Supersymmetric Yang-Mills theories on the lattice

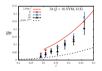
David Schaich (Liverpool)

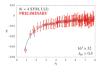
Imperial College String Seminar, 27 October 2021

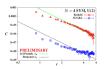
arXiv:1810.09282 arXiv:2010.00026 arXiv:2109.01001 and more to come with R. G. Jha, A. Joseph, A. Sherletov & T. Wiseman

Overview and plan

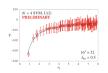
Preserve (some) susy in discrete space-time $\longrightarrow \text{practical lattice investigations}$

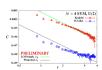

First reproduce perturbative and holographic results, then access new domains


Why: Lattice supersymmetry motivation


How: Lattice $\mathcal{N}=4$ SYM formulation highlights

What: Recent, ongoing & planned work





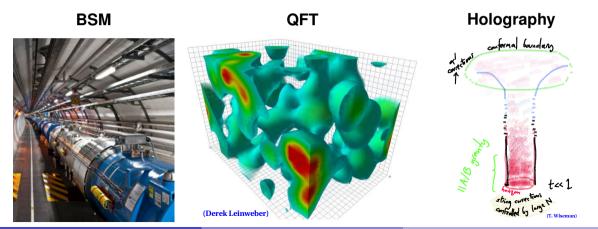
Overview and plan

Preserve (some) susy in discrete space-time $\longrightarrow \text{practical lattice investigations}$

Why: Lattice supersymmetry motivation

How: Lattice $\mathcal{N}=4$ SYM formulation highlights

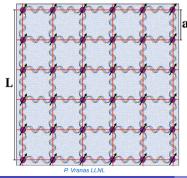
What: Recent, ongoing & planned work


Thermodynamics in 1+1 and 2+1 dimensions

(3+1)d static potential and scaling dimensions

Sign problems, supersymmetric QCD, ...

Motivations


Lattice field theory promises first-principles predictions for strongly coupled supersymmetric QFTs

Lattice field theory in a nutshell

Formally
$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D} \Phi \ \mathcal{O}(\Phi) \ e^{-S[\Phi]}$$

Regularize by formulating theory in finite, discrete, euclidean space-time Gauge invariant, non-perturbative, *d*-dimensional

Spacing between lattice sites ("a")

 \longrightarrow UV cutoff scale 1/a

Remove cutoff: $a \to 0$ $(L/a \to \infty)$

Discrete \longrightarrow continuous symmetries \checkmark

Numerical lattice field theory calculations

High-performance computing \longrightarrow evaluate up to \sim billion-dimensional integrals (Dirac operator as $\sim 10^9 \times 10^9$ matrix)

Results to be shown, and work in progress, require state-of-the-art resources

Many thanks to USQCD-DOE, DiRAC-STFC-UKRI, and computing centres!

USQCD @Fermilab

DiRAC @Cambridge

Barkla @Liverpool

Numerical lattice field theory calculations

DiRAC @Cambridge

Barkla @Liverpool

4/34

Importance sampling Monte Carlo

Algorithms sample field configurations with probability $\frac{1}{Z}e^{-S[\Phi]}$

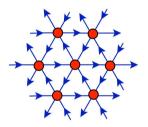
$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D} \Phi \ \mathcal{O}(\Phi) \ e^{-\mathcal{S}[\Phi]} \longrightarrow \ \frac{1}{N} \sum_{i=1}^N \mathcal{O}(\Phi_i) \ \text{with stat. uncertainty} \ \propto \frac{1}{\sqrt{N}}$$

Supersymmetry must be broken on the lattice

Supersymmetry is a space-time symmetry, $({\rm I}=1,\cdots,\mathcal{N})$ adding spinor generators $\textit{Q}_{\alpha}^{\rm I}$ and $\overline{\textit{Q}}_{\dot{\alpha}}^{\rm I}$ to translations, rotations, boosts

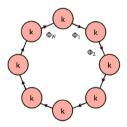
$$\left\{ m{Q}_{\!lpha}^{\!\scriptscriptstyle \mathrm{I}}, \overline{m{Q}}_{\!\dot{lpha}}^{\!\scriptscriptstyle \mathrm{J}}
ight\} = 2\delta^{{\scriptscriptstyle \mathrm{IJ}}} \sigma_{lpha\dot{lpha}}^{\mu} m{ extstyle P}_{\!\mu} \;\;\; ext{broken in discrete space-time}$$

→ relevant susy-violating operators



Supersymmetry need not be *completely* broken on the lattice

Preserve susy sub-algebra in discrete lattice space-time


⇒ correct continuum limit with little or no fine tuning

Equivalent constructions from 'topological' twisting and dim'l deconstruction

Review:

Catterall-Kaplan-Ünsal, arXiv:0903.4881

Need 2^d supersymmetries in d dimensions

 $d=4 \longrightarrow \mathcal{N}=4$ super-Yang-Mills (SYM)

Twisting $\mathcal{N}=4$ SYM

Intuitive 4d picture — expand 4×4 matrix of supersymmetries

$$\begin{pmatrix} Q_{\alpha}^{1} & Q_{\alpha}^{2} & Q_{\alpha}^{3} & Q_{\alpha}^{4} \\ \overline{Q}_{\dot{\alpha}}^{1} & \overline{Q}_{\dot{\alpha}}^{2} & \overline{Q}_{\dot{\alpha}}^{3} & \overline{Q}_{\dot{\alpha}}^{4} \end{pmatrix} = \mathcal{Q} + \mathcal{Q}_{\mu}\gamma_{\mu} + \mathcal{Q}_{\mu\nu}\gamma_{\mu}\gamma_{\nu} + \overline{\mathcal{Q}}_{\mu}\gamma_{\mu}\gamma_{5} + \overline{\mathcal{Q}}\gamma_{5} \\ \longrightarrow \mathcal{Q} + \mathcal{Q}_{a}\gamma_{a} + \mathcal{Q}_{ab}\gamma_{a}\gamma_{b} \\ \text{with } a, b = 1, \cdots, 5$$

Lorentz index × R-symmetry index ⇒ reps of 'twisted rotation group'

$$SO(4)_{tw} \equiv diag \left[SO(4)_{euc} \otimes SO(4)_R \right]$$
 $SO(4)_R \subset SO(6)_R$

Change of variables $\longrightarrow \mathcal{Q}s$ transform with integer 'spin' under SO(4)_{tw}

Twisting $\mathcal{N}=4$ SYM

Intuitive 4d picture — expand 4×4 matrix of supersymmetries

$$\left(\begin{array}{ccc} Q_{\alpha}^{1} & Q_{\alpha}^{2} & Q_{\alpha}^{3} & Q_{\alpha}^{4} \\ \overline{Q}_{\dot{\alpha}}^{1} & \overline{Q}_{\dot{\alpha}}^{2} & \overline{Q}_{\dot{\alpha}}^{3} & \overline{Q}_{\dot{\alpha}}^{4} \end{array} \right) = \mathcal{Q} + \mathcal{Q}_{\mu}\gamma_{\mu} + \mathcal{Q}_{\mu\nu}\gamma_{\mu}\gamma_{\nu} + \overline{\mathcal{Q}}_{\mu}\gamma_{\mu}\gamma_{5} + \overline{\mathcal{Q}}\gamma_{5} \\ \longrightarrow \mathcal{Q} + \mathcal{Q}_{a}\gamma_{a} + \mathcal{Q}_{ab}\gamma_{a}\gamma_{b} \\ \text{with } a, b = 1, \cdots, 5$$

