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(SLAC)

Interactions described by
“gauge symmetries”

(invariance under
transformations)

A Mystery
Why do almost all of these
particles possess mass?
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What’s mysterious about mass?

Electroweak symmetry
Unifies quantum electrodynamics and the weak interaction.

Electromagnetism
Infinite range

Massless photon

Conserves parity

Weak interaction
Extremely short range

(. 10−17 m)
Very massive W± and Z
(∼ 90Mproton ∼ 175,000me)
Violates parity

Electroweak unification well-verified experimentally,
but appears to forbid elementary particle masses!
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Electroweak symmetry breaking

“Spontaneous” symmetry breaking
reconciles electroweak theory with phenomenology

“Symmetry of laws
; symmetry of outcomes”

Example: superconductivity

Lagrangian must be gauge invariant
but ground state hides symmetry

Must provide longitudinal modes
of massive W± and Z

−→ new degrees of freedom
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The standard model

Simplest solution: generalized Ginzburg–Landau model

New scalar field Φ =

(
φ1 + iφ2

v/
√

2 + h + iφ3

)
“Winebottle potential” V (Φ) = −µ2Φ†Φ + λ

(
Φ†Φ

)2

produces spontaneous symmetry breaking
at the electroweak scale v =

√
−µ2/λ = 246 GeV

(Imperial)

φi “eaten” by W± and Z becoming massive
h remains as massive Higgs boson
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Unsatisfied with the standard model

No fundamental scalars
observed in nature

Standard model can’t be the end of the story
High-energy quantum effects make the Higgs decouple!
Standard model requires new physics at high energies

Higgs mass extremely sensitive to physics at high energies
Properties must be unnaturally “fine-tuned”

Doesn’t rule out standard model, but motivates alternatives −→ BCS?
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Dynamical electroweak symmetry breaking
Instead of BCS, think of QCD (quantum chromodynamics)

New Strong Dynamics (“Technicolor”)
New “technifermions” Ψ couple through a new strong interaction
Lagrangian decomposes into two parts

LTC = ΨγµDµΨ = ΨLγµDµΨL + ΨRγµDµΨR

Chiral symmetry: ΨL and ΨR can transform independently
Strong interactions spontaneously break chiral symmetry,

which leads to electroweak symmetry breaking〈
ΨΨ
〉

=
〈
ΨLΨR + ΨRΨL

〉
6= 0 D

ΨΨ
E
∼ v3

Instead of Higgs, expect a zoo of “technihadrons” at high energy

Strong dynamics −→ perturbation theory inapplicable
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How can we determine which mechanism
of electroweak symmetry breaking

is realized in nature?
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Obvious approach: direct detection

(CERN)

Experimentally observe and identify Higgs, technihadrons, . . .
“Obvious” does not mean “easy”!
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Outline (reminder)

A less obvious approach is to use
precision measurements of electroweak observables
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The S parameter

Parameterize effects of physics beyond the standard model
on the neutral gauge bosons

ΠVV = 2Π3Q

ΠAA = 4Π33 − 2Π3Q

Define the parameter S = 4π lim
Q2→0

d
dQ2

[
ΠVV (Q2)− ΠAA(Q2)

]
−∆SSM

(Peskin and Takeuchi)

∆SSM subtracted so that S = 0 in the standard model
(assuming a “reference” Higgs boson mass)
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Experimentally, S . 0
Extract S from global fit to experimental data

I Z decay partial widths and asymmetries
I Neutrino scattering cross sections

I MW , MZ

I Atomic parity violation

(PDG)
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What is S for new strong dynamics?

Recall strong dynamics −→ perturbation theory inapplicable

If new strong dynamics has exactly the same form as QCD
SU(3) gauge theory with Nf = 2 fermions

then we can extract information from low-energy QCD measurements
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S from scaling up QCD
Relate polarization functions Π to spectral functions R

R(s) =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)

Π(Q2) = Π(0) +
Q2

12π2

∫ ∞

0

dsR(s)

s + Q2

S = 4πΠ′V−A(0)−∆SSM

S =
1

3π

∫ ∞

0

ds
s

{
RV − RA −

1
4

1−

(
1−

M2
H

s

)3

Θ
(

s −M2
H

)}

Replacing the QCD scale with the electroweak scale, S = 0.32± 0.03
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What is S for new strong dynamics?

