Numerical methods in lattice field theory beyond the standard model

David Schaich (University of Liverpool)

Numerical Methods in Theoretical Physics
Asia Pacific Center for Theoretical Physics, Pohang, 13 July 2023

Overview and plan

Broader applications of lattice field theory motivate novel numerical methods

Lattice motivation and foundations

Near-conformal composite Higgs
[arXiv:2007.01810, arXiv:2102.06775, arXiv:2305.03665]

Composite dark matter and gravitational waves
 [arXiv:2112.11868, arXiv:2212.09199, arXiv:2303.01149]

Lattice supersymmetry and spontaneous susy breaking [arXiv:2112.07651, arXiv:2208.03580, arXiv:2301.02230]

Overview and plan

Broader applications of lattice field theory motivate novel numerical methods

Lattice motivation and foundations

Near-conformal composite Higgs
Composite dark matter and gravitational waves

Lattice supersymmetry and spontaneous susy breaking

Interaction encouraged - complete coverage unnecessary

Lattice regularization of quantum field theories
Formally $\langle\mathcal{O}\rangle=\frac{1}{\mathcal{Z}} \int \mathcal{D} \Phi \mathcal{O}(\Phi) e^{-S[\phi]}$
Regularize by formulating theory in finite, discrete, euclidean space-time Gauge invariant, non-perturbative, d-dimensional

Numerical lattice field theory calculations

High-performance computing \longrightarrow evaluate up to ~billion-dimensional integrals
(Dirac operator as $\sim 10^{9} \times 10^{9}$ matrix)
Results to be shown, and work in progress, require state-of-the-art resources
Many thanks to USQCD-DOE, DiRAC-STFC-UKRI, and computing centres!

Lassen @Livermore

USQCD @Fermilab

DiRAC @Cambridge Barkla @UoL

Numerical lattice field theory calculations

Importance sampling Monte Carlo
Standard algorithms sample field configurations with probability $\frac{1}{\mathcal{Z}} e^{-S[\Phi]}$

$$
\langle\mathcal{O}\rangle=\frac{1}{\mathcal{Z}} \int \mathcal{D} \Phi \mathcal{O}(\Phi) e^{-S[\Phi]} \longrightarrow \frac{1}{N} \sum_{i=1}^{N} \mathcal{O}\left(\Phi_{i}\right) \text { with stat. uncertainty } \propto \frac{1}{\sqrt{N}}
$$

Novel methods being developed and explored

Application: Composite Higgs sectors
Large Hadron Collider priority
Study fundamental nature of Higgs boson

Composite Higgs sector
can stabilize electroweak scale

New strong dynamics must differ from QCD
-Flavour-changing neutral currents
—Electroweak precision observables
-SM-like Higgs boson with $M \approx 0.5 v_{\mathrm{EW}}$

Challenge: Near-conformal dynamics for composite Higgs

New strong dynamics must differ from QCD

-Flavour-changing neutral currents
-Electroweak precision observables
-SM-like Higgs boson with $M \approx 0.5 v_{\text {EW }}$

Near-conformal dynamics can help with all three issues

Near-conformality \longrightarrow natural scale separation, novel IR dynamics

UV | | conformal | chirally broken | |
| :---: | :--- | :--- | :--- |
| $\Lambda_{U V}$ | fermion masses | $\Lambda_{I R}$ | Higgs dynamics |

Conformality broken by finite volume and non-zero lattice spacing

Anomalous dimensions

Pheno prefers large anomalous dimensions

$$
\gamma_{\mathcal{O}}=-\frac{\mathrm{d} \log Z_{\mathcal{O}}(\mu)}{\mathrm{d} \log \mu}
$$

Scaling of traditional composite spectrum $\longrightarrow \gamma_{m}$
but corrections to scaling hard to control