Discrete space-time

Can preserve closed sub-algebra

$$\{\mathcal{Q},\mathcal{Q}\}=2\mathcal{Q}^2=0$$

Twisting $\mathcal{N}=4$ SYM

Intuitive 4d picture — expand 4×4 matrix of supersymmetries

$$\begin{pmatrix} Q_{\alpha}^{1} & Q_{\alpha}^{2} & Q_{\alpha}^{3} & Q_{\alpha}^{4} \\ \overline{Q}_{\dot{\alpha}}^{1} & \overline{Q}_{\dot{\alpha}}^{2} & \overline{Q}_{\dot{\alpha}}^{3} & \overline{Q}_{\dot{\alpha}}^{4} \end{pmatrix} = Q + Q_{\mu}\gamma_{\mu} + Q_{\mu\nu}\gamma_{\mu}\gamma_{\nu} + \overline{Q}_{\mu}\gamma_{\mu}\gamma_{5} + \overline{Q}\gamma_{5} \\ \longrightarrow Q + Q_{a}\gamma_{a} + Q_{ab}\gamma_{a}\gamma_{b} \\ \text{with } a, b = 1, \cdots, 5$$

Discrete space-time

Can preserve closed sub-algebra

$$\{\mathcal{Q},\mathcal{Q}\}=2\mathcal{Q}^2=0$$

Completing the twist

Fields also transform with integer spin under SO(4)_{tw} — no spinors

$$\Psi$$
 and $\overline{\Psi}$ \longrightarrow η, ψ_a and χ_{ab}

$$A_{\mu}$$
 and Φ^{I} \longrightarrow complexified gauge field A_{a} and \overline{A}_{a} \longrightarrow $\mathrm{U}(N)=\mathrm{SU}(N)\otimes\mathrm{U}(1)$ gauge theory

 $\checkmark \ \mathcal{Q} \ \ \text{interchanges bosonic} \ \longleftrightarrow \ \ \text{fermionic d.o.f.} \ \ \text{with} \ \ \mathcal{Q}^2 = 0$

$$Q A_a = \psi_a$$

$$Q \psi_a = 0$$

$${\cal Q} \; \chi_{\it ab} = - \overline{{\cal F}}_{\it ab}$$

$$Q \overline{\mathcal{A}}_a = 0$$

$$Q \eta = d$$

$$Q d = 0$$

 igwedge bosonic auxiliary field with e.o.m. $\emph{d}=\overline{\mathcal{D}}_{\emph{a}}\mathcal{A}_{\emph{a}}$

Lattice $\mathcal{N} = 4$ SYM

Lattice theory looks nearly the same despite breaking Q_a and Q_{ab}

Covariant derivatives — finite difference operators

Complexified gauge fields $A_a \longrightarrow \text{gauge links } \mathcal{U}_a \in \mathfrak{gl}(N,\mathbb{C})$

$$egin{aligned} \mathcal{Q} \ \mathcal{A}_{a} &\longrightarrow \mathcal{Q} \ \mathcal{U}_{a} = \psi_{a} & \mathcal{Q} \ \psi_{a} = 0 \ & \mathcal{Q} \ \chi_{ab} = -\overline{\mathcal{F}}_{ab} & \mathcal{Q} \ \overline{\mathcal{A}}_{a} &\longrightarrow \mathcal{Q} \ \overline{\mathcal{U}}_{a} = 0 \ & \mathcal{Q} \ d = 0 \end{aligned}$$

Geometry: η on sites, ψ_a on links, etc.

Supersymmetric lattice action (QS = 0) from $Q^2 \cdot = 0$ and Bianchi identity

$$\mathcal{S} = rac{\mathcal{N}}{4\lambda_{\mathsf{lat}}}\mathsf{Tr}\left[\mathcal{Q}\left(\chi_{\mathsf{ab}}\mathcal{F}_{\mathsf{ab}} + \eta\overline{\mathcal{D}}_{\mathsf{a}}\mathcal{U}_{\mathsf{a}} - rac{1}{2}\eta d
ight) - rac{1}{4}\epsilon_{\mathsf{abcde}}\;\chi_{\mathsf{ab}}\overline{\mathcal{D}}_{\mathsf{c}}\;\chi_{\mathsf{de}}
ight]$$

Five links in four dimensions $\longrightarrow A_4^*$ lattice

 $A_4^* \sim 4$ d analog of 2d triangular lattice

Basis vectors linearly dependent and non-orthogonal

10/34

Large S_5 point group symmetry

 S_5 irreps precisely match onto irreps of twisted SO(4)_{tw}

$$\psi_{\mathbf{a}} \longrightarrow \psi_{\mu}, \ \overline{\eta}$$
 is $\mathbf{5} \longrightarrow \mathbf{4} \oplus \mathbf{1}$

$$\chi_{ab} \longrightarrow \chi_{\mu\nu}, \ \overline{\psi}_{\mu} \qquad \text{is} \qquad \mathbf{10} \longrightarrow \mathbf{6} \oplus \mathbf{4}$$

 $S_5 \longrightarrow SO(4)_{tw}$ in continuum limit restores \mathcal{Q}_a and \mathcal{Q}_{ab}

Checkpoint

Analytic results for twisted $\mathcal{N}=4$ SYM on A_4^* lattice

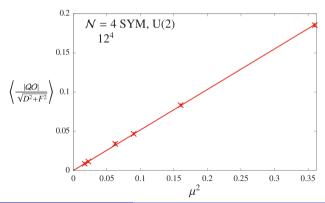
U(N) gauge invariance + Q + S_5 lattice symmetries

- \longrightarrow Moduli space preserved to all orders
- \longrightarrow One-loop lattice β function vanishes
- \longrightarrow Only one log. tuning to recover continuum \mathcal{Q}_a and \mathcal{Q}_{ab}

[arXiv:1102.1725, arXiv:1306.3891, arXiv:1408.7067]

11/34

Not yet suitable for numerical calculations


Must regulate zero modes and flat directions, especially in U(1) sector

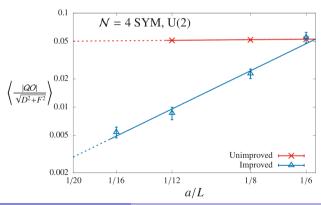
Two deformations stabilize lattice calculations

1) Add SU(N) scalar potential $\propto \mu^2 \sum_a (\text{Tr} \left[\mathcal{U}_a \overline{\mathcal{U}}_a \right] - N)^2$

