Novel phase in SU(3) lattice gauge theories with many light fermions

David Schaich (University of Colorado)

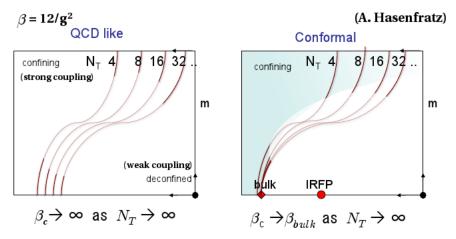
APS April Meeting, Atlanta, 1 April 2012

arXiv:1111.2317v2 and work in progress with Anqi Cheng, Anna Hasenfratz and Greg Petropolous

Goals, methods and results

Goals

- Understand strongly-coupled systems beyond QCD
- Potential applications beyond the standard model

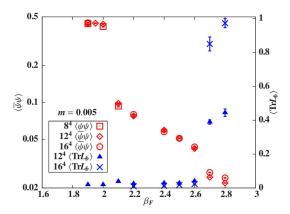

Methods

- Lattice gauge theory with highly-improved lattice action
- $N_f = 12$ staggered fermions in the fundamental rep.
- Explore phase transitions on relatively small (cheap!) volumes,
 believed to identify IR-conformal vs. confining systems

Results

- Novel phase: confining but chirally symmetric, single-site shift symmetry spontaneously broken ("S⁴")
- Most likely pure lattice phase \Longrightarrow doesn't identify conformality

Qualitative expectations for the lattice phase diagram (gauge coupling-fermion mass)

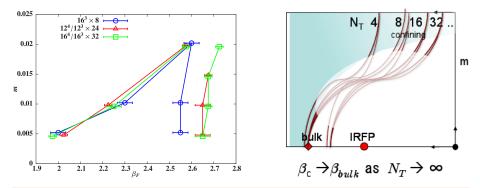

Hope for clear distinction between QCD-like and conformal cases

• Cheaper than other methods: smaller volumes, lower statistics

David Schaich (Colorado)

We observe two first-order bulk transitions

- Chiral condensate $\langle \overline{\psi}\psi \rangle$ (red) related to chiral symmetry
- Blocked Polyakov loop $\langle TrL_b \rangle$ (blue) related to confinement



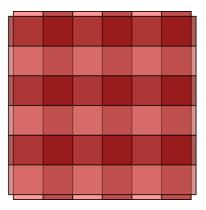
Two jumps in $\langle \overline{\psi}\psi \rangle$ observed by two other groups with different actions \implies robust feature of staggered fermions

David Schaich (Colorado)

Twelve-flavor phase diagram (gauge coupling-fermion mass)

Finite-temperature transitions converge to two bulk transitions which merge as the fermion mass increases

Bulk transition \implies IR conformality in the continuum?

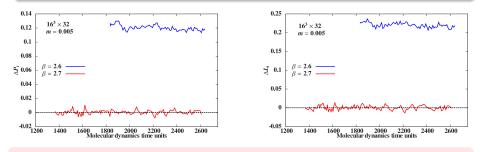

If the intermediate phase has no continuum limit, **this does not follow Rest of the talk:** what is this novel phase?

David Schaich (Colorado)

The phase breaks single-site shift symmetry (S^4)

Staggered lattice actions possess exact single-site shift symmetry which is spontaneously broken in the intermediate phase

Observables alternate between slices in one or more directions



The phase breaks single-site shift symmetry (S^4)

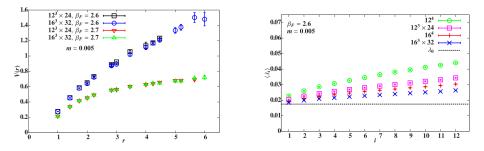
Staggered lattice actions possess exact single-site shift symmetry which is spontaneously broken in the intermediate phase

Order parameters (any or all μ)

$$\Delta P_{\mu} = \langle \text{ReTr} \Box_{n} - \text{ReTr} \Box_{n+\mu} \rangle_{n_{\mu}\text{even}}$$
$$\Delta L_{\mu} = \langle \alpha_{\mu,n} \overline{\chi}_{n} U_{\mu,n} \chi_{n+\mu} - \alpha_{\mu,n+\mu} \overline{\chi}_{n+\mu} U_{\mu,n+\mu} \chi_{n+2\mu} \rangle_{n_{\mu}\text{even}}$$

