Quantum simulation for quantum field theories

David Schaich (U. Liverpool)

Northern Quantum Meeting VIII — York — 12 June 2023

arXiv:2112.07651 arXiv:2301.02230

and more to come with Chris Culver

Quantum computing & simulation for lattice quantum field theory

David Schaich (U. Liverpool)

Northern Quantum Meeting VIII — York — 12 June 2023

arXiv:2112.07651 arXiv:2301.02230

and more to come with Chris Culver

Lattice quantum field theory (QFT) is a promising domain for quantum computing application & co-design

Context: Lattice QFT

Connections to quantum computing / simulation

Application to spontaneous supersymmetry breaking

Context: QFT

Quantum mechanics

- + special relativity
 - = quantum field theory

Picture relativistic quantum fields filling (d + 1)-dimensional space-time

The QFT / StatMech Correspondence

Generating functional (Feynman path integral)

$$\mathcal{Z} = \int \mathcal{D} \Phi ~ e^{i S[\Phi] ~/~ \hbar}$$

Action
$$S[\Phi] = \int d\vec{x} dt \mathcal{L}[\Phi(\vec{x}, t)]$$

Partition function

$$\int \mathcal{D}q \, \mathcal{D}p \, e^{-H(q,p) / k_B T}$$

Hamiltonian H

 \hbar (= 1) \leftrightarrow quantum fluctuations

$k_BT \leftrightarrow$ thermal fluctuations

David Schaich (Liverpool)

Lattice QFT in a nutshell

Formally
$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}\Phi \ \mathcal{O}(\Phi) \ e^{iS[\Phi]}$$

Regularize by formulating theory in finite, discrete space-time $^{\sim}$ Non-perturbative, (*d* + 1)-dimensional, gauge-invariant

Spacing between lattice sites ("a") \longrightarrow UV cutoff scale 1/a

Remove cutoff: $a \rightarrow 0$ $(L/a \rightarrow \infty)$

Discrete \longrightarrow continuous symmetries \checkmark

Classical computing and lattice QFT

$$\langle \mathcal{O}
angle \; = \; rac{1}{\mathcal{Z}} \int \mathcal{D} \Phi \; \; \mathcal{O}(\Phi) \; \; m{e}^{i S[\Phi]}$$

Wick-rotate
$$t \longrightarrow i au$$

 $e^{iS} \longrightarrow e^{-S}$

 $S > 0 \longrightarrow$ importance sampling

Long history using & co-designing supercomputers \longrightarrow numerical predictions for standard model & beyond

[particle masses, decays, structure, scattering, thermodynamics,

(g-2), composite Higgs, dark matter, holographic duality, ...]

Classical computing limitations

Wick rotation only allows access to equilibrium physics

Complex e^{iS} unavoidable in real-time dynamics

Action *S* itself can have complex phase or sign fluctuations [net fermion number; supersymmetric QFTs; ...]

Arranging
$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}\Phi \ \mathcal{O} \ e^{iS} = \frac{\int \mathcal{D}\Phi \ \mathcal{O} \ \frac{e^{iS}}{e^{-|S|}} \ e^{-|S|}}{\int \mathcal{D}\Phi \ \frac{e^{iS}}{e^{-|S|}} \ e^{-|S|}} = \frac{\left\langle \mathcal{O} \ \frac{e^{iS}}{e^{-|S|}} \right\rangle_{\parallel}}{\left\langle \frac{e^{iS}}{e^{-|S|}} \right\rangle_{\parallel}}$$

Sign problem:
$$\langle \text{sign} \rangle_{\parallel} = \left\langle \frac{e^{iS}}{e^{-|S|}} \right\rangle_{\parallel} \rightarrow 0$$
 exponentially quickly

Sign problem examples

 $rac{e^{iS}}{e^{-|S|}}$ is pure phase for lattice supersymmetric Yang–Mills theory Clearly averages to zero

Spontaneous supersymmetry breaking

Requires vanishing Witten index

$$\mathcal{W} = \text{Tr}\left[(-1)^{F} \boldsymbol{e}^{-iHt}\right] = \text{Tr}_{B}\left[\boldsymbol{e}^{-iHt}\right] - \text{Tr}_{F}\left[\boldsymbol{e}^{-iHt}\right] \propto \langle \text{sign} \rangle_{\parallel}$$

 $\left< \mathrm{sign} \right>_{||} = 0 \; \longrightarrow \;$ maximally bad sign problem

David Schaich (Liverpool)

Quantum Computing for Lattice QFT

Turn to quantum computing

In principle evade exponential classical computing costs

Change perspective Path integral \rightarrow continuous-time hamiltonian *H* on spatial lattice

Generic targets:

Find ground state $|\Omega\rangle \longrightarrow$ test spontaneous symmetry breaking

Real-time evolution
$$|\Psi(t)\rangle = e^{-iHt} |\Psi(0)\rangle \sim \left(\exp\left[-iH\delta_{T}\right]\right)^{N_{T}} |\Psi(0)\rangle$$