Softly breaks susy $\longrightarrow \mathcal{Q}$ -violating operators vanish $\propto \mu^2 \rightarrow 0$

Test via Ward identity violations $Q\left[\eta \mathcal{U}_{a}\overline{\mathcal{U}}_{a}\right]\neq0$

Two deformations stabilize lattice calculations


2) Constrain U(1) plaquette determinant $\sim G \sum_{a < b} (\det \mathcal{P}_{ab} - 1)$

Implemented supersymmetrically by modifying auxiliary field equations of motion

Test via Ward identity violations $\mathcal{Q}\left[\eta\mathcal{U}_{a}\overline{\mathcal{U}}_{a}\right]\neq0$

Log-log axes

 \longrightarrow violations $\propto (a/L)^2$

Public code for supersymmetric lattice field theories

so that the full improved action becomes

$$S_{\text{imp}} = S_{\text{exact}}' + S_{\text{closed}} + S_{\text{soft}}'$$

$$S_{\text{exact}}' = \frac{N}{4\lambda_{\text{lat}}} \sum_{n} \text{Tr} \left[-\overline{\mathcal{F}}_{ab}(n) \mathcal{F}_{ab}(n) - \chi_{ab}(n) \mathcal{D}_{[a}^{(+)} \psi_{b]}(n) - \eta(n) \overline{\mathcal{D}}_{a}^{(-)} \psi_{a}(n) \right]$$

$$+ \frac{1}{2} \left(\overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}(n) + G \sum_{a \neq b} \left(\det \mathcal{P}_{ab}(n) - 1 \right) \mathbb{I}_{N} \right)^{2} \right] - S_{\text{det}}$$

$$S_{\text{det}} = \frac{N}{4\lambda_{\text{lat}}} G \sum_{n} \text{Tr} \left[\eta(n) \right] \sum_{a \neq b} \left[\det \mathcal{P}_{ab}(n) \right] \text{Tr} \left[\mathcal{U}_{b}^{-1}(n) \psi_{b}(n) + \mathcal{U}_{a}^{-1}(n + \widehat{\mu}_{b}) \psi_{a}(n + \widehat{\mu}_{b}) \right]$$

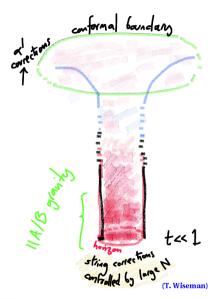
$$S_{\text{closed}} = -\frac{N}{16\lambda_{\text{lat}}} \sum_{n} \text{Tr} \left[\epsilon_{abcde} \chi_{de}(n + \widehat{\mu}_{a} + \widehat{\mu}_{b} + \widehat{\mu}_{c}) \overline{\mathcal{D}}_{c}^{(-)} \chi_{ab}(n) \right] ,$$

$$S_{\text{soft}}' = \frac{N}{4\lambda_{\text{lat}}} \mu^{2} \sum_{n} \sum_{a} \left(\frac{1}{N} \text{Tr} \left[\mathcal{U}_{a}(n) \overline{\mathcal{U}}_{a}(n) \right] - 1 \right)^{2}$$

≥100 inter-node data transfers in the fermion operator — non-trivial...

Public parallel code to reduce barriers to entry: github.com/daschaich/susy

Evolved from MILC QCD code, user guide in arXiv:1410.6971


Naive dimensional reduction \longrightarrow skewed tori $r_L \times r_\beta$ with $r_\beta = \sqrt{\lambda}/T$ and four scalar $\mathcal Q$ $r_1 \times r_2 \times r_\beta$ with $r_\beta = \lambda/T$ and two scalar $\mathcal Q$

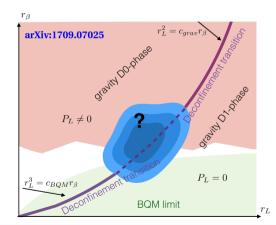
Thermal boundary conditions \longrightarrow dimensionless temperature $t=1/r_{\beta}$

Low temperatures t at large N

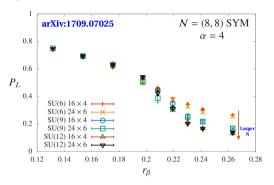
Black branes in dual supergravity

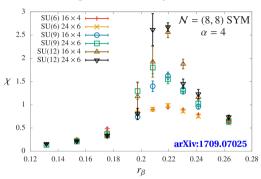
2d $\mathcal{N} = (8,8)$ SYM phase diagram

First-order transitions predicted from bosonic QM at high t ($r_{\beta} \ll 1$) from holography at low t ($r_{\beta} \gg 1$)


For decreasing r_L at large N

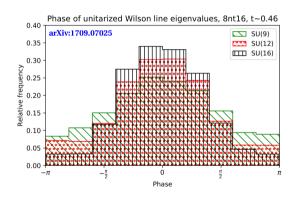
homogeneous black string (D1)

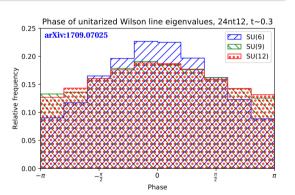

→ localized black hole (D0)



"spatial deconfinement" signalled by Wilson line P_L

Spatial deconfinement transition signals — high-t example


Fix aspect ratio $\alpha = r_L/r_\beta = 4$

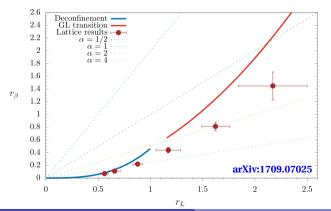

Check 16×4 vs. 24×6 lattices agree

Peaks in $\text{Tr}P_L$ susceptibility match change in its magnitude, grow with size of SU(N) gauge group, comparing $N=6,\,9,\,12$

Wilson line eigenvalues for low t

Large-N eigenvalue phase distribution also signals spatial deconfinement

17/34


Left: $\alpha = 1/2$ distributions more localized as *N* increases \longrightarrow D0 black hole

Right: $\alpha = 2$ distributions more uniform as *N* increases \longrightarrow D1 black string

Lattice results for 2d $\mathcal{N}=(8,8)$ SYM phase diagram

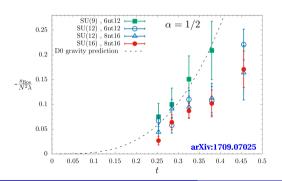
Good agreement with bosonic QM at high temperatures $(\alpha \gtrsim 4)$

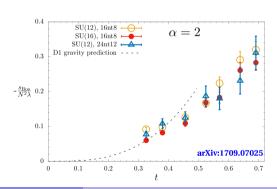
Harder to control low-temperature uncertainties (larger N > 16 should help)

Overall consistent with holography

Comparing multiple lattice sizes and $6 \le N \le 16$

Controlled extrapolations not yet attempted in 2d

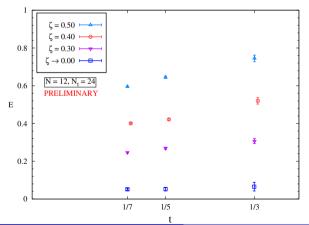

Holographic black hole energies


Lattice results consistent with leading expectation for sufficiently low $t \lesssim 0.4$

