-17</sup> m)
- Very massive  $W^{\pm}$  and Z ( $\sim 90 m_P \sim 175,000 m_e$ )
- Violates parity
- Even more surprising: apparently requires all elementary particles to be massless.

# Consequences of electroweak symmetry

- Electroweak symmetry
   unifies weak interaction and quantum electrodynamics.
- Seems surprising at first glance:

#### Electromagnetism

- Infinite range
- Massless photon
- Conserves parity

#### Weak interaction

- Extremely short range
   (≤ 10<sup>-17</sup> m)
- Very massive  $W^{\pm}$  and Z ( $\sim 90 m_P \sim 175,000 m_e$ )
- Violates parity
- Even more surprising: apparently requires all elementary particles to be massless.

# Outline (reminder)

- The mystery at the heart of the standard model
  - The standard model of particle physics
  - Electroweak symmetry breaking
- Decades of detective work
  - The usual suspects: what theory has to say
  - Smoking guns and fingerprints: experiments weigh in
- Solving the mystery at the Large Hadron Collider

# Spontaneous symmetry breaking

Observation of particles with nonzero masses

⇒ electroweak symmetry must be "broken".

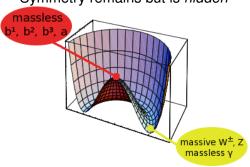
#### What does that mean?



Spontaneous symmetry breaking Symmetry remains but is hidden

Two different descriptions of the same physical system

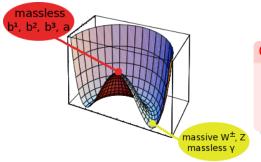
# Spontaneous symmetry breaking


Observation of particles with nonzero masses

⇒ electroweak symmetry must be "broken".

#### What does that mean?




Spontaneous symmetry breaking Symmetry remains but is hidden



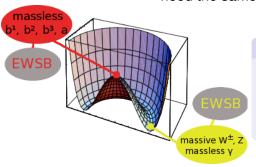
Two different descriptions of the same physical system

## Electroweak symmetry breaking (EWSB)

Two different descriptions of the *same physical system* need the same number of degrees of freedom.



#### Objection


- Massless spin-1: 2 d.o.f.
- Massive spin-1: 3 d.o.f.
- Doesn't add up.

What is EWSB?

That's the mystery.

## Electroweak symmetry breaking (EWSB)

Two different descriptions of the *same physical system* need the same number of degrees of freedom.



#### Generic solution

- Need to add something to be consistent.
- Three d.o.f. from EWSB "eaten" by  $W^{\pm}$ , Z.

What is EWSB?

That's the mystery.

## History of the mystery

- 1967 Steven Weinberg publishes "A Model of Leptons".
- 1969 Weinberg's paper cited once.
- 1970 Weinberg's paper cited again
- 1971 Gerard 't Hooft puts the work on firmer theoretical foundation.
- 1973 Discovery of weak neutral current predicted by theory.
- 1979 Weinberg awarded Nobel Prize for this work

(with Glashow and Salam)

- 1999 't Hooft and Veltman awarded Nobel Prize for their contribution.
- 2009 "A Model of Leptons" most cited paper in high energy physics.
  - Weinberg provided a simple model showing how electroweak symmetry could be hidden.
  - But there are many possible mechanisms and we don't yet know which is realized in nature.

## History of the mystery

- 1967 Steven Weinberg publishes "A Model of Leptons".
- 1969 Weinberg's paper cited once.
- 1970 Weinberg's paper cited again.
- 1971 Gerard 't Hooft puts the work on firmer theoretical foundation.
- 1973 Discovery of weak neutral current predicted by theory.
- 1979 Weinberg awarded Nobel Prize for this work

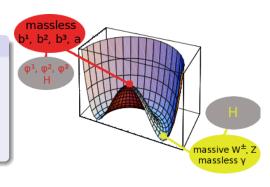
(with Glashow and Salam)

- 1999 't Hooft and Veltman awarded Nobel Prize for their contribution.
- 2009 "A Model of Leptons" most cited paper in high energy physics.
  - Weinberg provided a simple model showing how electroweak symmetry could be hidden.
  - But there are many possible mechanisms and we don't yet know which is realized in nature.

