

Exploring the Origin of Mass with High-Performance Computing

David Schaich

10 December 2010

arXiv:1009.5967 (LSD Collaboration)

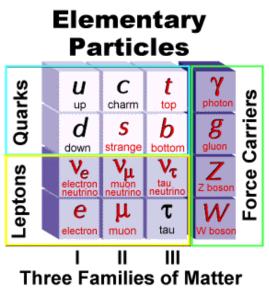
Outline

Mystery: The Origin of Mass

- Electroweak symmetry breaking
- New strong dynamics
- S parameter

2 Methods: High-Performance Computing

3 Results: S Parameter on the Lattice



Interactions described by "gauge symmetries" (invariance under transformations)

A Mystery

Why do almost all of these particles possess mass?

(SLAC)

What's mysterious about mass?

Electroweak symmetry

Unifies quantum electrodynamics and the weak interaction.

Electromagnetism

- Infinite range
- Massless photon

Conserves parity

Weak interaction

- Extremely short range
 - $(\lesssim 10^{-17} \text{ m})$
- Very massive W[±] and Z (~ 90M_{proton} ~ 175,000m_e)
- Violates parity

Electroweak unification well-verified experimentally, but appears to **forbid** elementary particle masses!

Electroweak symmetry breaking

"Spontaneous" symmetry breaking

reconciles electroweak theory with phenomenology

"Symmetry of laws

⇒ symmetry of outcomes"

Example: superconductivity

Lagrangian must be gauge invariant but ground state **hides** symmetry

Must provide longitudinal modes of massive W^{\pm} and Z \longrightarrow new degrees of freedom

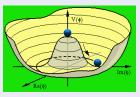
The standard model

Simplest solution: generalized Ginzburg-Landau model

New scalar field

$$\Phi = \left(\begin{array}{c} \phi_1 + i\phi_2 \\ \nu/\sqrt{2} + h + i\phi_3 \end{array}\right)$$

• "Winebottle potential" $V(\Phi) = -\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2$ produces spontaneous symmetry breaking at the electroweak scale $v = \sqrt{-\mu^2/\lambda} = 246 \text{ GeV}$

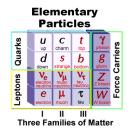


(Imperial)

- ϕ_i "eaten" by W^{\pm} and Z becoming massive
- h remains as massive Higgs boson

Unsatisfied with the standard model

No fundamental scalars observed in nature



Standard model *can't* be the end of the story

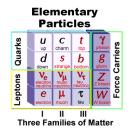
- High-energy quantum effects make the Higgs decouple!
- Standard model *requires* new physics at high energies

Higgs mass *extremely sensitive* to physics at high energies
Properties must be unnaturally "fine-tuned"

Doesn't rule out standard model, but motivates alternatives \longrightarrow BCS?

Unsatisfied with the standard model

No fundamental scalars observed in nature



Standard model *can't* be the end of the story

- High-energy quantum effects make the Higgs decouple!
- Standard model *requires* new physics at high energies
- Higgs mass extremely sensitive to physics at high energies
- Properties must be unnaturally "fine-tuned"

Doesn't rule out standard model, but motivates alternatives \longrightarrow BCS?

Outline (reminder)

Mystery: The Origin of Mass Electroweak symmetry breaking New strong dynamics

• *S* parameter

2 Methods: High-Performance Computing

Dynamical electroweak symmetry breaking

Instead of BCS, think of QCD (quantum chromodynamics)

New Strong Dynamics ("Technicolor")

- New "technifermions" Ψ couple through a new strong interaction
- Lagrangian decomposes into two parts

$$\mathcal{L}_{TC} = \overline{\Psi} \gamma_{\mu} \mathcal{D}^{\mu} \Psi = \overline{\Psi}_{L} \gamma_{\mu} \mathcal{D}^{\mu} \Psi_{L} + \overline{\Psi}_{R} \gamma_{\mu} \mathcal{D}^{\mu} \Psi_{R}$$

Chiral symmetry: Ψ_L and Ψ_R can transform *independently*

 Strong interactions spontaneously break chiral symmetry, which leads to electroweak symmetry breaking

$$\left\langle \overline{\Psi}\Psi\right\rangle = \left\langle \overline{\Psi}_L\Psi_R + \overline{\Psi}_R\Psi_L\right\rangle \neq 0 \qquad \qquad \left\langle \overline{\Psi}\Psi\right\rangle \sim v^2$$

Instead of Higgs, expect a zoo of "technihadrons" at high energy

Strong dynamics \longrightarrow perturbation theory inapplicable

How can we determine which mechanism of electroweak symmetry breaking is realized in nature?

Obvious approach: direct detection



(CERN)

- Experimentally observe and identify Higgs, technihadrons, ...
- "Obvious" does not mean "easy"!

Outline (reminder)

A less obvious approach is to use precision measurements of electroweak observables

1

Mystery: The Origin of Mass

- Electroweak symmetry breaking
- New strong dynamics
- S parameter

Methods: High-Performance Computing

3 Results: S Parameter on the Lattice

The S parameter

Parameterize effects of physics beyond the standard model on the neutral gauge bosons

$$\gamma \cdots \qquad \gamma = i e^{2} \Pi_{QQ} g^{\mu\nu} + \cdots$$
$$\Pi_{VV} = 2\Pi_{3Q}$$
$$Z \cdots \qquad \gamma = i \frac{e^{2}}{cs} (\Pi_{3Q} - s^{2} \Pi_{QQ}) g^{\mu\nu} + \cdots \qquad \Pi_{AA} = 4\Pi_{33} - 2\Pi_{3Q}$$
$$Z \cdots \qquad \qquad Z = i \frac{e^{2}}{c^{2}s^{2}} (\Pi_{33} - 2s^{2}\Pi_{3Q} + s^{4}\Pi_{QQ}) g^{\mu\nu} + \cdots$$
Define the parameter $S = 4\pi \lim_{Q^{2} \to 0} \frac{d}{dQ^{2}} \left[\Pi_{VV}(Q^{2}) - \Pi_{AA}(Q^{2}) \right] - \Delta S_{SM}$ (Packin and Takauchi)