(1+1)-dimensional Wess–Zumino model

arXiv:2301.02230

Supersymmetric $H \leftrightarrow$ matched boson / fermion d.o.f. at each lattice site:

$$H = \sum_{n} \left[\frac{p_n^2}{2} + \frac{1}{2} \left(\frac{\phi_{n+1} - \phi_{n-1}}{2} \right)^2 + \frac{1}{2} [W(\phi_n)]^2 + W(\phi_n) \frac{\phi_{n+1} - \phi_{n-1}}{2} + (-1)^n W'(\phi_n) \left(\chi_n^{\dagger} \chi_n - \frac{1}{2} \right) + \frac{1}{2} \left(\chi_n^{\dagger} \chi_{n+1} + \chi_{n+1}^{\dagger} \chi_n \right) \right]$$

Prepotential $W(\phi)$ ensures supersymmetric interactions

$$W = \phi \longrightarrow$$
 free theory \longrightarrow expect supersymmetric $|\Omega\rangle$

 $W = \phi^2 \longrightarrow$ expect dynamical supersymmetry breaking

Wess–Zumino set up for quantum computing

Lattice \longrightarrow finite number of d.o.f.

Need to map bosons and fermions to finite number of qubits Fermions — usual Jordan–Wigner transformation \longrightarrow one qubit per site Bosons — retain lowest $\Lambda = 2^B$ harmonic oscillator modes binary encoding $\longrightarrow B$ qubits per site

Different treatment breaks supersymmetry, recovered as $\Lambda \to \infty$

Current focus on exploratory development & testing

 \longrightarrow Qiskit simulator for rapid turnaround

[github.com/chrisculver/WessZumino]

Variational quantum eigensolver (VQE)

Well-known 'hybrid' quantum–classical algorithm Quantum circuit implements wave-function ansatz $|\Psi(\theta_i)\rangle$ with tunable params

Loss function measurements \longrightarrow classical optimizer adjusts θ_i

Energy as loss function \longrightarrow approximate ground state

Apply to Wess–Zumino model

Spontaneous supersymmetry breaking $\leftrightarrow \rightarrow$ non-zero ground-state energy

Wess–Zumino VQE

 $W = \phi$ with $\Lambda = 16$ and 2 lattice sites

Even free theory doesn't always converge

For interacting cases, easier to converge to non-zero Eharder to decide whether $E \rightarrow 0$

Variational quantum deflation (VQD)

Real-time evolution

For now, need far too many gates for reasonable $\Lambda \gtrsim \mathcal{O}(10)$

Recap: Lattice QFT and quantum computing

Lattice QFT is a promising domain for quantum computing application & codesign

Lattice QFT at forefront of scientific computing

Classically intractable problems motivate quantum computing

Work in progress on spontaneous supersymmetry breaking

Recap: Lattice QFT and quantum computing

Lattice QFT is a promising domain for quantum computing application & codesign

Lattice QFT at forefront of scientific computing

Classically intractable problems motivate quantum computing

Work in progress on spontaneous supersymmetry breaking

Backup: Ansatz testing for Wess–Zumino VQE

Backup: Supersymmetric quantum mechanics

Reduce to single spatial site:

$$\mathcal{H}_{ ext{SQM}} = rac{1}{2} \left[\hat{p}^2 + [m{W}(\hat{q})]^2 - m{W}'(\hat{q}) \left(\hat{b}^\dagger \hat{b} - \hat{b} \hat{b}^\dagger
ight)
ight].$$

Spontaneous supersymmetry breaking no longer dynamical \longrightarrow determined by prepotential

Harmonic oscillator $W_{HO} = m\hat{q} \longrightarrow$ expect (free) supersymmetric $|\Omega\rangle$

Anharmonic oscillator $W_{
m AHO}=m\hat{q}+g\hat{q}^3 \longrightarrow$ expect supersymmetric $|\Omega
angle$

Double-well $\mathit{W}_{\mathsf{DW}} = m \hat{q} + g \left(\hat{q}^2 + \mu^2
ight) \, \longrightarrow \,$ expect spont. susy breaking

Ba	ckup	CS	arXiv:2112.07651										
Gro	ound-s	state er											
Fre	ree theory clearly converges to zero energy												
Мо	More params \longrightarrow harder to converge, especially for anharmonic oscillator W_{AHC}												
	Clear non-zero energy (spont. susy breaking) for double-well W_{DW}												
Cle	ar no	n-zero (energy (spor	nt. susy brea	king) for dou	ble-well $W_{\rm DV}$	v						
Cle	ar no	n-zero (energy (spor	nt. susy brea	king) for dou	ble-well W _{DV}	V						
Cle	ar no Λ	n-zero (HO	energy (spor VQE	nt. susy brea AHO	king) for dou VQE	ble-well W _{DV}	VQE						
Cle	ar no <u>A</u> 2	n-zero HO 0	energy (spor VQE 5.34e-10	nt. susy brea AHO 9.38e-01	king) for dou VQE 9.38e-01	ble-well W _{DV} DW 1.08e+00	v VQE 1.08e+00						

4	0	1.076-09	1.276-01	1.276-01	9.156-01	9.156-01
8	0	4.06e-09	2.93e-02	2.93e-02	8.93e-01	8.93e-01
16	0	1.13e-08	1.83e-03	6.02e-02	8.92e-01	8.94e-01
32	0	4.81e-08	1.83e-05	6.63e-01	8.92e-01	8.95e-01

Backup: Supersymmetric quantum mechanics

arXiv:2112.07651

Count number of entangling gates for single Trotter step (default Qiskit transpilation)

Big improvements when $\Lambda = 2^{B}$ (note log scale)