Novel method: Fermion operator eigenspectrum

Newer approach extracts γ_{m} from eigenvalue mode number of $D^{\dagger} D$

$$
\nu\left(\Omega^{2}\right)=\int_{0}^{\Omega^{2}} \rho\left(\omega^{2}\right) d \omega^{2} \propto\left(\Omega^{2}\right)^{2 /\left(1+\gamma_{m}\right)} \quad \rho\left(\omega^{2}\right)=\frac{1}{V} \sum_{k}\left\langle\delta\left(\omega^{2}-\lambda_{k}^{2}\right)\right\rangle
$$

Stochastic Chebyshev expansion covers full spectral range [Fodor et al., arXiv:1605.08091]

$$
\rho_{r}(x) \approx \sum_{n=0}^{P} \frac{2-\delta_{n 0}}{\pi \sqrt{1-x^{2}}} c_{n} T_{n}(x)
$$

Testing with lattice $\mathcal{N}=4 \mathrm{SYM}$

Continuum $\mathcal{N}=4$ SYM known conformal theory with $\gamma_{m}=0$
\longrightarrow test finite-volume and discretization artifacts

Even free theory shows lattice effects

Power law varies with scale Ω^{2}
\longrightarrow scale-dependent effective $\gamma_{\text {eff }}\left(\Omega^{2}\right)$

Extract by fitting in windows $\left[\Omega^{2}, \Omega^{2}+\ell\right]$ with fixed $\ell \in[0.03,1]$

Testing with lattice $\mathcal{N}=4 \mathrm{SYM}$

Continuum $\mathcal{N}=4$ SYM known conformal theory with $\gamma_{m}=0$
\longrightarrow test finite-volume and discretization artifacts

Even free theory shows lattice effects

Scale-dependent effective $\gamma_{\text {eff }}\left(\Omega^{2}\right)$ converges to true $\gamma_{m}=0$ in IR, $\Omega^{2} \ll 1$

Stronger couplings \longrightarrow larger artifacts

Aside: Anomalous dimensions for partial compositeness

Fermion masses set by anom. dim. of composite partner operators

$$
\mathcal{L} \supset \lambda \bar{q} \mathcal{O}_{q}+\text { h.c. }
$$

$$
\longrightarrow m_{q} \sim v_{\mathrm{EW}}\left(\frac{\mathrm{TeV}}{\Lambda_{U V}}\right)^{4-2 \gamma_{q}}
$$

SU(3) gauge theories

$$
\mathcal{O}_{q} \sim \psi \psi \psi \sim \text { baryons with }\left[\mathcal{O}_{q}\right]=\frac{9}{2}-\gamma_{q}
$$

Large mass hierarchy $\longleftrightarrow \mathcal{O}(1)$ anomalous dimensions

$$
\Lambda_{u v}=10^{10} \mathrm{TeV} \longrightarrow m_{q} \sim \mathcal{O}(\mathrm{MeV}) \text { from } \gamma_{q} \approx 1.75 ; \mathcal{O}(\mathrm{GeV}) \text { from } \gamma_{q} \approx 1.9
$$

Aside: Anomalous dimensions for partial compositeness

Fermion masses set by anom. dim.
of composite partner operators

$$
\begin{aligned}
& \mathcal{L} \supset \lambda \overline{\boldsymbol{q}} \mathcal{O}_{q}+\text { h.c. } \\
& \\
& \quad \longrightarrow m_{q} \sim v_{\mathrm{EW}}\left(\frac{\mathrm{TeV}}{\Lambda_{U V}}\right)^{4-2 \gamma_{q}}
\end{aligned}
$$

$\mathrm{SU}(3)$ gauge theories
$\mathcal{O}_{q} \sim \psi \psi \psi \sim$ baryons with $\left[\mathcal{O}_{q}\right]=\frac{9}{2}-\gamma_{q}$

New method extracts anomalous dimensions from gradient flow
\longrightarrow ratios of flowed operators $\propto t^{\gamma 0 / 2}$ [Carosso-Hasenfratz-Neil, arXiv:1806.01385]