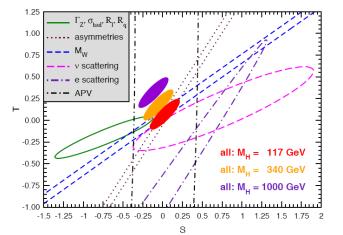
 ΔS_{SM} subtracted so that S = 0 in the standard model (assuming a "reference" Higgs boson mass)

Experimentally, $S \lesssim 0$

Extract S from global fit to experimental data

- Z decay partial widths and asymmetries
- Neutrino scattering cross sections

M_W, *M_Z* Atomic parity violation



Origin of Mass with High-Performance Computing

(PDG)

What is S for new strong dynamics?

Recall strong dynamics \longrightarrow perturbation theory inapplicable

If new strong dynamics has exactly the same form as QCD SU(3) gauge theory with $N_f = 2$ fermions then we can extract information from low-energy QCD measurements

S from scaling up QCD

Relate polarization functions Π to spectral functions R

$$R(s) = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

$$\Pi(Q^2) = \Pi(0) + \frac{Q^2}{12\pi^2} \int_0^\infty \frac{dsR(s)}{s+Q^2}$$

$$S = 4\pi\Pi'_{V-A}(0) - \Delta S_{SM}$$

$$S = \frac{1}{3\pi} \int_0^\infty \frac{ds}{s} \left\{ R_V - R_A - \frac{1}{4} \left[1 - \left(1 - \frac{M_H^2}{s} \right)^3 \Theta\left(s - M_H^2 \right) \right] \right\}$$

Replacing the QCD scale with the electroweak scale, $S = 0.32 \pm 0.03$

What is S for new strong dynamics?

Recall **strong** dynamics — perturbation theory inapplicable

If new strong dynamics has exactly the same form as QCD SU(3) gauge theory with $N_f = 2$ fermions

then we can extract information from low-energy QCD measurements

Replacing the QCD scale with the electroweak scale, $S=0.32\pm0.03$ Guess $S\sim0.3\frac{N_f}{2}\frac{N_c}{3}$?

This is very far from the experimental $S \approx -0.15 \pm 0.10$, but does **not** hold for strongly-interacting theories in general

We need a way to perform non-perturbative calculations

Outline (reminder)

- Mystery: The Origin of Mass
 - Electroweak symmetry breaking
 - New strong dynamics
 - S parameter

2 Methods: High-Performance Computing

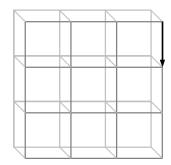
3 Results: S Parameter on the Lattice

Motivation

By working in a discrete euclidean spacetime, we can perform non-perturbative calculations of strongly-interacting theories

Quantum fields on a lattice

A 12-step program for non-perturbative predictions



Part 1: Formulation

- **()** Wick rotation $t \rightarrow -it$ from Minkowski to euclidean spacetime
- Peplace spacetime with regular lattice of sites connected by links
- Gauge invariance: fermion fields on sites, gauge fields on links
- Recover original theory (e.g., Lorentz invariance) in continuum

Part 2: Simulation

() Observables $\langle \mathcal{O} \rangle$ defined through path integral

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}U \mathcal{D}\overline{\Psi} \mathcal{D}\Psi \mathcal{O}e^{-S_G(U) - \overline{\Psi}D(U)\Psi}$$

D(U) is the discrete Dirac operator on the lattice

Gaussian integration replaces anti-commuting Grassmann fields

$$\int \mathcal{D}\overline{\Psi}\mathcal{D}\Psi e^{-\overline{\Psi}\mathcal{D}\Psi} \propto \det \mathcal{D} \propto \int \mathcal{D}\overline{\chi}\mathcal{D}\chi e^{-\overline{\chi}\mathcal{D}^{-1}\chi}$$

(Inverting the large sparse matrix D(U) is the main computational cost)

- With an even number of fermions, we have $\int \mathcal{D}\overline{\chi}\mathcal{D}\chi e^{-\overline{\chi}(D^{\dagger}D)^{-1}\chi}$
- **(a)** Positive definite action \longrightarrow probability distribution
- Finite number of degrees of freedom

 \longrightarrow numerical importance sampling (Monte Carlo)

Part 3: Systematics

Must keep in mind systematic effects of working on the lattice

Finite volume

Reduce effects by requiring $L \gg \lambda_{max} = \frac{1}{M_P}$ Need large lattice size $L^3 \times 2L$ or large pseudoscalar mass M_P

(Input is fermion mass m_f ; $M_P \propto \sqrt{m_f}$ not known *a priori*)

1 Nonzero "lattice spacing" *a* between sites Should repeat calculation at several *a*, extrapolate $a \rightarrow 0$

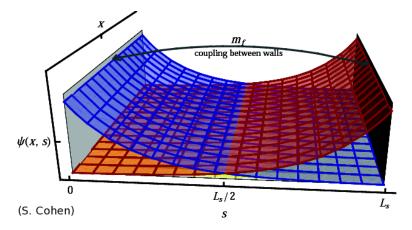
```
(Computational cost \propto 1/a^6)
```

Reduce effects by clever construction of lattice action

Chiral symmetry breaking
Explicitly broken by $m_f > 0$
Additional explicit breaking from many lattice actions(Computational cost $\propto 1/m_f^{4.5}$)

(Chiral lattice actions have much larger computational costs)