Recall strong dynamics −→ perturbation theory inapplicable

If new strong dynamics has exactly the same form as QCD
SU(3) gauge theory with Nf = 2 fermions

then we can extract information from low-energy QCD measurements

Replacing the QCD scale with the electroweak scale, S = 0.32± 0.03

Guess S ∼ 0.3
Nf

2
Nc

3
?

This is very far from the experimental S ≈ −0.15± 0.10,
but does not hold for strongly-interacting theories in general

We need a way to perform non-perturbative calculations
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Outline (reminder)
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Motivation
By working in a discrete euclidean spacetime,

we can perform non-perturbative calculations
of strongly-interacting theories
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Quantum fields on a lattice

A 12-step program for
non-perturbative predictions

(R. Babich)

Part 1: Formulation
1 Wick rotation t → −it from Minkowski to euclidean spacetime
2 Replace spacetime with regular lattice of sites connected by links
3 Gauge invariance: fermion fields on sites, gauge fields on links
4 Recover original theory (e.g., Lorentz invariance) in continuum
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Part 2: Simulation

5 Observables 〈O〉 defined through path integral

〈O〉 =
1
Z

∫
DUDΨDΨOe−SG(U)−ΨD(U)Ψ

D(U) is the discrete Dirac operator on the lattice
6 Gaussian integration replaces anti-commuting Grassmann fields∫

DΨDΨe−ΨDΨ ∝ det D ∝
∫
DχDχe−χD−1χ

(Inverting the large sparse matrix D(U) is the main computational cost)

7 With an even number of fermions, we have
∫
DχDχe−χ(D†D)

−1
χ

8 Positive definite action −→ probability distribution
9 Finite number of degrees of freedom

−→ numerical importance sampling (Monte Carlo)
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Part 3: Systematics

Must keep in mind systematic effects of working on the lattice
10 Finite volume

Reduce effects by requiring L � λmax = 1
MP

Need large lattice size L3×2L or large pseudoscalar mass MP
(Input is fermion mass mf ; MP ∝

√
mf not known a priori)

11 Nonzero “lattice spacing” a between sites
Should repeat calculation at several a, extrapolate a → 0

(Computational cost ∝ 1/a6)

Reduce effects by clever construction of lattice action

12 Chiral symmetry breaking
Explicitly broken by mf > 0 (Computational cost ∝ 1/m4.5

f )

Additional explicit breaking from many lattice actions
(Chiral lattice actions have much larger computational costs)
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Domain wall fermions

Add fifth dimension of length Ls

Exact chiral symmetry at finite lattice spacing in the limit Ls →∞
At finite Ls, “residual mass” mres > 0; m = mf + mres
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Outline (reminder)

1 Mystery: The Origin of Mass
Electroweak symmetry breaking
New strong dynamics
S parameter
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We have a way to perform non-perturbative computations
Let’s apply it to calculate the S parameter for new strong dynamics
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Lattice Strong Dynamics Collaboration

Argonne James Osborn
Boston Ron Babich, Richard Brower, Saul Cohen,

Claudio Rebbi, DS
Fermilab Ethan Neil
Harvard Mike Clark

Livermore Mike Buchoff, Michael Cheng, Pavlos Vranas
UC Davis Joseph Kiskis

Yale Thomas Appelquist, George Fleming,
Meifeng Lin, Gennady Voronov

Formed in 2007 to pursue non-perturbative studies
of strongly interacting theories likely to produce observable signatures

at the Large Hadron Collider.
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LSD Philosophy and Simulation Details

Start from what we know (QCD) and use it as a baseline
−→ SU(3) gauge theory with Nf = 2, 6, 10

Work on large lattices so finite-volume effects are small
−→ 323×64 with 0.005 ≤ mf ≤ 0.030 gives MPL & 4

Directly compare the different theories
−→ Tune parameters to match chiral symmetry breaking scale
−→ Plot results versus M2