Similar behavior \longrightarrow difficult to distinguish phases

 $\propto t^{3.2}$ for small- r_L D0 phase

 $\propto t^3$ for large- r_L D1 phase



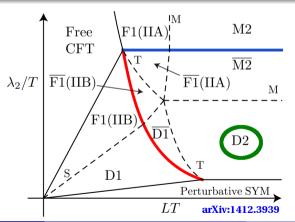
arXiv:2109.01001

20/34

Much simpler twisted formulation: Q=4 supercharges $\{\mathcal{Q},\mathcal{Q}_a,\mathcal{Q}_{ab}\}$ \longrightarrow site / link / plaquette fermions $\{\eta,\psi_a,\chi_{ab}\}$ on square lattice (a,b=1,2)

Work by Navdeep Singh Dhindsa

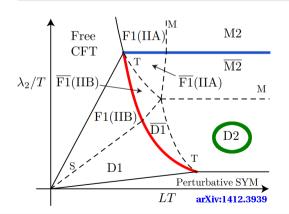
Prelim. $\mu^2 \to 0$ extrapolations for $r_L = r_\beta \longleftrightarrow \alpha = 1$

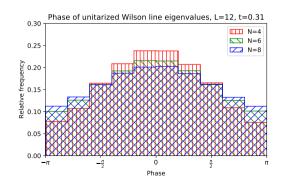

Energy independent of $t \lesssim 0.33$ vs. $\sim t^3$ for $\mathcal{N} = (8,8)$ SYM

David Schaich (Liverpool) Lattice SYM Imperial, 27 October 2021

3d maximal SYM

Holography \longrightarrow much richer low-t phase diagram than for 2d $\mathcal{N}=(8,8)$ SYM

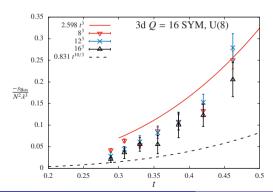

For now consider simplest homogeneous black D2-branes $\ \longrightarrow \ r_1 = r_2 = r_\beta$

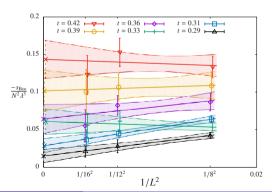


Homogeneous D2 phase

Lattice volume $(L/a)^3 \longrightarrow \text{continuum limit } L/a \to \infty \text{ with fixed } t = 1/r_\beta = L/\lambda$

Homogeneous D2-branes \longleftrightarrow uniform Wilson line eigenvalue phases at large N




Holographic black brane energies and continuum extrapolation

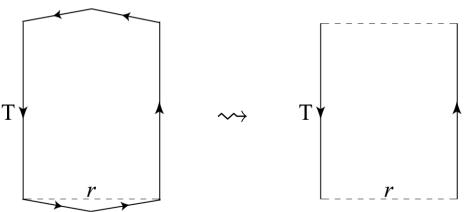
Lattice volume $(L/a)^3$ with fixed N=8

 \longrightarrow results approach leading holographic expectation $\propto t^{10/3}$ for low $t\lesssim 0.4$

Carry out first $L/a \rightarrow \infty$ continuum extrapolations

23/34

David Schaich (Liverpool) Lattice SYM Imperial, 27 October 2021


4d $\mathcal{N}=4$ SYM static potential V(r)

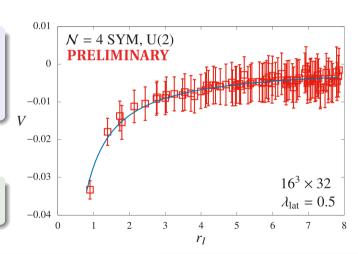
Static probes \longrightarrow $r \times T$ Wilson loops

 $W(r,T) \propto e^{-V(r) T}$

24/34

Coulomb gauge trick reduces A_4^* lattice complications

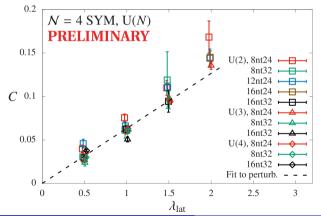
Static potential is Coulombic at all λ


Fits to confining $V(r) = A - C/r + \sigma r \longrightarrow \text{vanishing string tension } \sigma$

Therefore fit

$$V(r) = A - C/r$$

to find Coulomb coefficient $C(\lambda)$


Discretization artifacts reduced by tree-level improved analysis

Coupling dependence of Coulomb coefficient

Continuum perturbation theory \longrightarrow $C(\lambda) = \lambda/(4\pi) + \mathcal{O}(\lambda^2)$

Holography $\longrightarrow C(\lambda) \propto \sqrt{\lambda}$ for $N \to \infty$ and $\lambda \to \infty$ with $\lambda \ll N$

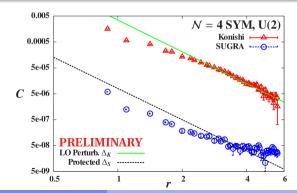
Again comparing different volumes and N = 2, 3, 4

For $\lambda_{\text{lat}} \leq 2$, consistent with leading-order perturbation theory

26/34

David Schaich (Liverpool) Lattice SYM Imperial, 27 October 2021

Konishi operator scaling dimension Δ_K


$$\mathcal{O}_{\mathcal{K}}(x) = \sum_{\mathbf{I}} \text{Tr} \left[\Phi^{\mathbf{I}}(x) \Phi^{\mathbf{I}}(x) \right]$$
 is simplest conformal primary operator

Scaling dimension $\Delta_K(\lambda) = 2 + \gamma_K(\lambda)$ investigated through perturbation theory (& S duality), holography, conformal bootstrap

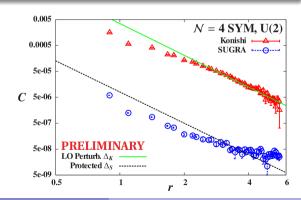
$$C_K(r) \equiv \mathcal{O}_K(x+r)\mathcal{O}_K(x) \propto r^{-2\Delta_K}$$

'SUGRA' is 20' op., $\Delta_S=2$

Work in progress to compare:
Direct power-law decay
Finite-size scaling
Monte Carlo RG

Konishi operator scaling dimension Δ_K

Lattice scalars $\varphi(n)$ from polar decomposition $U_a(n) = e^{\varphi_a(n)}U_a(n)$