Domain wall fermions



- Add fifth dimension of length L_s
- Exact chiral symmetry at finite lattice spacing in the limit $L_s \rightarrow \infty$
- At finite L_s , "residual mass" $m_{res} > 0$; $m = m_f + m_{res}$

Outline (reminder)

Mystery: The Origin of Mass

- Electroweak symmetry breaking
- New strong dynamics
- S parameter

Methods: High-Performance Computing

3 Results: S Parameter on the Lattice

We have a way to perform non-perturbative computations Let's apply it to calculate the *S* parameter for new strong dynamics

Lattice Strong Dynamics Collaboration

Argonne James Osborn Boston Ron Babich, Richard Brower, Saul Cohen,

Claudio Rebbi, DS

- Fermilab Ethan Neil
- Harvard Mike Clark
- Livermore Mike Buchoff, Michael Cheng, Pavlos Vranas
- UC Davis Joseph Kiskis
 - Yale Thomas Appelquist, George Fleming,

Meifeng Lin, Gennady Voronov

Formed in 2007 to pursue non-perturbative studies of strongly interacting theories likely to produce observable signatures at the Large Hadron Collider.

LSD Philosophy and Simulation Details

- Start from what we know (QCD) and use it as a baseline $\longrightarrow SU(3)$ gauge theory with $N_f = 2$, 6, 10
- Work on large lattices so finite-volume effects are small $\rightarrow 32^3 \times 64$ with 0.005 $\leq m_f \leq$ 0.030 gives $M_PL \gtrsim 4$
- Directly compare the different theories
 - \longrightarrow Tune parameters to match chiral symmetry breaking scale
 - \longrightarrow Plot results versus M_P^2 rather than $m = m_f + m_{res}$
- Exploratory calculations
 - $\longrightarrow \mathcal{O}(100)$ independent measurements per point
- Studying spontaneous chiral symmetry breaking
 - \longrightarrow Domain wall fermions with $L_s = 16$
 - $\longrightarrow m_{res} \approx 3 \times 10^{-5}$ (2f); 8×10^{-4} (6f); 2×10^{-3} (10f)

DWF are expensive, even for exploratory calculations

\sim 300M core-hours on LLNL BGL, USQCD clusters, NSF Teragrid...

Origin of Mass with High-Performance Computing

S parameter on the lattice

$$\begin{split} &\gamma & \sum_{X \to 0} \gamma = i e^{2} \Pi_{00} g^{\mu\nu} + \cdots \\ &Z & \sum_{X \to 0} \gamma = i \frac{e^{2}}{cs} (\Pi_{30} - s^{2} \Pi_{00}) g^{\mu\nu} + \cdots \\ &Z & \sum_{X \to 0} \gamma = i \frac{e^{2}}{cs} (\Pi_{30} - s^{2} \Pi_{00}) g^{\mu\nu} + \cdots \\ &Z & \prod_{VV} = 2 \Pi_{3Q} \\ &\Pi_{AA} = 4 \Pi_{33} - 2 \Pi_{3Q} \end{split}$$

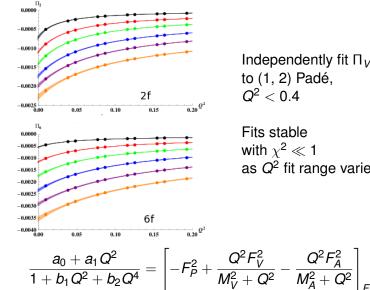
On the lattice, correlators involve a single pair of fermions

$$\Pi_{V-\mathcal{A}}^{\mu\nu}(Q) = Z \sum_{x} e^{iQ \cdot (x+\widehat{\mu}/2)} \operatorname{Tr} \left[\left\langle \mathcal{V}^{\mu a}(x) V^{\nu b}(0) \right\rangle - \left\langle \mathcal{A}^{\mu a}(x) \mathcal{A}^{\nu b}(0) \right\rangle \right]$$
$$\Pi^{\mu\nu}(Q) = \left(\delta^{\mu\nu} - \frac{\widehat{Q}^{\mu} \widehat{Q}^{\nu}}{\widehat{Q}^{2}} \right) \Pi(Q^{2}) - \frac{\widehat{Q}^{\mu} \widehat{Q}^{\nu}}{\widehat{Q}^{2}} \Pi^{L}(Q^{2}) \qquad \widehat{Q} = 2\sin\left(Q/2\right)$$

 \bullet Conserved currents ${\cal V}$ and ${\cal A}$ ensure that lattice artifacts cancel

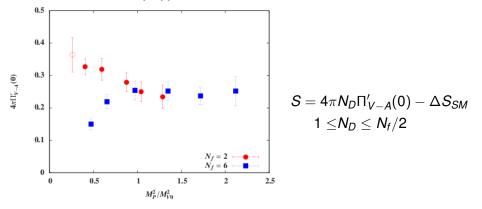
- $\langle \mathcal{V}^{\mu a}(x) \mathcal{V}^{\nu a}(0) \rangle$ and $\langle \mathcal{A}^{\mu a}(x) \mathcal{A}^{\nu a}(0) \rangle$ require $\mathcal{O}(L_s)$ inversions
- Renormalization constant Z computed non-perturbatively Z = 0.85 (2f); 0.73 (6f); 0.71 (10f)

Correlator data and fits



Independently fit $\Pi_{V-A}(Q^2)$ to (1, 2) Padé,

Fits stable with $\chi^2 \ll 1$ as Q^2 fit range varies Fit results for $\Pi'_{V-A}(0)$, $N_f = 2$ and $N_f = 6$



Reduction in $\Pi'_{V-A}(0)$ for $M_P^2 < M_{V0}^2 \equiv \lim_{m \to 0} M_V^2$ \longrightarrow naïve scaling $S \sim 0.3 \frac{N_f}{2} \frac{N_c}{3}$ does **not** hold