P rather than m = mf + mres

Exploratory calculations
−→ O(100) independent measurements per point

Studying spontaneous chiral symmetry breaking
−→ Domain wall fermions with Ls = 16
−→ mres ≈ 3×10−5 (2f); 8×10−4 (6f); 2×10−3 (10f)
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DWF are expensive, even for exploratory calculations

∼ 300M core-hours on LLNL BGL, USQCD clusters, NSF Teragrid. . .
Origin of Mass with High-Performance Computing 10 December 2010 23 / 30



S parameter on the lattice

S = 4πNDΠ′V−A(0)−∆SSM

ΠVV = 2Π3Q

ΠAA = 4Π33 − 2Π3Q

On the lattice, correlators involve a single pair of fermions

ΠµνV−A(Q) = Z
∑

x

eiQ·(x+bµ/2)Tr
[〈
Vµa(x)V νb(0)

〉
−
〈
Aµa(x)Aνb(0)

〉]
Πµν(Q) =

(
δµν − Q̂µQ̂ν

Q̂2

)
Π(Q2)− Q̂µQ̂ν

Q̂2
ΠL(Q2) Q̂ = 2 sin (Q/2)

Conserved currents V and A ensure that lattice artifacts cancel
〈Vµa(x)Vνa(0)〉 and 〈Aµa(x)Aνa(0)〉 require O(Ls) inversions
Renormalization constant Z computed non-perturbatively
Z = 0.85 (2f); 0.73 (6f); 0.71 (10f)
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Correlator data and fits

Independently fit ΠV−A(Q2)
to (1, 2) Padé,
Q2 < 0.4

Fits stable
with χ2 � 1
as Q2 fit range varies

a0 + a1Q2

1 + b1Q2 + b2Q4 =

[
−F 2

P +
Q2F 2

V

M2
V + Q2

−
Q2F 2

A

M2
A + Q2

]
F 2

P=F 2
V−F 2

A
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Fit results for Π′V−A(0), Nf = 2 and Nf = 6

S = 4πNDΠ′V−A(0)−∆SSM

1 ≤ND ≤ Nf/2

Reduction in Π′V−A(0) for M2
P < M2

V0 ≡ limm→0 M2
V

−→ naïve scaling S ∼ 0.3
Nf

2
Nc

3
does not hold

(Do expect naïve scaling in heavy-fermion limit M2
P � M2

V0)
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∆SSM with mf > 0

S = 4πND lim
Q2→0

d
dQ2

[
ΠVV (Q2)− ΠAA(Q2)

]
−∆SSM

∆SSM =
1
4

∫ ∞

4M2
P

ds
s

1−

(
1−

M2
V0
s

)3

Θ(s −M2
V0)


∆SSM diverges as s → 0 (cancelling out eaten modes)
With mf > 0, need lower bound 4M2

P > 0 on spectral integral
For Nf = 2, cancellation continues to work as mf → 0
For Nf > 2, extra N2

f − 4 uneaten modes
must receive masses from other interactions

Set reference Higgs mass M ref
H = limm→0 MV ≡ MV0 ∼ 1000 GeV

Numerically, ∆SSM . 0.04, only 5–10% reduction
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S parameter, Nf = 2 and Nf = 6

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

MP
2�MV0

2

S�
4Π
�N f�2

��' V�
A
�0���

S S
M

For M2
P < M2

V0, fit to form accounting for N2
f − 4 uneaten modes

S = A + BM2
P +

1
12π

[
N2

f
4
− 1

]
log

(
M2

V0

M2
P

)
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Conclusion

Elementary particle masses require electroweak symmetry
breaking, which may be due to new strong dynamics

Strongly-interacting gauge theories need not resemble QCD
Lattice gauge theory can provide non-perturbative information

For SU(3) gauge theory with Nf = 6 compared to Nf = 2
we find an S parameter smaller than naïve scaling

Further refinements ongoing:

Additional data, mf = 0.0075
Effects of finite volume, topology
“Twisted” BCs to reduce Q2

Testing cheaper lattice action

Nf = 10
OPE for ΠV−A

. . .
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Bonus slides!
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Experimental confirmation of electroweak theory

(Gfitter Group)
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Gauge invariance example: electromagnetism

