Lattice supersymmetry in a nutshell

David Schaich, 28 May 2015

Goals of this informal and pedagogical introduction

- Write down supersymmetric lattice system
(Four-dimensional $\mathcal{N}=4$ SYM - analogous lattice systems in 2d \& 3d)
- Point out connections to staggered fermions
- Raise issue of potential sign problem, possible connections to complex Langevin and Lefschetz thimble methods
- Main reference: arXiv:0903.4881
- Skip motivations: Take it for granted that we care about lattice susy

Supersymmetry and naive lattice obstacle

- Supersymmetries extend Poincaré spacetime symmetry
- Lorentz: Work in euclidean space $\longrightarrow \mathrm{SO}(d)_{\text {euc }}$ rotations $\Lambda_{\mu \nu}$
"Time" arbitrary - transfer matrix can be defined along any lattice vector
- Poincaré: Add spacetime translations P_{μ} to (euclidean) Lorentz

$$
\left[P_{\mu}, P_{\nu}\right]=0 \quad\left[P_{\mu}, \Lambda_{\rho \sigma}\right] \propto \delta_{\mu \rho} P_{\sigma}-\delta_{\mu \sigma} P_{\rho} .
$$

- Supercharges: Spinorial generators Q_{α}^{I} and $\bar{Q}_{\dot{\alpha}}^{I}$ with $I=1, \cdots, \mathcal{N}$

Transform under global $\operatorname{SU}(\mathcal{N})_{R}$ flavor symmetry ("R symmetry")

$$
\begin{aligned}
\left\{Q_{\alpha}^{I}, Q_{\beta}^{J}\right\}=0 & \left\{Q_{\alpha}^{I}, \bar{Q}_{\dot{\alpha}}^{J}\right\}=2 \delta^{I J} \sigma_{\alpha \dot{\alpha}}^{\mu} P_{\mu} \\
{\left[Q_{\alpha}^{I}, P_{\mu}\right]=0 } & {\left[Q_{\alpha}^{I}, \Lambda_{\mu \nu}\right] \propto \frac{1}{4}\left[\gamma_{\mu}, \gamma_{\nu}\right]_{\alpha}^{\beta} Q_{\beta}^{I} }
\end{aligned}
$$

- Lattice: P_{μ} generates infinitesimal spacetime translations
P_{μ} does not exist in discrete spacetime \Longrightarrow no supersymmetry protection, have to fine tune (typically many) relevant or marginal operators
- Aside: Banks \& Windey '82 tried using hamiltonian formulation

$$
\text { to preserve }\left\{Q_{\alpha}^{I}, \bar{Q}_{\dot{\alpha}}^{J}\right\}=2 \delta^{I J} \sigma_{\alpha \dot{\alpha}}^{0} H
$$

Now fine-tuning required to recover Lorentz symmetry in continuum limit

Kähler-Dirac selects $\mathcal{N}=4$ SYM in 4d

- Consider 4d: Expand 4×4 matrix of 16 supercharges in basis of γ matrices

$$
\left(\begin{array}{cccc}
Q_{\alpha}^{1} & Q_{\alpha}^{2} & Q_{\alpha}^{3} & Q_{\alpha}^{4} \\
\bar{Q}_{\dot{\alpha}}^{1} & \bar{Q}_{\dot{\alpha}}^{2} & \bar{Q}_{\dot{\alpha}}^{3} & \bar{Q}_{\dot{\alpha}}^{4}
\end{array}\right)=\mathcal{Q}+\mathcal{Q}_{\mu} \gamma_{\mu}+\mathcal{Q}_{\mu \nu} \gamma_{\mu} \gamma_{\nu}+\overline{\mathcal{Q}}_{\mu} \gamma_{\mu} \gamma_{5}+\overline{\mathcal{Q}} \gamma_{5}
$$

- Observation: Simple change of variables (in flat spacetime) that replaces spinors with anti-symmetric tensors
- Key: Susy subalgebra $\{\mathcal{Q}, \mathcal{Q}\}=2 \mathcal{Q}^{2}=0$ can be preserved on lattice
- Restriction: Need at least 2^{d} supercharges for expansion

Only one possibility in 4 d : $\mathcal{N}=4$ supersymmetric Yang-Mills (SYM)

- $\mathcal{N}=4$ SYM: Restricting to spins ≤ 1 allows only single super-multiplet Contains the gauge field A_{μ}, four fermions Ψ^{I} and six scalars $\Phi^{I J}$ all in adjoint rep. of gauge group - typically $\operatorname{SU}(N)$

State	Helicity	Flavor $\operatorname{SU}(4)_{R}$
$\left\|\Omega_{1}\right\rangle$	1	$\mathbf{1}$
$Q_{\alpha}^{I}\left\|\Omega_{1}\right\rangle$	$1 / 2$	$\mathbf{4}$
$Q_{\beta}^{J} Q_{\alpha}^{I}\left\|\Omega_{1}\right\rangle$	0	$\mathbf{6}$
$Q_{\gamma}^{K} Q_{\beta}^{J} Q_{\alpha}^{I}\left\|\Omega_{1}\right\rangle$	$-1 / 2$	$\overline{\mathbf{4}}$
$Q_{\delta}^{L} Q_{\gamma}^{K} Q_{\beta}^{J} Q_{\alpha}^{I}\left\|\Omega_{1}\right\rangle$	-1	$\mathbf{1}$