Application: Composite dark matter

Abundant gravitational evidence for dark matter (details unknown)

$$
\frac{\Omega_{\text {dark }}}{\Omega_{\text {ordinary }}} \approx 5 \ldots \text { not } 10^{5} \text { or } 10^{-5}
$$

Explained by non-gravitational interactions in the early universe

Composite dark-sector phase transition

Early universe
 Deconfined charged fermions \longrightarrow explain relic density

Present day

Confined neutral 'dark baryons' \longrightarrow no experimental detections

Challenge: Gravitational waves from early-universe transition

First-order transition \longrightarrow stochastic background of gravitational waves

Lattice analyses of transition predict features of spectrum

Initial targets:
Latent heat
Surface tension

Challenge: Super-critical slowing down at first-order transition; difficult to tunnel between coexisting phases

Novel method: Density of states

$$
\langle\mathcal{O}\rangle=\frac{1}{\mathcal{Z}} \int \mathcal{D} \phi \mathcal{O}(\Phi) e^{-S[\phi]} \longrightarrow \frac{1}{\mathcal{Z}} \int \mathrm{~d} E \mathcal{O}(E) \rho(E) e^{-\beta E}
$$

'LLR' adaptation of Landau-Wang algorithm [Langfeld et al., arXiv:1509.08391] \longrightarrow continuous density of states $\rho(E)$ with exponential error suppression

1) Divide E into many small intervals $\left[E_{i}-\delta / 2, E_{i}+\delta / 2\right.$]
2) Find $a\left(E_{i}\right)$ for which $\frac{1}{\mathcal{N}_{i}} \int_{E_{i}-\delta / 2}^{E_{i}+\delta / 2} \mathrm{~d} E\left(E-E_{i}\right) \rho(E) e^{-a E}=0$
using iterative Robbins-Monro algorithm with importance sampling for each a_{n}
3) $\rho(E) e^{-a E} \sim$ const. in interval \longrightarrow reconstruct $\rho(E)$ from $a\left(E_{i}\right)=\left.\frac{\mathrm{d} \log \rho}{\mathrm{d} E}\right|_{E=E_{i}}$

Testing with large- N bulk transition

Lattice $\operatorname{SU}(N)$ Yang-Mills has strong first-order 'bulk' transition for $N \geq 5$ (not feature of continuum theory)

Ongoing work by Felix Springer

$N=4,5,6,8 ; \quad P_{\beta}=\rho(E) e^{-\beta E}$
Distance between peaks
\longrightarrow latent heat
Volume dependence of valley
\longrightarrow surface tension

Application: Lattice supersymmetry
Lattice field theory promises first-principles predictions for strongly coupled supersymmetric QFTs

BSM

QFT

Holography

Challenge 1: Explicit supersymmetry breaking

Supersymmetry is a space-time symmetry,

$$
(\mathrm{I}=1, \cdots, \mathcal{N})
$$ adding spinor generators Q_{α}^{I} and $\bar{Q}_{\dot{\alpha}}^{\mathrm{I}}$ to translations, rotations, boosts

$\left\{Q_{\alpha}^{\mathrm{I}}, \bar{Q}_{\dot{\alpha}}^{\mathrm{J}}\right\}=2 \delta^{\mathrm{II}} \sigma_{\alpha \dot{\alpha}}^{\mu} P_{\mu} \quad$ broken in discrete lattice space-time
\longrightarrow relevant susy-violating operators

Last year:

Preserve susy sub-algebra in discrete space-time
\Longrightarrow correct continuum limit with little or no fine tuning

Challenge 2: Sign problems

Importance sampling becomes more complicated when action S complex or we consider real-time dynamics

$$
\langle\mathcal{O}\rangle=\frac{1}{\mathcal{Z}} \int \mathcal{D} \Phi \mathcal{O}(\Phi) e^{-S[\Phi]} \longrightarrow \frac{1}{\mathcal{Z}} \int \mathcal{D} \Phi \mathcal{O}(\Phi) e^{i S[\Phi]}
$$