## History of the mystery

- 1967 Steven Weinberg publishes "A Model of Leptons".
- 1969 Weinberg's paper cited once.
- 1970 Weinberg's paper cited again.
- 1971 Gerard 't Hooft puts the work on firmer theoretical foundation.
- 1973 Discovery of weak neutral current predicted by theory.
- 1979 Weinberg awarded Nobel Prize for this work (with Glashow and Salam).
- 1999 't Hooft and Veltman awarded Nobel Prize for their contribution.
- 2009 "A Model of Leptons" most cited paper in high energy physics.
  - Weinberg provided a simple model showing how electroweak symmetry could be hidden.
  - But there are many possible mechanisms and we don't yet know which is realized in nature.

# Outline (reminder)


- The mystery at the heart of the standard model
  - The standard model of particle physics
  - Electroweak symmetry breaking
- Decades of detective work
  - The usual suspects: what theory has to say
  - Smoking guns and fingerprints: experiments weigh in
- Solving the mystery at the Large Hadron Collider

# Minimal solution: the Higgs boson

Occam's Razor: the simplest solution is often correct.

#### Simplest EWSB solution

- A single spin-zero field
- A particular potential
- Four degrees of freedom: three eaten by W<sup>±</sup> and Z, fourth is the Higgs boson



Also provides masses for all the fermions!

Not *required*, but certainly *convenient*.

However, all fermion masses are arbitrary free parameters.

# Shortcomings of the minimal theory

- Higgs and its potential seem to come out of nowhere
- All masses arbitrary free parameters



### We know the Higgs can't be the end of the story

- Short-distance quantum effects make the Higgs disappear!
- Higgs requires new physics at short distances.
- Higgs extremely sensitive to physics at short distances.
- Properties must be unnaturally "fine-tuned".

None of this *rules out* the Higgs, but does motivate alternatives.

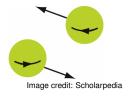
# Shortcomings of the minimal theory

- Higgs and its potential seem to come out of nowhere
- All masses arbitrary free parameters



### We know the Higgs can't be the end of the story

- Short-distance quantum effects make the Higgs disappear!
- Higgs *requires* new physics at short distances.
- Higgs extremely sensitive to physics at short distances.
- Properties must be unnaturally "fine-tuned".


None of this *rules out* the Higgs, but does motivate alternatives.

# A strong, dynamical alternative

#### Other spontaneous symmetry breaking

- Superconductivity
- Chiral symmetry breaking in QCD

Avoid shortcomings of minimal EWSB!



- Both originally modelled using spin-zero fields.
- Both later explained through the dynamics of spin-<sup>1</sup>/<sub>2</sub> fields.

#### Could the same happen for electroweak symmetry breaking?

- Chiral symmetry breaking in QCD also hides EW symmetry!
- Produces  $W^{\pm}$  and Z masses about 2500 times too small...

## Technicolor as scaled-up QCD

#### Technicolor (introduced in late 1970s)

- Idea: take QCD and scale it up a couple thousand times to dynamically hide electroweak symmetry.
- New strong interactions bind technifermions into technihadrons, the three lightest eaten by  $W^{\pm}$  and Z.
- No longer sensitive to short-distance physics.
- Fermion masses in principle predictable from extended version of this framework, but...

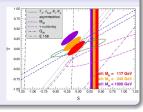
#### It's a **strong** interaction

- Very difficult to work with, no fully realistic model has yet been constructed.
- In particular, the top quark causes difficulties.

# Outline (reminder)

- The mystery at the heart of the standard model
  - The standard model of particle physics
  - Electroweak symmetry breaking
- Decades of detective work
  - The usual suspects: what theory has to say
  - Smoking guns and fingerprints: experiments weigh in
- Solving the mystery at the Large Hadron Collider

## Experiments have narrowed the field


- Decades of experiments have not found the mechanism of EWSB.
- But they have narrowed the field using indirect evidence.