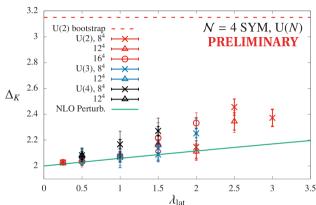

$$\mathcal{O}_{\mathcal{K}}^{\mathsf{lat}}(\mathit{n}) = \sum_{\mathit{a}} \mathsf{Tr} \left[arphi_{\mathit{a}}(\mathit{n}) arphi_{\mathit{a}}(\mathit{n})
ight] - \mathsf{vev}$$

$$\mathcal{O}_{\mathcal{S}}^{\mathsf{lat}}(n) \sim \mathsf{Tr}\left[\varphi_{\mathsf{a}}(n)\varphi_{\mathsf{b}}(n)\right]$$

$$C_K(r) \equiv \mathcal{O}_K(x+r)\mathcal{O}_K(x) \propto r^{-2\Delta_K}$$

'SUGRA' is 20' op., $\Delta_{\mathcal{S}}=2$

Work in progress to compare:
Direct power-law decay
Finite-size scaling
Monte Carlo RG



Preliminary Δ_K results from Monte Carlo RG

Analyzing both $\mathcal{O}_{\mathcal{K}}^{\mathrm{lat}}$ and $\mathcal{O}_{\mathcal{S}}^{\mathrm{lat}}$

Imposing protected $\Delta_{\mathcal{S}}=2$ $\longrightarrow \Delta_{\mathcal{K}}(\lambda)$ looks perturbative

Systematic uncertainties from different amounts of smearing

Complication from twisting $SO(4)_R \subset SO(6)_R$

 $\mathcal{O}_{K}^{\text{lat}}$ mixes with SO(4)_R-singlet part of SO(6)_R-nonsinglet \mathcal{O}_{S}

---- disentangle via variational analyses

Supplement: Pushing $\mathcal{N}=4$ SYM to stronger coupling

- ✓ Reproduce reliable 4d results in perturbative regime
- ---- Check holographic predictions and access new domains

Sign problem seems to become obstruction

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int [d\mathcal{U}] [d\overline{\mathcal{U}}] \ \mathcal{O} \ e^{-\mathcal{S}_B[\mathcal{U},\overline{\mathcal{U}}]} \ \mathsf{pf} \, \mathcal{D}[\mathcal{U},\overline{\mathcal{U}}]$$

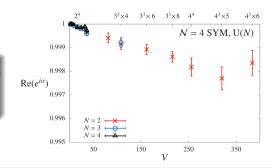
Complex pfaffian pf $\mathcal{D} = |\text{pf } \mathcal{D}| e^{i\alpha}$ complicates importance sampling

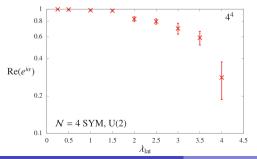
We phase quench, $\operatorname{pf} \mathcal{D} \longrightarrow |\operatorname{pf} \mathcal{D}|$, need to reweight $\langle \mathcal{O} \rangle = \frac{\left\langle \mathcal{O} e^{i\alpha} \right\rangle_{\operatorname{pq}}}{\left\langle e^{i\alpha} \right\rangle_{\operatorname{pq}}}$

Supplement: Pushing $\mathcal{N}=4$ SYM to stronger coupling

Sign problem seems to become obstruction

$$\langle \mathcal{O} \rangle = rac{1}{\mathcal{Z}} \int [d\mathcal{U}] [d\overline{\mathcal{U}}] \ \mathcal{O} \ e^{-\mathcal{S}_{\mathcal{B}}[\mathcal{U},\overline{\mathcal{U}}]} \ \mathsf{pf} \, \mathcal{D}[\mathcal{U},\overline{\mathcal{U}}]$$


Complex pfaffian pf $\mathcal{D} = |\text{pf } \mathcal{D}| e^{i\alpha}$ complicates importance sampling


We phase quench,
$$\operatorname{pf} \mathcal{D} \longrightarrow |\operatorname{pf} \mathcal{D}|$$
, need to reweight $\langle \mathcal{O} \rangle = \frac{\langle \mathcal{O} e^{i\alpha} \rangle_{\operatorname{pq}}}{\langle e^{i\alpha} \rangle_{\operatorname{pq}}}$

$$\Longrightarrow \left\langle e^{ilpha}
ight
angle_{
m pq} = rac{\mathcal{Z}}{\mathcal{Z}_{
m pq}}$$
 quantifies severity of sign problem

$\mathcal{N}=4$ SYM sign problem

Fix
$$\lambda_{\text{lat}} = g_{\text{lat}}^2 N = 0.5$$

Pfaffian nearly real positive
for all accessible volumes

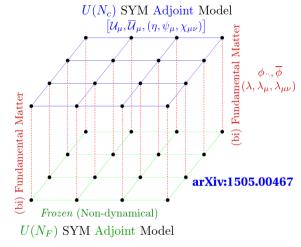
Fix 4⁴ volume

Fluctuations increase with coupling

Signal-to-noise becomes obstruction for $\lambda_{\text{lat}} \gtrsim 4$

Supplement: Supersymmetric QCD

Add matter multiplets \longrightarrow investigate electric–magnetic dualities, dynamical supersymmetry breaking and more


Quiver construction based on twisted SYM [arXiv:1505.00467] preserves susy sub-algebra in (d-1) dims. to reduce fine-tuning

Quiver superQCD from twisted SYM

2-slice lattice SYM with $U(N) \times U(F)$ gauge group Adj. fields on each slice Bi-fundamental in between

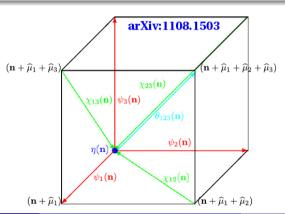
Decouple U(F) slice

 \longrightarrow U(N) SQCD in (d-1) dims. with F fund. hypermultiplets

First check 3d SYM → 2d superQCD

then new 4d SYM ->> 3d superQCD

32/34


David Schaich (Liverpool) Lattice SYM Imperial, 27 October 2021

First step: 8-supercharge SYM in 3d

Simpler twisted formulation

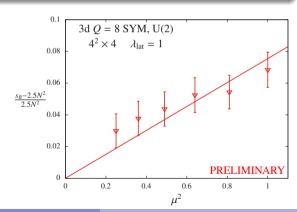
Q = 8 supercharges $\{Q, Q_a, Q_{ab}, Q_{abc}\}$ with $a, b = 1, \dots, 3$

 \longrightarrow site / link / plaquette / cube fermions $\{\eta, \psi_{\it a}, \chi_{\it ab}, \theta_{\it abc}\}$ on simple cubic lattice

First step: 8-supercharge SYM in 3d

Simpler twisted formulation

Q = 8 supercharges $\{Q, Q_a, Q_{ab}, Q_{abc}\}$ with $a, b = 1, \dots, 3$


 \longrightarrow site / link / plaquette / cube fermions $\{\eta, \psi_{\it a}, \chi_{\it ab}, \theta_{\it abc}\}$ on simple cubic lattice

Work by Angel Sherletov

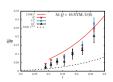
Parallel code developed

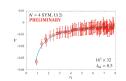
Initial tests passed

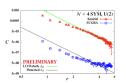
→ larger-scale calculations

Recap: An exciting time for lattice supersymmetry

✓ Preserve (some) susy in discrete space-time


 \longrightarrow practical lattice $\mathcal{N}=$ 4 SYM, public code available


Reproduce reliable analytic results


- √ 2d and 3d thermodynamics consistent with holography
- \checkmark Perturbative $\mathcal{N}=$ 4 SYM static potential Coulomb coefficient $\ \mathcal{C}(\lambda)$ and Konishi operator scaling dimension $\ \Delta_{\mathcal{K}}(\lambda)$

Access new domains \longrightarrow sign problems, supersymmetric QCD and more...