Arranging $\frac{1}{\mathcal{Z}} \int \mathcal{D} \Phi \mathcal{O} e^{i S}=\frac{\int \mathcal{D} \Phi \mathcal{O} \frac{e^{i S}}{e^{-|S|}} e^{-|S|}}{\int \mathcal{D} \Phi \frac{e^{-S}}{e^{-|S|}} e^{-|S|}}=\frac{\left\langle\mathcal{O} \frac{e^{i s}}{e^{-|S|}}\right\rangle_{\|}}{\left\langle\frac{e^{-s}}{e^{-|S|}}\right\rangle_{\|}}$
Sign problem: $\quad\langle\operatorname{sign}\rangle_{\|}=\left\langle\frac{e^{i S}}{e^{-|S|}}\right\rangle_{\|} \rightarrow 0$ exponentially quickly

Sign problem examples
$\frac{e^{-S}}{e^{-|S|}}$ is pure phase for lattice $\mathcal{N}=4$ supersymmetric Yang-Mills

Averages to zero when using periodic BCs

Spontaneous supersymmetry breaking

Requires vanishing Witten index

$$
\mathcal{W}=\operatorname{Tr}\left[(-1)^{F} e^{-i H t}\right]=\operatorname{Tr}_{B}\left[e^{-i H t}\right]-\operatorname{Tr}_{F}\left[e^{-i H t}\right] \propto\langle\operatorname{sign}\rangle_{\|}
$$

$\langle\text { sign }\rangle_{\|}=0 \longrightarrow$ maximally bad sign problem

Novel method: Quantum computing

In principle evade exponential classical computing costs

Change perspective

Path integral \longrightarrow continuous-time hamiltonian H on spatial lattice

Generic targets:
Find ground state $|\Omega\rangle \longrightarrow$ test spontaneous symmetry breaking
Real-time evolution $|\Psi(t)\rangle=e^{-i H t}|\Psi(0)\rangle \sim\left(\exp \left[-i H \delta_{T}\right]\right)^{N_{T}}|\Psi(0)\rangle$

Supersymmetric $H \longleftrightarrow$ matched boson / fermion d.o.f. at each lattice site:

$$
\begin{aligned}
H=\sum_{n}\left[\frac{p_{n}^{2}}{2}\right. & +\frac{1}{2}\left(\frac{\phi_{n+1}-\phi_{n-1}}{2}\right)^{2}+\frac{1}{2}\left[W\left(\phi_{n}\right)\right]^{2}+W\left(\phi_{n}\right) \frac{\phi_{n+1}-\phi_{n-1}}{2} \\
& \left.+(-1)^{n} W^{\prime}\left(\phi_{n}\right)\left(\chi_{n}^{\dagger} \chi_{n}-\frac{1}{2}\right)+\frac{1}{2}\left(\chi_{n}^{\dagger} \chi_{n+1}+\chi_{n+1}^{\dagger} \chi_{n}\right)\right]
\end{aligned}
$$

Prepotential $W(\phi)$ ensures supersymmetric interactions $W \propto \phi \longrightarrow$ free theory \longrightarrow expect supersymmetric $|\Omega\rangle$
$W \propto \phi^{2} \longrightarrow$ expect dynamical supersymmetry breaking

Wess-Zumino set up for quantum computing

Lattice \longrightarrow finite number of d.o.f.
Need to map bosons and fermions to finite number of qubits
Fermions - Jordan-Wigner transformation \longrightarrow one qubit per site
Bosons - retain lowest $\Lambda=2^{B}$ harmonic oscillator modes
binary encoding $\longrightarrow B$ qubits per site

Different treatment breaks supersymmetry, recovered as $\Lambda \rightarrow \infty$

Ongoing work by Chris Culver focuses on exploratory development \& testing \longrightarrow Qiskit simulator for rapid turnaround [github.com/chrisculver/WessZumino]