Electric and magnetic fields in terms of potentials Φ and A

E = −∂A
∂t
−∇Φ B = ∇× A

E and B are invariant under the gauge transformation

Φ → Φ− ∂Λ

∂t
A → A +∇Λ

In four-vector notation, Aµ = (Φ,A) → Aµ + ∂µΛ

Photon mass term in lagrangian is

1
2 m2

γAµAµ = 1
2 m2

γ

(
A · A− Φ2

)
Forbidden by gauge invariance!
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Massless fermions from chiral gauge theory

(Chris Quigg)

Fermion mass term in lagrangian is mψψ = m
(
ψLψR + ψRψL

)
ψLψR ∼

(
ψ↑ ψ↓

)
L · (ψ)R

Forbidden by gauge invariance!
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Fermion masses in standard model

Need to make a gauge-invariant object involving

ψLψR ∼
(
ψ↑ ψ↓

)
L · (ψ)R

Standard model solution: stick in a Higgs Φ =

(
φ+

φ0

)

λψ
(
ψ↑ ψ↓

)
L

(
φ+

φ0

)
(ψ)R

With vacuum 〈Φ〉 =

(
0

v/
√

2

)
, identify mψ = λψv/

√
2.

All fermion masses and mixing are arbitrary free parameters!
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Gauge boson masses in standard model
Φ =

(
φ1 + iφ2

v/
√

2 + h + iφ3

)
LΦ = (DµΦ)† (DµΦ) + µ2Φ†Φ− λ

(
Φ†Φ

)2
⇒ v =

√
−µ2/λ

Dµ = (∂µ + i
2 g1Bµ) I + i

2 g2W a
µσ

a

W± and Z masses pop out of (DµΦ)† (DµΦ). Relevant terms:

v2

8
(0 1)

(
−g2W 3

µ − g1Bµ g2(W 1
µ − iW 2

µ )

g2(W 1
µ + iW 2

µ ) g2W 3
µ − g1Bµ

)2( 0
1

)
≡

g2
2v2

8
(0 1)

(
· · ·

√
2W +

µ√
2W−

µ (g2
1 + g2

2)1/2Zµ/g2

)2(
0
1

)
≡ M2

W W +µW−
µ + 1

2 M2
Z ZµZµ + · · ·

MW = 1
2 g2v = (MZ/g2)

√
g2

1 + g2
2 ≡ MZ cos θW
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Gauge boson masses in new strong dynamics

Now we have pions with

Lχ = F 2
PTr
[
(DµΣ)† (DµΣ)

]
/4

Σ = exp (2iσaπa/FP) ∼ qLqR

Dµ = I∂µ − i
2 g2Wa

µσ
a Wa

µ =
(

W 1
µ ,W

2
µ ,W

3
µ − g1Bµ/g2

)
W± and Z masses pop out of F 2

PTr|DµΣ|2/4. Relevant terms:

(∂µπ
a)2 − FPg2(∂

µπa)Wa
µ/2 + F 2

Pg2
2(Wa

µ)
2/16 =

[
FPg2Wa

µ/4− ∂µπ
a]2

= F 2
Pg2

2

[
(W 1

µ )2 + (W 2
µ )2
]
/8 + F 2

P(g2
2 + g2

1)Z 2
µ/8

≡ M2
W W +µW−

µ + 1
2 M2

Z ZµZµ −→ FP = v
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Triviality of fundamental Higgs

λ(µ) ' 1
[1/λ(Λ)] + (3/2π2) log(Λ/µ)

<
2π2

3 log(Λ/µ)

Λ ' MH exp

(
4π2v2

3M2
H

)

MH = 115 GeV −→ Λ ∼ 1028 GeV
MH = 700 GeV −→ Λ ∼ 1000 GeV
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(Extended) technicolor in a picture
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Fermion masses in extended technicolor

Integrating out ETC gauge bosons produces four-fermion operators
that provide both SM fermion masses and FCNCs

Masses:
(TT )(qq)

M2
ETC

FCNCs:
(qq)(qq)

M2
ETC

FCNCs required by CKM mixing, limit obtainable SM fermion masses.
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“Walking” Technicolor