Thanks for your attention!

Any further questions?

Collaborators

Raghav Jha, Anosh Joseph, Angel Sherletov, Toby Wiseman also Georg Bergner, Simon Catterall, Poul Damgaard, Joel Giedt

Funding and computing resources

UK Research

Backup: Breakdown of Leibniz rule on the lattice

$$\left\{Q_{\alpha},\overline{Q}_{\dot{\alpha}}\right\}=2\sigma^{\mu}_{\alpha\dot{\alpha}}P_{\mu}=2i\sigma^{\mu}_{\alpha\dot{\alpha}}\partial_{\mu} \ \ \text{is problematic}$$
 $\Longrightarrow ext{try finite difference} \ \ \partial\phi(x) \ \longrightarrow \ \Delta\phi(x)=rac{1}{a}\left[\phi(x+a)-\phi(x)
ight]$

Crucial difference between ∂ and Δ

$$\Delta [\phi \eta] = a^{-1} [\phi(x+a)\eta(x+a) - \phi(x)\eta(x)]$$
$$= [\Delta \phi] \eta + \phi \Delta \eta + a[\Delta \phi] \Delta \eta$$

Full supersymmetry requires Leibniz rule $\ \partial \left[\phi\eta\right] = \left[\partial\phi\right]\eta + \phi\partial\eta$ only recoverd in $\ a\to 0$ continuum limit for any local finite difference

Backup: Breakdown of Leibniz rule on the lattice

Full supersymmetry requires Leibniz rule $\ \partial \left[\phi\eta\right] = \left[\partial\phi\right]\eta + \phi\partial\eta$ only recoverd in $\ a\to 0$ continuum limit for any local finite difference

Supersymmetry vs. locality 'no-go' theorems by Kato-Sakamoto-So [arXiv:0803.3121] and Bergner [arXiv:0909.4791]

Complicated constructions to balance locality vs. supersymmetry

Non-ultralocal product operator \longrightarrow lattice Leibniz rule but not gauge invariance D'Adda-Kawamoto-Saito, arXiv:1706.02615

Cyclic Leibniz rule → partial lattice supersymmetry but only (0+1)d QM so far Kadoh–Kamei–So, arXiv:1904.09275

Backup: $\mathcal{N} = 4$ SYM in a nutshell

Arguably simplest non-trivial 4d QFT \longrightarrow dualities, amplitudes, ...

SU(N) gauge theory with $\mathcal{N}=4$ fermions $\Psi^{\rm I}$ and 6 scalars $\Phi^{\rm IJ},$ all massless and in adjoint rep.

Symmetries relate coefficients of kinetic, Yukawa and Φ⁴ terms

Conformal $\longrightarrow \beta$ function is zero for all values of $\lambda = g^2 N$

Backup: Complexified gauge field from twisting

Combining A_μ and $\Phi^{\rm I}$ \longrightarrow \mathcal{A}_a and $\overline{\mathcal{A}}_a$ produces $\mathsf{U}(\textit{N})=\mathsf{SU}(\textit{N})\otimes\mathsf{U}(1)$ gauge theory

Complicates lattice action but needed so that $Q A_a = \psi_a$

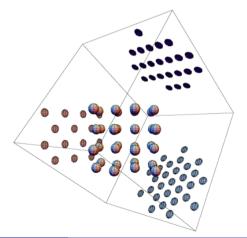
Further motivation: Under
$$SO(d)_{tw} = diag[SO(d)_{euc} \otimes SO(d)_{R}]$$

 $A_{\mu} \sim \operatorname{vector} \otimes \operatorname{scalar} = \operatorname{vector}$

 $\Phi^{\rm I} \sim {\sf scalar} \otimes {\sf vector} = {\sf vector}$

Easiest to see in 5d, then dimensionally reduce

$$\mathcal{A}_a = \mathcal{A}_a + i\Phi_a \longrightarrow (\mathcal{A}_\mu, \phi) + i(\Phi_\mu, \overline{\phi})$$


Backup: A_4^* lattice from five dimensions

Again dimensionally reduce, treating all five gauge links symmetrically

Start with hypercubic lattice in 5d momentum space

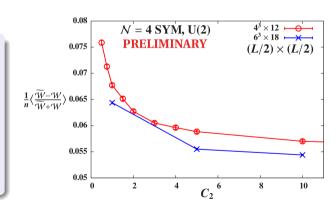
Symmetric constraint $\sum_{a} \partial_{a} = 0$ projects to 4d momentum space

Result is A_4 lattice \longrightarrow dual A_4^* lattice in position space

Imperial, 27 October 2021

Backup: Restoration of Q_a and Q_{ab} supersymmetries

"
$$Q$$
 + discrete $R_a \subset SO(4)_{tw} = Q_a$ and Q_{ab} "

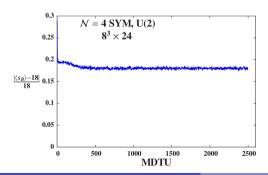

[arXiv:1306.3891]

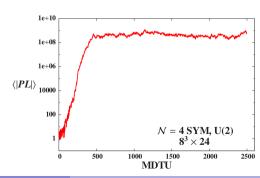
34/34

Test R_a on Wilson loops

$$\widetilde{\mathcal{W}}_{ab} \equiv R_{a}\mathcal{W}_{ab}$$

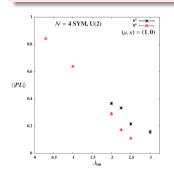
Tune coeff. c_2 of d^2 term in action for fastest restoration towards continuum limit

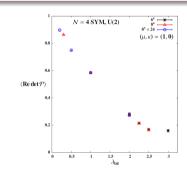

Backup: Problem with SU(*N*) flat directions

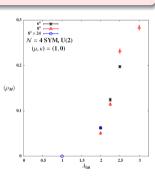

 $\mu^2/\lambda_{\text{lat}}$ too small $\longrightarrow \mathcal{U}_a$ can move far from continuum form $\mathbb{I}_N + \mathcal{A}_a$

Example: $\mu = 0.2$ and $\lambda_{lat} = 2.5$ on $8^3 \times 24$ volume

Left: Bosonic action stable ∼18% off its supersymmetric value


Right: (Complexified) Polyakov loop wanders off to $\sim 10^9$





Backup: Problem with U(1) flat directions

Monopole condensation \longrightarrow confined lattice phase not present in continuum

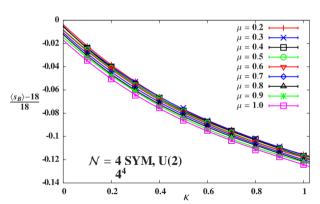
Around the same $2\lambda_{lat} \approx 2...$