(Do expect naïve scaling in heavy-fermion limit $M_P^2 \gg M_{V0}^2$)

 ΔS_{SM} with $m_f > 0$

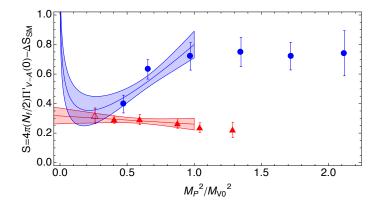
$$S = 4\pi N_D \lim_{Q^2 \to 0} \frac{d}{dQ^2} \left[\Pi_{VV}(Q^2) - \Pi_{AA}(Q^2) \right] - \Delta S_{SM}$$
$$\Delta S_{SM} = \frac{1}{4} \int_{4M_P^2}^{\infty} \frac{ds}{s} \left[1 - \left(1 - \frac{M_{V0}^2}{s} \right)^3 \Theta(s - M_{V0}^2) \right]$$

- ΔS_{SM} diverges as $s \rightarrow 0$ (cancelling out eaten modes)
- With $m_f > 0$, need lower bound $4M_P^2 > 0$ on spectral integral
- For $N_f = 2$, cancellation continues to work as $m_f \rightarrow 0$
- For $N_f > 2$, extra $N_f^2 4$ uneaten modes

must receive masses from other interactions

- Set reference Higgs mass $M_H^{ref} = \lim_{m \to 0} M_V \equiv M_{V0} \sim 1000 \text{ GeV}$
- Numerically, $\Delta S_{SM} \lesssim$ 0.04, only 5–10% reduction

S parameter, $N_f = 2$ and $N_f = 6$



For $M_P^2 < M_{V0}^2$, fit to form accounting for $N_f^2 - 4$ uneaten modes

$$S = A + BM_P^2 + rac{1}{12\pi}\left[rac{N_f^2}{4} - 1
ight]\log\left(rac{M_{V0}^2}{M_P^2}
ight)$$

Conclusion

- Elementary particle masses require electroweak symmetry breaking, which may be due to new strong dynamics
- Strongly-interacting gauge theories need not resemble QCD
- Lattice gauge theory can provide non-perturbative information

For SU(3) gauge theory with $N_f = 6$ compared to $N_f = 2$ we find an *S* parameter smaller than naïve scaling

Further refinements ongoing:

- Additional data, $m_f = 0.0075$
- Effects of finite volume, topology
- "Twisted" BCs to reduce Q^2
- Testing cheaper lattice action

• $N_f = 10$

• OPE for Π_{V-A}

• . . .

Acknowledgements

At BU

Adam Avakian, Ron Babich, Rich Brower, Mike Clark, Saul Cohen, James Osborn, Claudio Rebbi

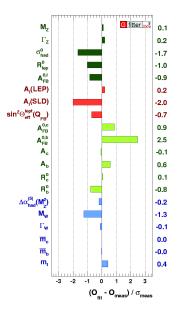
Elsewhere

Tom Appelquist, Mike Buchoff, Michael Cheng, George Fleming, Fu-Jiun Jiang, Joe Kiskis, Meifeng Lin, Ethan Neil, Pavlos Vranas

Funding and computing resources

Bonus slides!

Experimental confirmation of electroweak theory



(Gfitter Group)

Gauge invariance example: electromagnetism

Electric and magnetic fields in terms of potentials Φ and \boldsymbol{A}

$$\mathbf{E} = -\frac{\partial \mathbf{A}}{\partial t} - \nabla \Phi \qquad \qquad \mathbf{B} = \nabla \times \mathbf{A}$$

E and B are invariant under the gauge transformation

$$\Phi \to \Phi - \frac{\partial \Lambda}{\partial t}$$
 $\mathbf{A} \to \mathbf{A} + \nabla \Lambda$

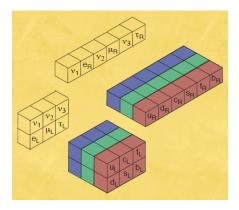
In four-vector notation, $A_{\mu} = (\Phi, \mathbf{A}) \rightarrow A_{\mu} + \partial_{\mu} \Lambda$

Photon mass term in lagrangian is

$$rac{1}{2}m_{\gamma}^{2}\mathcal{A}_{\mu}\mathcal{A}^{\mu}=rac{1}{2}m_{\gamma}^{2}\left(\mathbf{A}\cdot\mathbf{A}-\Phi^{2}
ight)$$

Forbidden by gauge invariance!

Massless fermions from chiral gauge theory



(Chris Quigg)

Fermion mass term in lagrangian is $m\overline{\psi}\psi = m\left(\overline{\psi}_L\psi_B + \overline{\psi}_B\psi_L\right)$

$$\overline{\psi}_{L}\psi_{R}\sim\begin{pmatrix}\overline{\psi}_{\uparrow} & \overline{\psi}_{\downarrow}\end{pmatrix}_{L}\cdot(\psi)_{R}$$

Forbidden by gauge invariance!

Fermion masses in standard model

Need to make a gauge-invariant object involving

$$\overline{\psi}_{L}\psi_{R}\sim\begin{pmatrix}\overline{\psi}_{\uparrow} & \overline{\psi}_{\downarrow}\end{pmatrix}_{L}\cdot(\psi)_{R}$$

Standard model solution: stick in a Higgs $\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$

$$\lambda_{\psi} \begin{pmatrix} \overline{\psi}_{\uparrow} & \overline{\psi}_{\downarrow} \end{pmatrix}_{L} \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} (\psi)_{R}$$

With vacuum $\langle \Phi \rangle = \begin{pmatrix} 0 \\ v/\sqrt{2} \end{pmatrix}$, identify $m_{\psi} = \lambda_{\psi} v/\sqrt{2}$.