〈
TT
〉∣∣

METC
=
〈
TT
〉∣∣

ΛTC
exp

(∫ METC

ΛTC

dµ
µ
γ(µ)

)
≈
〈
TT
〉∣∣

ΛTC

(
METC

ΛTC

)γ

γ(µ) ∼ 1 for ΛTC . µ . METC enhances fermion masses
Implies large, slowly-running (“walking”) coupling, small β function
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Perturbative Yang–Mills β function

For SU(Nc) Yang–Mills theory with Nf fermions in representation r

β(g) = µ
∂g
∂µ

= β0g3 + β1g5 + β2g7 + · · ·

β0 = − 1
(4π)2

(
11
3

Nc −
4
3

Nf C(r)
)

β1 = − 1
(4π)4

[
34
3

N2
c −

(
13
3

Nc −
1

Nc

)
Nf C(r)

]
Higher-order βi depend on choice of renormalization scheme

C(N) =
1
2

C(Adj) = Nc C2(N) =
d(Adj)
d(N)

C(N) =
N2

c − 1
2Nc
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Conformal window

Strongly-coupled gauge theories can look very different than QCD
With many fermions, theory has perturbative IR fixed point;

it is in a conformal phase with no spontaneous χSB
The conformal window ranges from loss of asymptotic freedom

to some (unknown) critical Nc
f < NAF

f

With Nf . Nc
f , may be approximately conformal (walking!)

for some range of scales

Visualization of conformal window
for SU(Nc) fermions in
fundamental rep:
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Anomalous dimension

From “rainbow approximation” to “gap” (Schwinger–Dyson) equation

γ(µ) = 1−
√

1− 3C2(r)α(µ)/π ≤ 1

Assume spontaneous chiral symmetry breaking when

α(µ) ≥ π

3C2(r)
≡ αχSB

When α(µ) = αχSB, this gives γ(µ) = 1
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Searching for conformal windows
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NLOχPT for general Nf

M2
P

2m
= B

{
1 +

2mB
(4πF )2

[
αm +

1
Nf

log
(

2mB
(4πF )2

)]}
FP = F

{
1 +

2mB
(4πF )2

[
αF −

Nf

2
log
(

2mB
(4πF )2

)]}
〈
ψψ
〉

= F 2B

{
1 +

2mB
(4πF )2

[
αC −

N2
f − 1
Nf

log
(

2mB
(4πF )2

)]}

αC includes “contact term” mΛ2 ∼ ma−2

NNLO M2
P coefficients enhanced by N2

f (Bijnens & Lu, 2009)
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Goldstone decay constant

Joint NNLOχPT fit to Nf = 2 FP , M2
P ,
〈
ψψ
〉
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Chiral condensate

Joint NNLOχPT fit to Nf = 2 FP , M2
P ,
〈
ψψ
〉

Linear term clearly dominant
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“Sommer scale”, vector and nucleon masses

Nf = 2 and Nf = 6 all match at 10% level
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Chiral condensate enhancement: preliminaries

Search for enhancement through
〈
ψψ
〉
/F 3

Not RG invariant: keep cutoff fixed in physical units
Focus on the ratio R of

〈
ψψ
〉
/F 3 between Nf = 6 and Nf = 2

R =
(
〈
ψψ
〉
/F 3)6f

(
〈
ψψ
〉
/F 3)2f

=

exp

(∫ 5Mρ

Mρ

γ(µ)

µ

∣∣∣∣
6f

dµ

)

exp

(∫ 5Mρ

Mρ

γ(µ)

µ

∣∣∣∣
2f

dµ

)

MS perturbation theory & perturbative conversion to lattice scheme
predicts R = 1.27(7)
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Enhancement of
〈
ψψ
〉
/F 3, Nf = 2 to Nf = 6

Find significant enhancement compared with perturbative R = 1.27(7)
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NLO χPT fits, Nf = 2 and Nf = 6

NLOχPT fits work for Nf = 2 but not Nf = 6 (lighter mf required)

GMOR ⇒ 〈ψψ〉
F 3

π
= M3

πq
(2m)3〈ψψ〉

= M2
π

2mFπ
≡ R as m → 0

Fit ratios to R
[
1 + m̃(αXY10 + α11 log m̃)