Variational quantum eigensolver (VQE)

'Hybrid' quantum-classical algorithm

Quantum circuit implements wave-function ansatz $\left|\Psi\left(\theta_{i}\right)\right\rangle$ with tunable params
Loss function measurements \longrightarrow classical optimizer adjusts θ_{i}
\nwarrow shallow circuit \longrightarrow less sensitive to noise / errors

Energy as loss function \longrightarrow approximate ground state

Apply to Wess-Zumino model
Spontaneous supersymmetry breaking \longleftrightarrow non-zero ground-state energy

Wess-Zumino VQE

$W=\phi$ with $\Lambda=16$ and 2 lattice sites

Even free theory doesn't always converge

For interacting cases, easier to converge to non-zero E harder to decide whether $E \rightarrow 0$

Variational quantum deflation (VQD)

Supersymmetry

\longrightarrow all nonzero-energy states paired

Idea: Find three smallest energies, check pairing

Use VQD algorithm
[Higgott-Wang-Brierley, arXiv:1805.08138]

$$
W=\phi \text { with } \Lambda=16 \text { and } 2 \text { lattice sites }
$$

check pairing
Use VQD algorithm
[Higgott-Wang-Brierley, arXiv:1805.08138]

Real-time evolution

For now, need far too many gates for reasonable $\Lambda \gtrsim \mathcal{O}(10)$

Here $\Lambda=4$ on single site
\longrightarrow supersymmetric quantum mech. [arXiv:2112.07651]

Smarter Trotterization \& transpilation should help

Recap: An exciting time for lattice BSM numerical methods

Broader applications of lattice field theory

motivate novel numerical methods

Eigenspectrum and gradient flow methods

\longrightarrow anomalous dimensions for near-conformal composite Higgs

Density of states methods avoid super-critical slowing down at first-order transitions producing gravitational waves

Quantum computing can avoid sign problems to explore spontaneous supersymmetry breaking

Thanks for your attention!
Any further questions?

Collaborators on highlighted work
Georg Bergner, Chris Culver, Angel Sherletov, Felix Springer
Lattice Strong Dynamics Collaboration (esp. James Ingoldby, Oliver Witzel)

Funding and computing resources
(iz) USQCD

```
Backup: Lattice Strong Dynamics Collaboration
    Argonne Xiao-Yong Jin, James Osborn
            Bern Andy Gasbarro
            Boston Venkitesh Ayyar, Rich Brower, Evan Owen, Claudio Rebbi
Colorado Anna Hasenfratz, Ethan Neil, Curtis Peterson
UC Davis Joseph Kiskis
    Fermilab George Fleming
Livermore Pavlos Vranas
Liverpool Chris Culver, DS, Felix Springer
        Nvidia Evan Weinberg
    Oregon Graham Kribs
Quantinuum Enrico Rinaldi
    Siegen Oliver Witzel
    Trieste James Ingoldby
        Yale Thomas Appelquist, Kimmy Cushman
```

Exploring the range of possible phenomena in strongly coupled field theories

Backup: Chebyshev expansion for mode number

Stochastically estimate Chebyshev expansion $\quad \rho_{r}(x) \approx \sum_{n=0}^{P} \frac{2-\delta_{n 0}}{\pi \sqrt{1-x^{2}}} c_{n} T_{n}(x)$
[Fodor et al., arXiv:1605.08091]

\longleftarrow Example $\mathcal{N}=4$ SYM mode number for $U(2) 8^{4}$ free theory, $P=1000$
$5000 \leq P \leq 10000$ for $\mathrm{U}(2), \mathrm{U}(3), \mathrm{U}(4)$ volumes up to 16^{4}