\mathscr{S}^4 has never been seen before, but is clear in our data

David Schaich (Colorado)


The \mathcal{S}^4 phase is confining but chirally symmetric

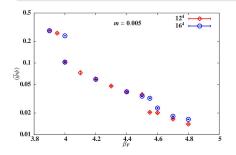
Confinement:

- (Blocked) Polyakov loop is small
- Potential has clear linear term, small Sommer parameter $r_0 \approx 3$

Chiral symmetry:

- Meson spectrum is parity-doubled and volume-independent
- Dirac eigenvalue distribution has "soft edge" λ₀ = 0.0175(5)

 \mathcal{S}^{4} phase seems to have no continuum limit


- Confining but chirally symmetric phases are forbidden by the continuum 't Hooft anomaly matching condition
- The \mathcal{S}^4 phase is bounded by first-order phase transitions

Could this be a staggered Aoki-like phase?

(work in progress)

S⁴ phase does not imply conformality

Also appears for $N_f = 8$, believed to be confining and chirally broken

(work in progress)

Recapitulation

Goals

- Understand strongly-coupled systems beyond QCD
- Potential applications beyond the standard model

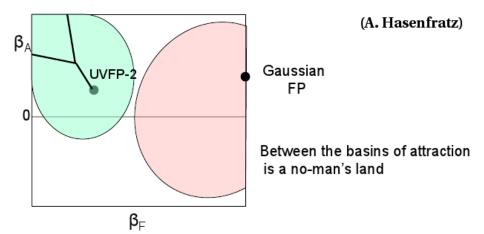
Methods

- Lattice gauge theory with highly-improved lattice action
- $N_f = 12$ (and 8) staggered fermions in the fundamental rep.
- Explore phase transitions on relatively small (cheap!) volumes, believed to identify IR-conformal vs. confining systems

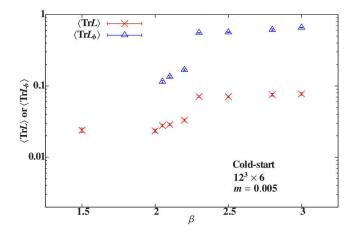
Results

- Novel phase: confining but chirally symmetric, single-site shift symmetry spontaneously broken ("S⁴")
- Most likely pure lattice phase \Longrightarrow doesn't identify conformality

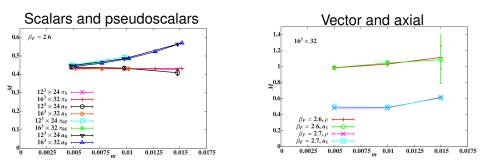
Thank you!


Thank you!

Collaborators Angi Cheng, Anna Hasenfratz, Greg Petropolous


Backup: spurious UV fixed point from lattice artifacts

We add a negative adjoint plaquette term to the gauge action to avoid a well-known spurious UV fixed point


Backup: Blocked and unblocked Polyakov loops

Blocked and unblocked Polyakov loops show the same discontinuity Blocking simply amplifies the signal, making it easier to see

Backup: parity doubling in the S^4 meson spectrum

In the \mathscr{S}^4 phase, meson spectrum is parity-doubled and volume-independent Goldstone pion possesses a scalar parity partner " a_5 " (forbidden in QCD-like systems!)

Backup: Volume scaling of Dirac eigenvalues

Scaling of Dirac eigenvalues predicts mass anomalous dimension γ_m

$$\rho(\lambda) \propto (\lambda - \lambda_0)^{\alpha} \implies \lambda_n - \lambda_0 \propto \left(\frac{n - x_0}{V}\right)^{\frac{1}{1 + \alpha}} \left[1 + \mathcal{O}\left(V^{-1}\right)\right]$$

$$y_m = 1 + \gamma_m = \frac{D}{1 + \alpha}$$

$$\sum_{\substack{\substack{225 \\ 335 \\ 4\\ 3$$

In weak-coupling phase (right), $\gamma_m = 0.61(5)$

David Schaich (Colorado)