All fermion masses and mixing are arbitrary free parameters!

Gauge boson masses in standard model $\Phi = \begin{pmatrix} \phi_1 + i\phi_2 \\ \nu/\sqrt{2} + h + i\phi_3 \end{pmatrix}$ $\mathcal{L}_{\Phi} = (\mathcal{D}^{\mu}\Phi)^{\dagger} (\mathcal{D}_{\mu}\Phi) + \mu^2 \Phi^{\dagger}\Phi - \lambda \left(\Phi^{\dagger}\Phi\right)^2 \Rightarrow \mathbf{v} = \sqrt{-\mu^2/\lambda}$ $\mathcal{D}_{\mu} = (\partial_{\mu} + \frac{i}{2}g_1 B_{\mu}) \mathbb{I} + \frac{i}{2}g_2 W_{\mu}^a \sigma^a$

 W^{\pm} and Z masses pop out of $(\mathcal{D}^{\mu}\Phi)^{\dagger}(\mathcal{D}_{\mu}\Phi)$. Relevant terms:

$$\frac{v^{2}}{8}(0 \ 1)\left(\begin{array}{cc} -g_{2}W_{\mu}^{3}-g_{1}B_{\mu} & g_{2}(W_{\mu}^{1}-iW_{\mu}^{2}) \\ g_{2}(W_{\mu}^{1}+iW_{\mu}^{2}) & g_{2}W_{\mu}^{3}-g_{1}B_{\mu}\end{array}\right)^{2}\left(\begin{array}{c} 0 \\ 1\end{array}\right)$$
$$\equiv \frac{g_{2}^{2}v^{2}}{8}(0 \ 1)\left(\begin{array}{cc} \cdots & \sqrt{2}W_{\mu}^{+} \\ \sqrt{2}W_{\mu}^{-} & (g_{1}^{2}+g_{2}^{2})^{1/2}Z_{\mu}/g_{2}\end{array}\right)^{2}\left(\begin{array}{c} 0 \\ 1\end{array}\right)$$
$$\equiv M_{W}^{2}W^{+\mu}W_{\mu}^{-}+\frac{1}{2}M_{Z}^{2}Z^{\mu}Z_{\mu}+\cdots$$
$$M_{W}=\frac{1}{2}g_{2}v=(M_{Z}/g_{2})\sqrt{g_{1}^{2}+g_{2}^{2}}\equiv M_{Z}\cos\theta_{W}$$

Gauge boson masses in new strong dynamics

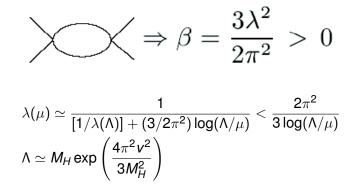
Now we have pions with

$$\begin{split} \mathcal{L}_{\chi} &= F_{P}^{2} \mathrm{Tr} \left[\left(\mathcal{D}^{\mu} \Sigma \right)^{\dagger} \left(\mathcal{D}_{\mu} \Sigma \right) \right] / 4 \\ \Sigma &= \exp \left(2i \sigma^{a} \pi^{a} / F_{P} \right) \sim q_{L} \overline{q}_{R} \\ \mathcal{D}_{\mu} &= \mathbb{I} \partial_{\mu} - \frac{i}{2} g_{2} \mathcal{W}_{\mu}^{a} \sigma^{a} \qquad \mathcal{W}_{\mu}^{a} = \left(\mathcal{W}_{\mu}^{1}, \mathcal{W}_{\mu}^{2}, \mathcal{W}_{\mu}^{3} - g_{1} \mathcal{B}_{\mu} / g_{2} \right) \end{split}$$

 W^{\pm} and Z masses pop out of $F_P^2 \text{Tr} |\mathcal{D}_{\mu} \Sigma|^2 / 4$. Relevant terms:

$$\begin{aligned} (\partial_{\mu}\pi^{a})^{2} - F_{P}g_{2}(\partial^{\mu}\pi^{a})\mathcal{W}_{\mu}^{a}/2 + F_{P}^{2}g_{2}^{2}(\mathcal{W}_{\mu}^{a})^{2}/16 &= \left[F_{P}g_{2}\mathcal{W}_{\mu}^{a}/4 - \partial_{\mu}\pi^{a}\right]^{2} \\ &= F_{P}^{2}g_{2}^{2}\left[(\mathcal{W}_{\mu}^{1})^{2} + (\mathcal{W}_{\mu}^{2})^{2}\right]/8 + F_{P}^{2}(g_{2}^{2} + g_{1}^{2})Z_{\mu}^{2}/8 \\ &\equiv \mathcal{M}_{W}^{2}\mathcal{W}^{+\mu}\mathcal{W}_{\mu}^{-} + \frac{1}{2}\mathcal{M}_{Z}^{2}Z^{\mu}Z_{\mu} \quad \longrightarrow F_{P} = \mathbf{v} \end{aligned}$$

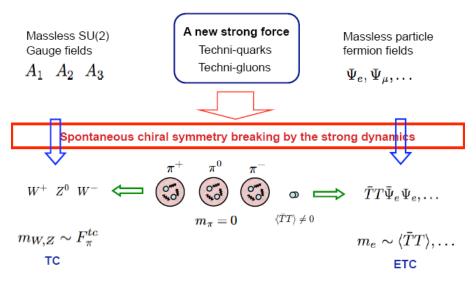
Triviality of fundamental Higgs



$$M_H = 115 \text{ GeV} \longrightarrow \Lambda \sim 10^{28} \text{ GeV}$$

 $M_H = 700 \text{ GeV} \longrightarrow \Lambda \sim 1000 \text{ GeV}$

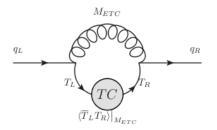
(Extended) technicolor in a picture



Fermion masses in extended technicolor

Integrating out ETC gauge bosons produces four-fermion operators that provide both SM fermion masses and FCNCs

FCNCs required by CKM mixing, limit obtainable SM fermion masses.