- Conformal: $\beta=0$ for all couplings (line of fixed points)

Connection to (reduced) staggered fermions

- Four fermions: Majorana Ψ^{I} expand just like supercharges

$$
\left(\begin{array}{llll}
\Psi^{1} & \Psi^{2} & \Psi^{3} & \Psi^{4}
\end{array}\right) \longrightarrow\left(\eta, \psi_{\mu}, \chi_{\mu \nu}, \bar{\psi}_{\mu}, \bar{\eta}\right)
$$

- Observation: Expansion mixes flavor symmetry (horizontal in matrix) and spacetime symmetry (vertical in matrix)
Equivalent to (reduced) staggered fermions: Banks, Dothan \& Horn '82 More formal Kähler-Dirac foundation in Rabin '82, Becher \& Joos '82

Topological twisting

- More formally: Matrix gives $\mathrm{SO}(4)_{\text {euc }} \otimes \mathrm{SO}(4)_{R}$

We're expanding in reps of "twisted rotation group"

$$
\mathrm{SO}(4)_{t w} \equiv \operatorname{diag}\left[\mathrm{SO}(4)_{\mathrm{euc}} \otimes \mathrm{SO}(4)_{R}\right]
$$

- Complication: Only have $\mathrm{SO}(4)_{R} \subset \mathrm{SU}(4)_{R} \simeq \mathrm{SO}(6)_{R}$
\Longrightarrow Scalar fields $\Phi^{I J} \longrightarrow\left(B_{\mu}, \phi, \bar{\phi}\right)$
- Solution: Combine $4+6$ bosons in complexified $\mathcal{A}_{a}=\left(A_{\mu}, \phi\right)+i\left(B_{\mu}, \bar{\phi}\right)$ Similarly combine $\psi_{a}=\left(\psi_{\mu}, \bar{\eta}\right)$ and $\chi_{a b}=\left(\chi_{\mu \nu}, \bar{\psi}_{\mu}\right)$
- Question: Could complexified gauge field be related to (hep-lat/0301028) complex Langevin or Lefschetz thimble approaches to sign problem?

A_{4}^{*} lattice and its S_{5} point group symmetry

- A_{4}^{*} : Contains five links symmetrically spanning four dimensions Four-dimensional analog of 2d triangular lattice
Can obtain from dimensional reduction with symmetric constraint $\sum_{a} \partial_{a}=0$
- S_{5} point group symmetry: S_{5} irreps match those of $\mathrm{SO}(4)_{t w}$

Extracted by orthogonal matrix

$$
\begin{gathered}
P=\left(\begin{array}{ccccc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} & 0 & 0 \\
\frac{1}{\sqrt{12}} & \frac{1}{\sqrt{12}} & \frac{1}{\sqrt{12}} & -\frac{3}{\sqrt{12}} & 0 \\
\frac{1}{\sqrt{20}} & \frac{1}{\sqrt{20}} & \frac{1}{\sqrt{20}} & \frac{1}{\sqrt{20}} & -\frac{4}{\sqrt{20}} \\
\frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}}
\end{array}\right) . \\
\Longrightarrow\binom{\psi_{\mu}}{\bar{\eta}}=P\left(\psi_{a}\right) \quad\binom{\chi_{\mu \nu}}{\bar{\psi}_{\mu}}=P P\left(\chi_{a b}\right)
\end{gathered}
$$

- Scalar \mathcal{Q} : Nilpontent $\left(\mathcal{Q}^{2}=0\right)$, exchanges bosons \longleftrightarrow fermions

$$
\begin{array}{ll}
\mathcal{Q} \mathcal{U}_{a}=\psi_{a} & \mathcal{Q} \psi_{a}=0 \\
\mathcal{Q} \chi_{a b}=-\overline{\mathcal{F}}_{a b} & \mathcal{Q} \overline{\mathcal{U}}_{a}=0 \\
\mathcal{Q} \eta=d & \mathcal{Q} d=0
\end{array}
$$

d is bosonic auxiliary field, with standard e.o.m. $d=\overline{\mathcal{D}}_{a} \mathcal{U}_{a}$

Sign problem

- Phase reweighting: Allows importance sampling Monte Carlo using real non-negative Boltzmann factor $|\operatorname{pf} \mathcal{D}| e^{-S_{B}}$

$$
\begin{aligned}
\langle\mathcal{O}\rangle & =\frac{1}{Z} \int\left[d \mathcal{U}_{a}\right]\left[d \overline{\mathcal{U}}_{a}\right][d \Psi] \mathcal{O} e^{-S_{B}\left[\mathcal{U}_{a}, \overline{\mathcal{U}}_{a}\right]-\Psi^{T} \mathcal{D}\left[\mathcal{U}_{a}, \overline{\mathcal{U}}_{a}\right] \Psi} \\
& =\frac{1}{Z} \int\left[d \mathcal{U}_{a}\right]\left[d \overline{\mathcal{U}}_{a}\right] \mathcal{O} e^{i \alpha}|\operatorname{pf} \mathcal{D}| e^{-S_{B}} \\
& =\frac{\left\langle\mathcal{O} e^{i \alpha}\right\rangle_{p q}}{\left\langle e^{i \alpha}\right\rangle_{p q}}
\end{aligned}
$$