Checked vs. direct eigensolver and stochastic projection

Backup: Options for fermion mass generation

$$
\begin{aligned}
& \text { "Extended technicolor" } \\
& \frac{\bar{q} q \bar{\psi} \psi}{\Lambda_{U V}^{2}} \longrightarrow m_{q} \sim v_{\mathrm{EW}}\left(\frac{\mathrm{TeV}}{\Lambda_{U V}}\right)^{2-\gamma_{m}} \quad \text { vs. } \quad \text { flavour-changing } \mathrm{NCs} \sim \frac{\bar{q} q \bar{q} q}{\Lambda_{U V}^{2}}
\end{aligned}
$$

$\Lambda_{u v}=10^{10} \mathrm{TeV} \longrightarrow m_{q} \sim \mathcal{O}(\mathrm{MeV})$ from $\gamma_{q} \approx 1.75 ; \mathcal{O}(\mathrm{GeV})$ from $\gamma_{q} \approx 1.9$

Backup: Importance sampling for density of states

Robbins-Monro algorithm: $\quad a_{n+1}=a_{n}+\frac{\left\langle\left\langle E-E_{i}\right\rangle\right\rangle_{n}}{\sigma^{2}(n+1)}$
Restricted expect. value: $\quad\left\langle\left\langle E-E_{i}\right\rangle\right\rangle_{n}=\frac{1}{\mathcal{N}_{i ; n}} \int \mathcal{D} \Phi\left(E-E_{i}\right) \Theta\left(E_{i}, \delta\right) e^{-a_{n} s}$
Restriction can be hard cut-off (for OR/heatbath) or diff'able potential (for HMC)

Backup: Breakdown of Leibniz rule on the lattice
$\left\{Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\right\}=2 \sigma_{\alpha \dot{\alpha}}^{\mu} P_{\mu}=2 i \sigma_{\alpha \dot{\alpha}}^{\mu} \partial_{\mu}$ is problematic
\Longrightarrow try finite difference $\partial \phi(x) \longrightarrow \Delta \phi(x)=\frac{1}{a}[\phi(x+a)-\phi(x)]$
Crucial difference between ∂ and Δ

$$
\begin{aligned}
\Delta[\phi \eta] & =a^{-1}[\phi(x+a) \eta(x+a)-\phi(x) \eta(x)] \\
& =[\Delta \phi] \eta+\phi \Delta \eta+a[\Delta \phi] \Delta \eta
\end{aligned}
$$

Full supersymmetry requires Leibniz rule $\partial[\phi \eta]=[\partial \phi] \eta+\phi \partial \eta$ only recoverd in $a \rightarrow 0$ continuum limit for any local finite difference

Backup: Breakdown of Leibniz rule on the lattice
Full supersymmetry requires Leibniz rule $\partial[\phi \eta]=[\partial \phi] \eta+\phi \partial \eta$
only recoverd in $a \rightarrow 0$ continuum limit for any local finite difference

Supersymmetry vs. locality 'no-go' theorems
by Kato-Sakamoto-So [arXiv:0803.3121] and Bergner [arXiv:0909.4791]

Complicated constructions to balance locality vs. supersymmetry
Non-ultralocal product operator \longrightarrow lattice Leibniz rule but not gauge invariance
D’Adda-Kawamoto-Saito, arXiv:1706.02615
Cyclic Leibniz rule \longrightarrow partial lattice supersymmetry but only $(0+1)$ d QM so far Kadoh-Kamei-So, arXiv:1904.09275

Backup: Ansatz testing for Wess-Zumino VQE

Test four different ways of entangling qubits

More repetitions
\longrightarrow more params to optimize

In principle more expressive In practice harder to converge

Backup: Supersymmetric quantum mechanics

Reduce to single spatial site:

$$
\hat{H}_{\text {SQM }}=\frac{1}{2}\left[\hat{p}^{2}+[W(\hat{q})]^{2}-W^{\prime}(\hat{q})\left(\hat{b}^{\dagger} \hat{b}-\hat{b} \hat{b}^{\dagger}\right)\right] .
$$