#### Low-energy example: "flavor-changing neutral currents"

- In technicolor, the interactions that produce fermion masses can also change one "flavor" of fermion into another.
- Precise measurements of kaon systems limit such processes.
- Scaled-up QCD flagrantly violates these limits.

### High-energy example: "precision electroweak observables"

- Relate high-energy measurements to convenient parameters.
- Scaled-up QCD again has trouble.



# Experiments haven't yet solved the mystery

#### Technicolor disfavored for many years

#### But now it's back

- Experiments rule out scaled-up QCD
- Technicolor can be completely different
   It's a strong interaction
- Very difficult to study without experimental guidance.
- Need large-scale computations to explore most basic features.



Image credit: Markus Luty

**Bottom line**: both possibilities (and many more) remain viable, but not for long...

# Outline (reminder)

- The mystery at the heart of the standard model
  - The standard model of particle physics
  - Electroweak symmetry breaking
- 2 Decades of detective work
  - The usual suspects: what theory has to say
  - Smoking guns and fingerprints: experiments weigh in
- Solving the mystery at the Large Hadron Collider

### The world's most powerful microscope

- We have (lots of) theories of electroweak symmetry breaking.
- We need data to determine which (if any) of them actually describes nature.

"Faith" is a fine invention When Gentlemen can see – But *Microscopes* are prudent In an Emergency.

Emily Dickinson, 1860

The Large Hadron Collider is the world's most powerful microscope, exploring the nanonanoscale, 10<sup>-18</sup> m.

## LHC: Coming soon!

- After delays, scheduled to start up later this fall.
- Planning: 1984; approval: 1994; construction: 2000.

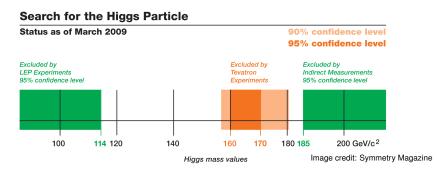


Images credit: CERN

#### Vital stats

- Located outside Geneva
- 9593 (superconducting) magnets
- Collides protons (and heavy ions)
- Proton energy 7 [3.5] TeV
- Very high *luminosity*
- 600 million collisions per second

- 26,659 m circumference
- Operating at 1.9 K (-271.3° C)
- Collisions every 25 [75] ns
- Proton speed c 10 km / h
- 15,000 TB of data per year
- cern.ch, twitter.com/cern




#### Don't expect immediate results

- Will take time to obtain and analyze data.
- May take even longer to understand what the data means.

## We expect the LHC to solve this mystery

The minimal Higgs may be running out of places to hide:



- Similarly, techniparticle zoo expected to appear below 600 GeV.
- More generally, need EWSB mechanism to appear below 1 TeV, or else theories predict apparent nonsense.

### Not the end of particle physics

- We're not about to check the last item off our list and declare particle physics complete.
- We are about to begin exploration of a brand new scale where we expect many interesting things to happen.

#### Recapitulation

- The standard model relies on electroweak symmetry being hidden
- The specific mechanism that hides electroweak symmetry remains a mystery.
- There are many possible suspects, none fully satisfactory.
- Experiments have narrowed the field, but we need the LHC to solve this mystery.

## Beyond EWSB, many mysteries remain

- What is responsible for the huge range of fermion masses? Can fermion masses be predicted from some theory?
- ▶ Why is there more matter than antimatter in the universe?
- ▶ What are the properties of *quark-gluon plasmas*?
- ▶ What are the *dark matter* and *dark energy* that make up most of the universe?
- Is there a supersymmetry between bosons and fermions? If so, how and at what scale is it broken?
- ▶ Does QCD join the electroweak theory in some *Grand Unified Theory?*
- Why is gravity so much weaker than the other three forces? Can all four be unified? Is there a quantum theory of gravity? Extra dimensions? String theory? ...?