- Sign problem: When the phase α fluctuates so much that $\left\langle e^{i \alpha}\right\rangle_{p q}$ is consistent with zero
- Numerical results: Phase fluctuations strangely sensitive to temporal BCs $e^{i \alpha} \approx 1$ with anti-periodic BCs, $\left\langle e^{i \alpha}\right\rangle_{p q} \approx 0$ with periodic BCs Even more strangely, other observables change little for different BCs

Lattice action

- Twisted action: S is manifestly \mathcal{Q}-supersymmetric

$$
S=\frac{N}{2 \lambda_{\text {lat }}} \mathcal{Q}\left(\chi_{a b} \mathcal{F}_{a b}+\eta \overline{\mathcal{D}}_{a} \mathcal{A}_{a}-\frac{1}{2} \eta d\right)-\frac{N}{8 \lambda_{\text {lat }}} \epsilon_{a b c d e} \chi_{a b} \overline{\mathcal{D}}_{c} \chi_{d e}
$$

$\mathcal{Q} S=0$ follows from $\mathcal{Q}^{2} \cdot=0$ and Bianchi identity $\epsilon_{a b c d e} \overline{\mathcal{D}}_{c} \overline{\mathcal{F}}_{d e}=0$

- Expand: Apply \mathcal{Q} and integrate out auxiliary field d :

$$
\begin{aligned}
S= & \frac{N}{2 \lambda_{\text {lat }}}\left[-\overline{\mathcal{F}}_{a b} \mathcal{F}_{a b}+\frac{1}{2}\left(\overline{\mathcal{D}}_{a} \mathcal{U}_{a}\right)^{2}-\chi_{a b} \mathcal{D}_{[a} \psi_{b]}-\eta \overline{\mathcal{D}}_{a} \psi_{a}\right] \\
& -\frac{N}{8 \lambda_{\text {lat }}} \epsilon_{a b c d e} \chi_{a b} \overline{\mathcal{D}}_{c} \chi_{d e}
\end{aligned}
$$

Numerical complications

- Non-compact links live in algebra: $\mathcal{Q} \mathcal{U}_{a}=\psi_{a} \Longrightarrow \mathcal{U}_{a} \in \mathfrak{g l}(N, \mathbb{C})$

Flat measure in path integral is gauge invariant due to complexification Need $\mathcal{U}_{a}=\frac{1}{a} \mathbb{I}_{N}+\mathcal{A}_{a}+\mathcal{O}\left(a^{2}\right)$ in continuum limit, stabilized by scalar potential $\sum_{a}\left(\frac{1}{N} \operatorname{Tr}\left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right]-1\right)^{2}$

- $\mathrm{U}(N)$ gauge invariance: Due to complexified links
$\mathrm{U}(N)=\mathrm{SU}(N) \otimes \mathrm{U}(1)$ but $\mathrm{U}(1)$ only decouples in continuum
- Flat directions: Those in $U(1)$ sector seem especially problematic Include all constant $\mathrm{U}(1)$ shifts of x-independent fields, even if $S \neq 0$ $\mathrm{SU}(N)$ flat directions restricted to supersymmeric vacua with $S=0$
- Lifting: Scalar potential lifts $\operatorname{SU}(N)$ flat directions but softly breaks susy Plaquette determinant lifts $\mathrm{U}(1)$ flat directions, can be implemented supersymmetrically (1505.03135)
Modify e.o.m. for auxiliary field $d=\overline{\mathcal{D}}_{a} \mathcal{U}_{a}+2 G \operatorname{Re} \sum_{a<b}\left(\operatorname{det} \mathcal{P}_{a b}-1\right) \mathbb{I}_{N}$

PS: Motivations / context for lattice supersymmetry

- BSM: Supersymmetry most familiar as ingredient in new physics models Relies on (dynamical) spontaneous supersymmetry breaking \longrightarrow lattice
- Symmetries: Simplify analytic calculations, allowing insight into confinement, dynamical symmetry breaking, conformality, ... Lattice is new non-perturbative method to confirm / refine / extend insights
- Dualities: As in spin systems (e.g., Kramers \& Wannier on 2d Ising), theories with different fields \& interactions produce identical physics Relate "electric" \& "magnetic" gauge theories - Seiberg duality Relate gauge \& gravity theories - AdS/CFT duality or "holography" Method: Conjecture \& check (exploiting susy), may be extended by lattice
- Modelling: Attempts to study everything from QCD at finite density to non-Fermi liquids based on AdS/CFT holography Lattice could provide new input to these efforts - validate or refine