]
where m̃ ≡ √m2m6
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Pseudo Nambu–Goldstone boson mass

Slope of M2
P with m significantly larger for Nf = 6

Plot against M2
P , to provide more physical comparison
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Vector and axial spectrum

Signs of Nf = 6 parity-doubling as M2
P decreases
⇒ implications for S parameter?
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Vector and axial decay constants

Need FV ≈ FA for parity-doubling to produce vanishing S parameter

Origin of Mass with High-Performance Computing 10 December 2010 30 / 30



Wilson gauge action

Ux ,µ = exp [iagAµ(x + µ̂/2)] (directed from x + µ̂ to x)

Px ,µν = Tr
[
Ux ,µUx+bµ,νU†

x+bν,µU†
x ,ν

]
SG =

1
g2

∑
x

∑
µ 6=ν

(
3− Px ,µν − P†x ,µν

)
→
∫

1
4

FµνFµν +O(a2) as a → 0
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Domain wall Dirac operator

DW
x ,y (M5) = (4−M5)δx ,y −

1
2

[
(1 + γµ)U†

x ,µδx ,y+µ

+ (1− γµ)Ux ,µδx+µ,y

]
Ds,s′(m) =

[
DW (M5) + 1

]
δs,s′ + PL

[
(1 + m)δs,Ls−1δs′,0 − δs+1,s′

]
+ PR

[
(1 + m)δs,0δs′,Ls−1 − δs,s′+1

]

D(m) =


DW + 1 −PL 0 · · · mPR
−PR DW + 1 −PL · · · 0

0 −PR DW + 1 · · · 0
...

...
...

. . .
...

mPL 0 0 · · · DW + 1


PL = 1

2(1− γ5), PR = 1
2(1 + γ5); M5 < 2 is height of domain wall
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Conserved and local domain wall currents

Conserved currents:

Vµa(x) =
Ls−1∑
s=0

jµa(x , s) Aµa(x) =
Ls−1∑
s=0

sign
(

s − Ls − 1
2

)
jµa(x , s)

jµa(x , s) = Ψ(x + µ̂, s)
1 + γµ

2
τaU†

x ,µΨ(x , s)

−Ψ(x , s)
1− γµ

2
τaUx ,µΨ(x + µ̂, s)

Local currents:

Vµ(x) = q(x)γµτaq(x) Aµ(x) = q(x)γµγ5τaq(x)

q(x) = PLΨ(x ,0) + PRΨ(x ,Ls − 1)
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Ward identities and violations
bQµ

ˆP
x eiQ·(x+bµ/2)

˙
Va

µ(x)V a
ν (0)

¸˜
= 0

ˆP
x eiQ·(x+bµ/2)

`˙
Va

µV a
ν

¸
−

˙
Aa

µAa
ν

¸´˜ bQν ≈ 0

bQµ
ˆP

x eiQ·x ˙
V a

µ(x)V a
ν (0)

¸˜
6= 0

ˆP
x eiQ·x `˙

V a
µV a

ν

¸
−

˙
Aa

µAa
ν

¸´˜ bQν 6= 0
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Single-pole approximations to ΠV−A

RV (s) = 12π2F 2
V δ(s −M2

V ) RA(s) = 12π2F 2
Aδ(s −M2

A)

ΠV−A(Q2) = −F 2
P +

Q2F 2
V

M2
V + Q2

−
Q2F 2

A

M2
A + Q2
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S in χPT, for Nf = 2

S =
1

12π

`5 + log

M2
P

v2

F 2
P

M2
H

− 1
6


`5 is extracted from (Gasser and Leutwyler)

ΠV−A(Q2) = −F 2
P + Q2

[
1

24π2

(
`5 −

1
3

)
+

2
3
(1 + x)J(x)

]
J(x) =

1
16π2

(√
1 + x log

[√
1 + x − 1√
1 + x + 1

]
+ 2
)
, x ≡ 4M2

P/Q
2

Our Nf ≥ 6 simulations have MP too large to apply χPT
General-Nf corrections for `5 not yet known
Must take only two flavors to the chiral limit,

any others remain massive
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