#### Some of these questions are likely related to EWSB

Will the LHC solve these mysteries? Will we get any clues?

# Beyond EWSB, many mysteries remain

- What is responsible for the huge range of fermion masses? Can fermion masses be predicted from some theory?
- Why is there more matter than antimatter in the universe?
- ▶ What are the properties of quark-gluon plasmas?
- ▶ What are the *dark matter* and *dark energy* that make up most of the universe?
- Is there a supersymmetry between bosons and fermions? If so, how and at what scale is it broken?
- ▶ Does QCD join the electroweak theory in some *Grand Unified Theory?*
- Why is gravity so much weaker than the other three forces? Can all four be unified? Is there a quantum theory of gravity? Extra dimensions? String theory? ...?

#### Some of these questions are likely related to EWSB

Will the LHC solve these mysteries? Will we get any clues?

We'll find out!

### Bonus slides!

#### Bonus slide: Chiral structure of standard model

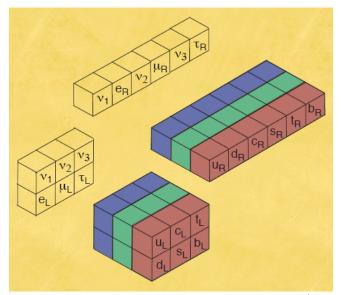



Image credit: Chris Quigg

# Bonus slide: Precision tests of electroweak theory

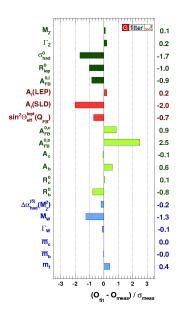
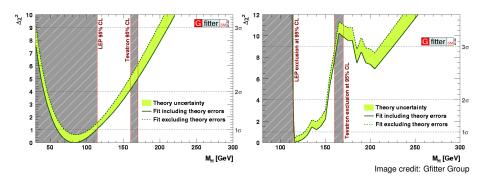
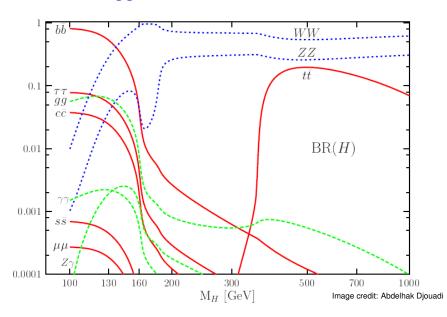
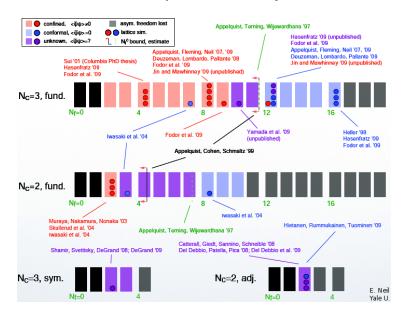
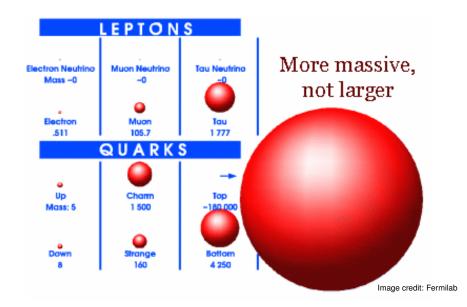





Image credit: Gfitter Group


### Bonus slide: Indirect Higgs boson mass bounds




## Bonus slide: Higgs search channels



### Bonus slide: Lattice explorations beyond QCD



#### Bonus slide: The flavor problem



## Bonus slide: The end of physics?

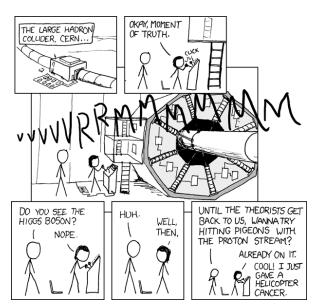



Image credit: xkcd