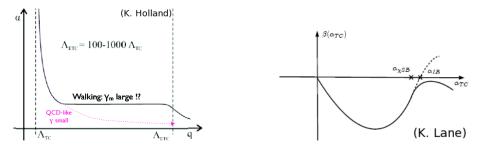


 M_{ETC}

"Walking" Technicolor

$$\langle \overline{T}T \rangle \big|_{M_{ETC}} = \langle \overline{T}T \rangle \big|_{\Lambda_{TC}} \exp\left(\int_{\Lambda_{TC}}^{M_{ETC}} \frac{d\mu}{\mu} \gamma(\mu)\right) \approx \langle \overline{T}T \rangle \big|_{\Lambda_{TC}} \left(\frac{M_{ETC}}{\Lambda_{TC}}\right)^{\gamma}$$

γ(μ) ~ 1 for Λ_{TC} ≤ μ ≤ M_{ETC} enhances fermion masses
 Implies large, slowly-running ("walking") coupling, small β function



Perturbative Yang–Mills β function

For $SU(N_c)$ Yang–Mills theory with N_f fermions in representation r

$$\beta(g) = \mu \frac{\partial g}{\partial \mu} = \beta_0 g^3 + \beta_1 g^5 + \beta_2 g^7 + \cdots$$
$$\beta_0 = -\frac{1}{(4\pi)^2} \left(\frac{11}{3} N_c - \frac{4}{3} N_f C(r) \right)$$
$$\beta_1 = -\frac{1}{(4\pi)^4} \left[\frac{34}{3} N_c^2 - \left(\frac{13}{3} N_c - \frac{1}{N_c} \right) N_f C(r) \right]$$

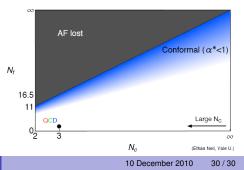
Higher-order β_i depend on choice of renormalization scheme

$$C(N) = \frac{1}{2}$$
 $C(Adj) = N_c$ $C_2(N) = \frac{d(Adj)}{d(N)}C(N) = \frac{N_c^2 - 1}{2N_c}$

Conformal window

- Strongly-coupled gauge theories can look very different than QCD
- With many fermions, theory has perturbative IR fixed point; it is in a conformal phase with no spontaneous χSB
- The **conformal window** ranges from loss of asymptotic freedom to some (unknown) critical $N_f^c < N_f^{AF}$
- With $N_f \lesssim N_f^c$, may be approximately conformal (walking!) for some range of scales

Visualization of conformal window for $SU(N_c)$ fermions in fundamental rep:



Anomalous dimension

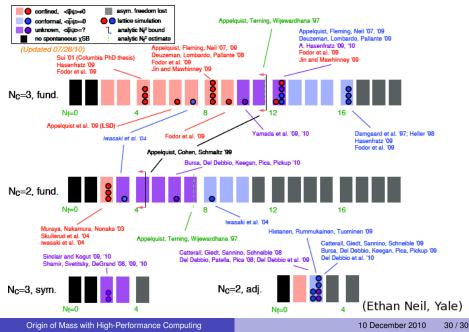
From "rainbow approximation" to "gap" (Schwinger–Dyson) equation

Assume spontaneous chiral symmetry breaking when

$$lpha(\mu) \geq rac{\pi}{\mathbf{3C_2(r)}} \equiv lpha_{\chi SB}$$

When $\alpha(\mu) = \alpha_{\chi SB}$, this gives $\gamma(\mu) = 1$

Searching for conformal windows



NLO χ PT for general N_f

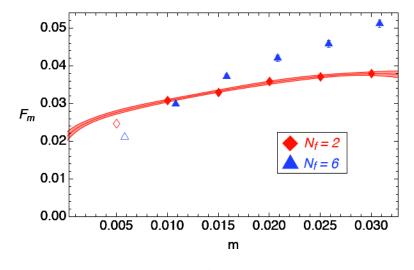
$$\begin{split} \frac{M_P^2}{2m} &= B \left\{ 1 + \frac{2mB}{(4\pi F)^2} \left[\alpha_m + \frac{1}{N_f} \log\left(\frac{2mB}{(4\pi F)^2}\right) \right] \right\} \\ F_P &= F \left\{ 1 + \frac{2mB}{(4\pi F)^2} \left[\alpha_F - \frac{N_f}{2} \log\left(\frac{2mB}{(4\pi F)^2}\right) \right] \right\} \\ \left\langle \overline{\psi}\psi \right\rangle &= F^2 B \left\{ 1 + \frac{2mB}{(4\pi F)^2} \left[\alpha_C - \frac{N_f^2 - 1}{N_f} \log\left(\frac{2mB}{(4\pi F)^2}\right) \right] \right\} \end{split}$$

• α_{C} includes "contact term" $m\Lambda^{2} \sim ma^{-2}$

• NNLO M_P^2 coefficients enhanced by N_f^2

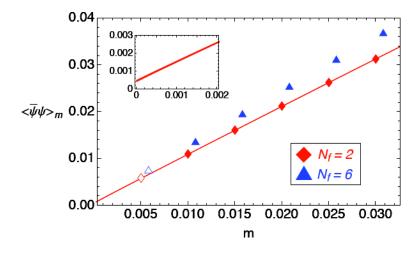
(Bijnens & Lu, 2009)