Left: Polyakov loop falls towards zero

Center: Plaquette determinant falls towards zero

Right: Density of U(1) monopole world lines becomes non-zero

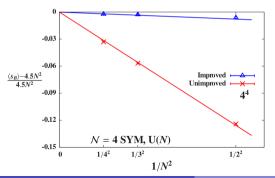
Backup: Naively regulating U(1) flat directions

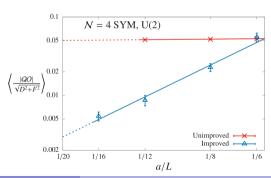

In earlier work we added another soft *Q*-breaking term

$$S_{\mathsf{soft}} = rac{\mathit{N}}{4\lambda_{\mathsf{lat}}} \mu^2 \sum_{\mathit{a}} \left(rac{1}{\mathit{N}} \mathsf{Tr} \left[\mathcal{U}_{\mathit{a}} \overline{\mathcal{U}}_{\mathit{a}}
ight] - 1
ight)^2 + \kappa \sum_{\mathit{a} < \mathit{b}} \left| \mathsf{det} \, \mathcal{P}_{\mathit{ab}} - 1
ight|^2$$

More sensitivity to κ than to μ^2

Showing *Q* Ward identity from bosonic action


$$\langle s_B \rangle = 9N^2/2$$



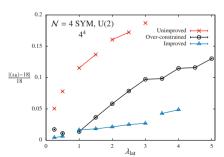
Backup: Better regulating U(1) flat directions

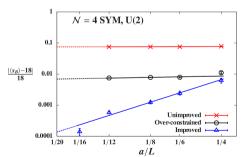
$$\mathcal{S} = \frac{\textit{N}}{4\lambda_{\text{lat}}} \left[\mathcal{Q} \left(\chi_{ab} \mathcal{F}_{ab} + \eta \left\{ \overline{\mathcal{D}}_{a} \mathcal{U}_{a} + G \sum_{a < b} \left[\det \mathcal{P}_{ab} - 1 \right] \mathbb{I}_{\textit{N}} \right\} - \frac{1}{2} \eta \textit{d} \right) - \frac{1}{4} \epsilon_{\textit{abcde}} \; \chi_{ab} \overline{\mathcal{D}}_{\textit{c}} \; \chi_{\textit{de}} + \mu^{2} \textit{V} \right]$$

 $\mathcal Q$ Ward identity violations scale $\propto 1/N^2$ (**left**) and $\propto (a/L)^2$ (**right**) \sim effective ' $\mathcal O(a)$ improvement' since $\mathcal Q$ forbids all dim-5 operators

David Schaich (Liverpool) Lattice SYM Imperial, 27 October 2021 34/34

Backup: Supersymmetric moduli space modification


[arXiv:1505.03135]

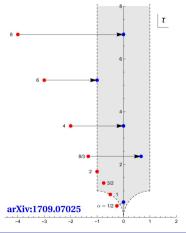

Method to impose \mathcal{Q} -invariant constraints on generic site operator $\mathcal{O}(n)$

Modify auxiliary field equations of motion \longrightarrow moduli space

$$d(n) = \overline{\mathcal{D}}_a^{(-)} \mathcal{U}_a(n) \qquad \longrightarrow \qquad d(n) = \overline{\mathcal{D}}_a^{(-)} \mathcal{U}_a(n) + G\mathcal{O}(n) \mathbb{I}_N$$

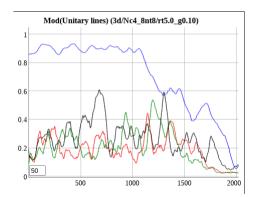
Including both U(1) and SU(N) $\in \mathcal{O}(n)$ over-constrains system

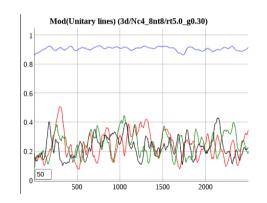
David Schaich (Liverpool) Lattice SYM Imperial, 27 October 2021 34/34


Backup: Dimensional reduction to 2d $\mathcal{N}=(8,8)$ SYM

Naive for now: 4d $\mathcal{N}=4$ SYM code with $N_x=N_y=1$

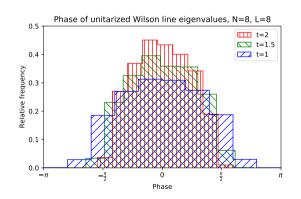
$$A_4^* \longrightarrow A_2^*$$
 (triangular) lattice

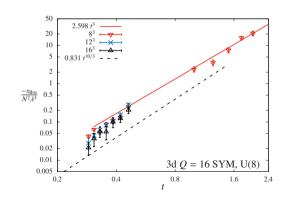

Torus **skewed** depending on $\alpha = L/N_t$


Also need to stabilize compactified links to ensure broken center symmetries

Backup: Stabilizing compactified links

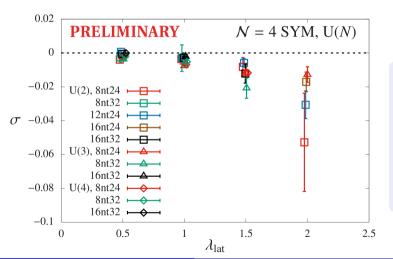
Add potential $\propto {\rm Tr}\left[(\varphi-\mathbb{I}_{\it N})^{\dagger}\,(\varphi-\mathbb{I}_{\it N})\right]$ to break center symmetry in reduced dir(s) (\sim Kaluza–Klein rather than Eguchi–Kawai reduction)





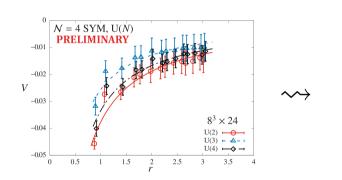
Backup: High-temperature ($t \gtrsim 1$) 3d maximal SYM

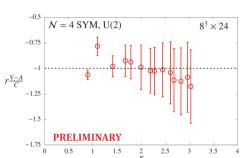
Wilson line eigenvalue phases localized rather than uniform (left)


Thermodynamics consistent with weak-coupling expectation $\propto t^3$ (**right**)

Backup: Static potential is Coulombic at all λ

String tension σ from fits to confining form $V(r) = A - C/r + \sigma r$




Slightly negative values flatten $V(r_l)$ for $r_l \lesssim L/2$

 $\sigma \rightarrow 0$ as accessible range of r_l increases on larger volumes

Backup: Discretization artifacts in static potential

Discretization artifacts visible at short distances where Coulomb term in V(r) = A - C/r is most significant

Danger of distorting Coulomb coefficient C

Backup: Tree-level improvement

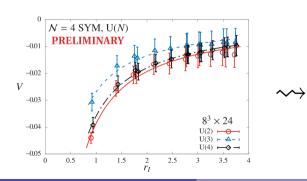
Classic trick to reduce discretization artifacts in static potential