Spontaneous supersymmetry breaking no longer dynamical
\longrightarrow determined by prepotential
Harmonic oscillator $W_{\text {HO }}=m \hat{q} \longrightarrow$ expect (free) supersymmetric $|\Omega\rangle$
Anharmonic oscillator $W_{\text {AHO }}=m \hat{q}+g \hat{q}^{3} \longrightarrow$ expect supersymmetric $|\Omega\rangle$
Double-well $W_{\mathrm{DW}}=m \hat{q}+g\left(\hat{q}^{2}+\mu^{2}\right) \longrightarrow$ expect spont. susy breaking

Backup: Supersymmetric quantum mechanics

Ground-state energies from VQE

Free theory clearly converges to zero energy
More params \longrightarrow harder to converge, especially for anharmonic oscillator $W_{\text {AHO }}$ Clear non-zero energy (spont. susy breaking) for double-well $W_{\text {DW }}$

Λ	HO	VQE	AHO	VQE	DW	VQE
2	0	$5.34 \mathrm{e}-10$	$9.38 \mathrm{e}-01$	$9.38 \mathrm{e}-01$	$1.08 \mathrm{e}+00$	$1.08 \mathrm{e}+00$
4	0	$1.07 \mathrm{e}-09$	$1.27 \mathrm{e}-01$	$1.27 \mathrm{e}-01$	$9.15 \mathrm{e}-01$	$9.15 \mathrm{e}-01$
8	0	$4.06 \mathrm{e}-09$	$2.93 \mathrm{e}-02$	$2.93 \mathrm{e}-02$	$8.93 \mathrm{e}-01$	$8.93 \mathrm{e}-01$
16	0	$1.13 \mathrm{e}-08$	$1.83 \mathrm{e}-03$	$6.02 \mathrm{e}-02$	$8.92 \mathrm{e}-01$	$8.94 \mathrm{e}-01$
32	0	$4.81 \mathrm{e}-08$	$1.83 \mathrm{e}-05$	$6.63 \mathrm{e}-01$	$8.92 \mathrm{e}-01$	$8.95 \mathrm{e}-01$

Backup: Supersymmetric quantum mechanics

Count number of entangling gates for single Trotter step (default Qiskit transpilation)

Big improvements when $\Lambda=2^{B}$ (note log scale)

Backup: Quiver superQCD from twisted SYM

2-slice lattice SYM
with $U(N) \times U(F)$ gauge group
Adj. fields on each slice
Bi-fundamental in between

Decouple $U(F)$ slice
$\longrightarrow \mathrm{U}(N)$ SQCD in $(d-1)$ dims. with F fund. hypermultiplets

Ongoing work by Angel Sherletov: Dynamical susy breaking in 2d superQCD

Backup: Dynamical susy breaking in 2d lattice superQCD

$U(N)$ superQCD with F fundamental hypermultiplets
Observe spontaneous susy breaking only for $N>F$, as expected
Catterall-Veernala, arXiv:1505.00467

Backup: More on dynamical susy breaking

Spontaneous susy breaking means $\langle\Omega| H|\Omega\rangle>0$ or equivalently $\langle\mathcal{Q O}\rangle \neq 0$

Twisted superQCD auxiliary field e.o.m. \longleftrightarrow Fayet-lliopoulos D-term potential

$$
d=\overline{\mathcal{D}}_{a} \mathcal{U}_{a}+\sum_{i=1}^{F} \phi_{i} \bar{\phi}_{i}-r \mathbb{I}_{N} \quad \longleftrightarrow \quad \operatorname{Tr}\left[\left(\sum_{i} \phi_{i} \bar{\phi}_{i}-r \mathbb{I}_{N}\right)^{2}\right] \in H
$$

Have $F \times N$ scalar vevs to zero out $N \times N$ matrix
$\longrightarrow N>F$ suggests susy breaking, $\langle\Omega| H|\Omega\rangle>0 \longleftrightarrow\langle\mathcal{Q} \eta\rangle=\langle d\rangle \neq 0$