Goldstone decay constant



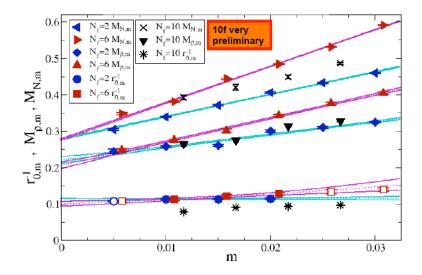
Joint NNLO χ PT fit to $N_f = 2 F_P, M_P^2, \langle \overline{\psi} \psi \rangle$

Chiral condensate



Joint NNLO χ PT fit to $N_f = 2 F_P$, M_P^2 , $\langle \overline{\psi}\psi \rangle$ Linear term clearly dominant

"Sommer scale", vector and nucleon masses



 $N_f = 2$ and $N_f = 6$ all match at 10% level

Chiral condensate enhancement: preliminaries

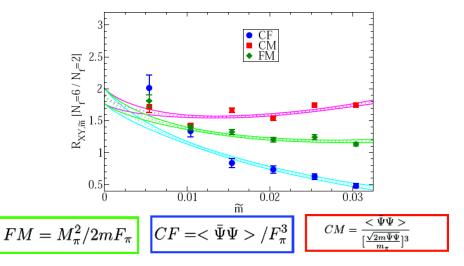
- Search for enhancement through $\left<\overline{\psi}\psi\right>/F^3$
- Not RG invariant: keep cutoff fixed in physical units
- Focus on the ratio *R* of $\left<\overline{\psi}\psi\right>/F^3$ between $N_f=6$ and $N_f=2$

$$R = \frac{\left(\left\langle \overline{\psi}\psi \right\rangle / F^{3}\right)_{6f}}{\left(\left\langle \overline{\psi}\psi \right\rangle / F^{3}\right)_{2f}} = \frac{\exp\left(\int_{M_{\rho}}^{5M_{\rho}} \left. \frac{\gamma(\mu)}{\mu} \right|_{6f} d\mu\right)}{\exp\left(\int_{M_{\rho}}^{5M_{\rho}} \left. \frac{\gamma(\mu)}{\mu} \right|_{2f} d\mu\right)}$$

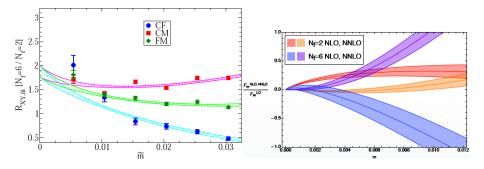
MS perturbation theory & perturbative conversion to lattice scheme predicts R = 1.27(7)

Enhancement of $\langle \overline{\psi}\psi\rangle/F^3$, $N_f = 2$ to $N_f = 6$

Find significant enhancement compared with perturbative R = 1.27(7)



NLO χ PT fits, $N_f = 2$ and $N_f = 6$

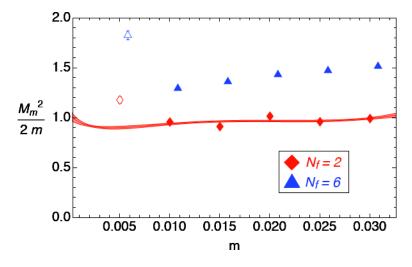


• NLO χ PT fits work for $N_f = 2$ but not $N_f = 6$ (lighter m_f required)

• GMOR
$$\Rightarrow \frac{\langle \overline{\psi}\psi \rangle}{F_{\pi}^{3}} = \frac{M_{\pi}^{3}}{\sqrt{(2m)^{3}\langle \overline{\psi}\psi \rangle}} = \frac{M_{\pi}^{2}}{2mF_{\pi}} \equiv \mathcal{R} \text{ as } m \to 0$$

• Fit ratios to $\mathcal{R}\left[1 + \widetilde{m}(\alpha_{XY10} + \alpha_{11}\log\widetilde{m})\right]$ where $\widetilde{m} \equiv \sqrt{m_2m_6}$

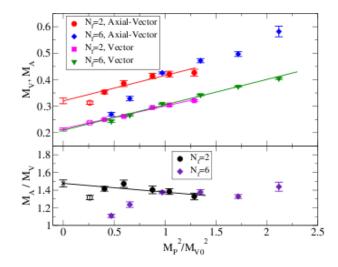
Pseudo Nambu–Goldstone boson mass



• Slope of M_P^2 with *m* significantly larger for $N_f = 6$

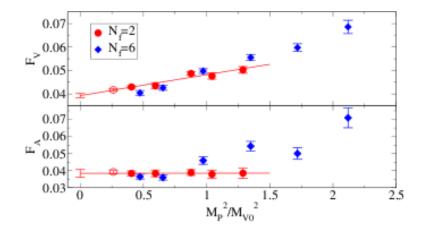
• Plot against M_P^2 , to provide more physical comparison

Vector and axial spectrum



Signs of $N_f = 6$ parity-doubling as M_P^2 decreases \Rightarrow implications for *S* parameter?

Vector and axial decay constants



Need $F_V \approx F_A$ for parity-doubling to produce vanishing S parameter

Wilson gauge action

$$\begin{split} U_{x,\mu} &= \exp\left[iagA_{\mu}(x+\widehat{\mu}/2)\right] \quad (\text{directed from } x+\widehat{\mu} \text{ to } x) \\ P_{x,\mu\nu} &= \text{Tr}\left[U_{x,\mu}U_{x+\widehat{\mu},\nu}U_{x+\widehat{\nu},\mu}^{\dagger}U_{x,\nu}^{\dagger}\right] \\ S_{G} &= \frac{1}{g^{2}}\sum_{x}\sum_{\mu\neq\nu}\left(3-P_{x,\mu\nu}-P_{x,\mu\nu}^{\dagger}\right) \\ &\rightarrow \int \frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \mathcal{O}(a^{2}) \quad \text{as } a \to 0 \end{split}$$