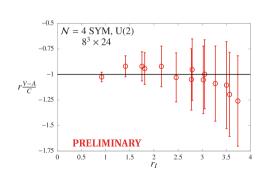
Associate $V(r_{\nu})$ data with ' r_{l} ' from Fourier transform of gluon propagator

Recall
$$\frac{1}{4\pi^2r^2}=\int_{-\pi}^{\pi}\frac{d^4k}{(2\pi)^4}\;\frac{e^{ir_{\nu}k_{\nu}}}{k^2}$$
 where $\frac{1}{k^2}=G(k_{\nu})$ in continuum

$$A_4^*$$
 lattice $\longrightarrow \frac{1}{r_l^2} \equiv 4\pi^2 \int_{-\pi}^{\pi} \frac{d^4 \widehat{k}}{(2\pi)^4} \frac{\cos\left(ir_{\nu}\widehat{k}_{\nu}\right)}{4\sum_{\mu=1}^4 \sin^2\left(\widehat{k}\cdot\widehat{e}_{\mu}/2\right)}$

Tree-level lattice propagator from arXiv:1102.1725


$$\widehat{e}_{\mu}$$
 are A_4^* lattice basis vectors;


momenta $\hat{k} = \frac{2\pi}{L} \sum_{\mu=1}^{4} n_{\mu} \hat{g}_{\mu}$ depend on dual basis vectors

Backup: Tree-level-improved static potential

$$\frac{1}{r_l^2} \equiv 4\pi^2 \int_{-\pi}^{\pi} \frac{d^4 \hat{k}}{(2\pi)^4} \frac{\cos\left(ir_{\nu} \hat{k}_{\nu}\right)}{4\sum_{\mu=1}^4 \sin^2\left(\hat{k} \cdot \hat{e}_{\mu} / 2\right)}$$

$$\longrightarrow \text{significantly reduced discretization artifacts}$$

Backup: Scaling dimensions from MCRG stability matrix

Lattice system: $H = \sum_{i} c_{i} \mathcal{O}_{i}$ (infinite sum)

Couplings flow under RG blocking
$$\longrightarrow H^{(n)} = R_b H^{(n-1)} = \sum_i c_i^{(n)} \mathcal{O}_i^{(n)}$$

Conformal fixed point $\longrightarrow H^* = R_b H^*$ with couplings c_i^*

Linear expansion around fixed point \longrightarrow stability matrix T_{ik}^{\star}

$$\left| oldsymbol{c}_i^{(n)} - oldsymbol{c}_i^\star = \sum_k \left. rac{\partial oldsymbol{c}_i^{(n)}}{\partial oldsymbol{c}_k^{(n-1)}}
ight|_{H^\star} \left(oldsymbol{c}_k^{(n-1)} - oldsymbol{c}_k^\star
ight) \equiv \sum_k oldsymbol{\mathcal{T}_{ik}^\star} \left(oldsymbol{c}_k^{(n-1)} - oldsymbol{c}_k^\star
ight)$$

Correlators of \mathcal{O}_i , $\mathcal{O}_k \longrightarrow$ elements of stability matrix

[Swendsen, 1979]

34/34

Eigenvalues of $T_{ik}^{\star} \longrightarrow \text{scaling dimensions of corresponding operators}$

Backup: Real-space RG for lattice $\mathcal{N}=4$ SYM

Must preserve \mathcal{Q} and S_5 symmetries \longleftrightarrow geometric structure

Simple transformation constructed in arXiv:1408.7067

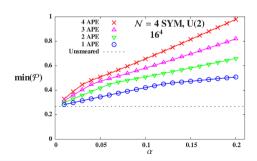
$$\begin{aligned} \mathcal{U}_{\mathsf{a}}'(\mathsf{n}') &= \xi \, \mathcal{U}_{\mathsf{a}}(\mathsf{n}) \mathcal{U}_{\mathsf{a}}(\mathsf{n} + \widehat{\mu}_{\mathsf{a}}) & \eta'(\mathsf{n}') &= \eta(\mathsf{n}) \\ \psi_{\mathsf{a}}'(\mathsf{n}') &= \xi \left[\psi_{\mathsf{a}}(\mathsf{n}) \mathcal{U}_{\mathsf{a}}(\mathsf{n} + \widehat{\mu}_{\mathsf{a}}) + \mathcal{U}_{\mathsf{a}}(\mathsf{n}) \psi_{\mathsf{a}}(\mathsf{n} + \widehat{\mu}_{\mathsf{a}}) \right] & \text{etc.} \end{aligned}$$

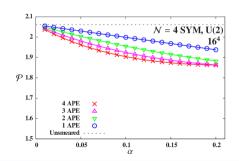
Doubles lattice spacing $a \longrightarrow a' = 2a$, with tunable rescaling factor ξ

Scalar fields from polar decomposition $\mathcal{U}(n) = e^{\varphi(n)}U(n)$ $\Longrightarrow \text{shift } \varphi \longrightarrow \varphi + \log \xi \text{ to keep blocked } U \text{ unitary}$

Q-preserving RG transformation needed

to show only one log. tuning to recover continuum $\mathcal{Q}_{\textit{a}}$ and $\mathcal{Q}_{\textit{ab}}$

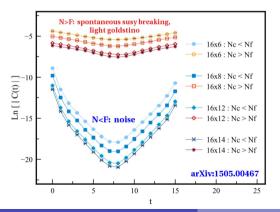

Backup: Smearing for Konishi analyses

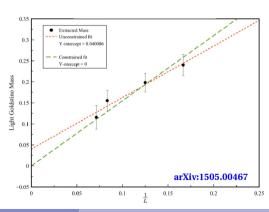

Smear to enlarge (MCRG or variational) operator basis

staples built from unitary parts of links but no final unitarization

Average plaquette stable upon smearing (right),

minimum plaquette steadily increases (left)




Backup: Dynamical susy breaking in 2d lattice superQCD

U(N) superQCD with F fundamental hypermultiplets

Observe spontaneous susy breaking only for N > F, as expected

Catterall-Veernala, arXiv:1505.00467

Backup: More on dynamical susy breaking

Spontaneous susy breaking means $\langle 0 | H | 0 \rangle > 0$ or equivalently $\langle QO \rangle \neq 0$

Twisted superQCD auxiliary field e.o.m. ←→ Fayet–Iliopoulos *D*-term potential

$$d = \overline{\mathcal{D}}_{a}\mathcal{U}_{a} + \sum_{i=1}^{F} \phi_{i}\overline{\phi}_{i} - r\mathbb{I}_{N} \qquad \longleftrightarrow \qquad \text{Tr}\left[\left(\sum_{i} \phi_{i}\overline{\phi}_{i} - r\mathbb{I}_{N}\right)^{2}\right] \in \mathcal{H}$$

Have $F \times N$ scalar vevs to zero out $N \times N$ matrix

$$\longrightarrow$$
 $N>F$ suggests susy breaking, $ra{0|H|0}>0 \longleftrightarrow ra{Q\eta}=ra{d}
eq 0$