Domain wall Dirac operator

$$D_{x,y}^{W}(M_{5}) = (4 - M_{5})\delta_{x,y} - \frac{1}{2} \left[(1 + \gamma^{\mu})U_{x,\mu}^{\dagger}\delta_{x,y+\mu} + (1 - \gamma^{\mu})U_{x,\mu}\delta_{x+\mu,y} \right]$$
$$D_{s,s'}(m) = \left[D^{W}(M_{5}) + 1 \right] \delta_{s,s'} + P_{L} \left[(1 + m)\delta_{s,L_{s}-1}\delta_{s',0} - \delta_{s+1,s'} \right] + P_{R} \left[(1 + m)\delta_{s,0}\delta_{s',L_{s}-1} - \delta_{s,s'+1} \right]$$
$$D(m) = \begin{pmatrix} D^{W} + 1 & -P_{L} & 0 & \cdots & mP_{R} \\ -P_{R} & D^{W} + 1 & -P_{L} & \cdots & 0 \\ 0 & -P_{R} & D^{W} + 1 & \cdots & 0 \\ 0 & -P_{R} & D^{W} + 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ mP_{L} & 0 & 0 & \cdots & D^{W} + 1 \end{pmatrix}$$

 $P_L = \frac{1}{2}(1 - \gamma_5), P_R = \frac{1}{2}(1 + \gamma_5);$ $M_5 < 2$ is height of domain wall

Conserved and local domain wall currents

Conserved currents:

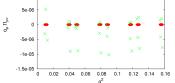
$$\mathcal{V}^{\mu a}(x) = \sum_{s=0}^{L_s-1} j^{\mu a}(x,s) \qquad \qquad \mathcal{A}^{\mu a}(x) = \sum_{s=0}^{L_s-1} \operatorname{sign}\left(s - \frac{L_s-1}{2}\right) j^{\mu a}(x,s)$$

$$j^{\mu a}(x,s) = \overline{\Psi}(x+\widehat{\mu},s)rac{1+\gamma^{\mu}}{2} au^{a}U^{\dagger}_{x,\mu}\Psi(x,s)
onumber \ -\overline{\Psi}(x,s)rac{1-\gamma^{\mu}}{2} au^{a}U_{x,\mu}\Psi(x+\widehat{\mu},s)$$

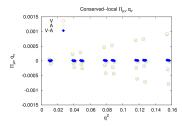
Local currents:

$$egin{aligned} V^{\mu}(x) &= \overline{q}(x) \gamma^{\mu} au^a q(x) & A^{\mu}(x) &= \overline{q}(x) \gamma^{\mu} \gamma^5 au^a q(x) \ & q(x) &= P_L \Psi(x,0) + P_R \Psi(x,L_s-1) \end{aligned}$$

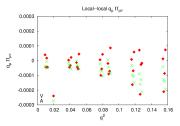
Ward identities and violations



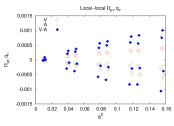
$$\sum_{x} e^{iQ\cdot(x+\widehat{\mu}/2)} \left(\left\langle \mathcal{V}_{\mu}^{a} V_{\nu}^{a} \right\rangle - \left\langle \mathcal{A}_{\mu}^{a} \mathcal{A}_{\nu}^{a}
ight
angle
ight)
ight] \widehat{Q}_{
u} pprox 0$$



 $\widehat{Q}_{\mu}\left[\sum_{x} e^{iQ\cdot x} \left\langle V_{\mu}^{a}(x) V_{\nu}^{a}(0) \right\rangle\right] \neq 0$

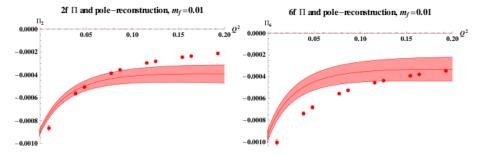


 $\left[\sum_{x} e^{iQ\cdot x} \left(\left\langle V_{\mu}^{a} V_{\nu}^{a} \right\rangle - \left\langle A_{\mu}^{a} A_{\nu}^{a} \right\rangle \right) \right] \widehat{Q}_{\nu} \neq 0$



Single-pole approximations to Π_{V-A}

$$egin{aligned} R_V(s) &= 12\pi^2 F_V^2 \delta(s-M_V^2) & R_A(s) &= 12\pi^2 F_A^2 \delta(s-M_A^2) \ & \Pi_{V-A}(Q^2) &= -F_P^2 + rac{Q^2 F_V^2}{M_V^2 + Q^2} - rac{Q^2 F_A^2}{M_A^2 + Q^2} \end{aligned}$$



S in χ PT, for $N_f = 2$

$$S = \frac{1}{12\pi} \left(\frac{\overline{\ell}_{5}}{F_{5}} + \log \left[\frac{M_{P}^{2} \frac{v^{2}}{F_{P}^{2}}}{M_{H}^{2}} \right] - \frac{1}{6} \right)$$

 $\overline{\ell}_5$ is extracted from

(Gasser and Leutwyler)

$$\Pi_{V-A}(Q^2) = -F_P^2 + Q^2 \left[\frac{1}{24\pi^2} \left(\overline{\ell}_5 - \frac{1}{3} \right) + \frac{2}{3} (1+x) \overline{J}(x) \right]$$
$$\overline{J}(x) = \frac{1}{16\pi^2} \left(\sqrt{1+x} \log \left[\frac{\sqrt{1+x} - 1}{\sqrt{1+x} + 1} \right] + 2 \right), \quad x \equiv 4M_P^2/Q^2$$

• Our $N_f \ge 6$ simulations have M_P too large to apply χ PT

- General- N_f corrections for $\overline{\ell}_5$ not yet known
- Must take only two flavors to the chiral limit,

any others remain massive