Maximally supersymmetric Yang-Mills on the lattice

David Schaich (Liverpool)

Southampton String Theory Seminar, 27 November 2019

arXiv:1611.06561 arXiv:1709.07025 arXiv:1810.09282 and more to come with Simon Catterall, Raghav Jha and Toby Wiseman

Overview and plan

Why: Lattice supersymmetry

How: Lattice formulation highlights

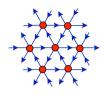
What: Recent results

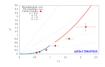
Dimensionally reduced (2d) thermodynamics

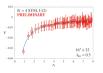
Static potential (4d)

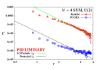
Conformal scaling dimensions

Prospects and future directions







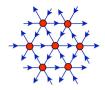


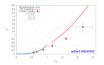
Overview and plan

Central idea

Preserve (some) susy in discrete space-time

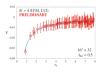
 \longrightarrow practical lattice investigations

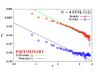




Goals

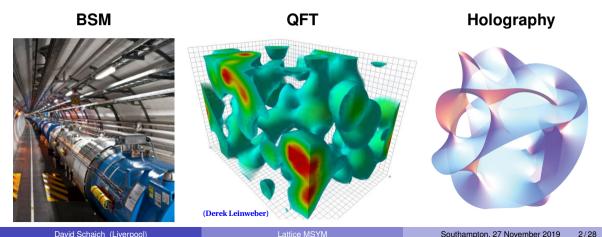
- 1) Reproduce reliable results in perturbative and holographic regimes
- 2) Access new domains





Motivations

Lattice field theory promises first-principles predictions for strongly coupled supersymmetric QFTs



David Schaich (Liverpool) Southampton, 27 November 2019

Supersymmetry must be broken on the lattice

Supersymmetry is a space-time symmetry, $({\rm I}=1,\cdots,\mathcal{N})$ adding spinor generators $\textit{Q}_{\alpha}^{\rm I}$ and $\overline{\textit{Q}}_{\dot{\alpha}}^{\rm I}$ to translations, rotations, boosts

$$\left\{ m{Q}_{\!lpha}^{\!\scriptscriptstyle \mathrm{I}}, \overline{m{Q}}_{\!\dot{lpha}}^{\!\scriptscriptstyle \mathrm{J}}
ight\} = 2\delta^{{\scriptscriptstyle \mathrm{IJ}}} \sigma_{lpha\dot{lpha}}^{\mu} m{ extstyle P}_{\!\mu} \;\;\; ext{broken in discrete space-time}$$

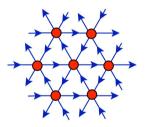
----- relevant susy-violating operators

Supersymmetry need not be *completely* broken on the lattice

Preserve susy sub-algebra at non-zero lattice spacing

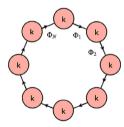
⇒ correct continuum limit with little or no fine tuning

Equivalent constructions from 'topological' twisting and dim'l deconstruction



Review:

arXiv:0903.4881



Need 2^d supersymmetries in d dimensions

 $d = 4 \longrightarrow \text{maximally supersymmetric Yang-Mills}$ ($\mathcal{N} = 4 \text{ SYM}$)

$\mathcal{N}=4$ SYM in a nutshell

Arguably simplest non-trivial 4d QFT → dualities, amplitudes, ...

SU(N) gauge theory with $\mathcal{N}=4$ fermions $\Psi^{\rm I}$ and 6 scalars $\Phi^{\rm IJ},$ all massless and in adjoint rep.

Symmetries relate coefficients of kinetic, Yukawa and Φ⁴ terms

Conformal $\longrightarrow \beta$ function is zero for all values of $\lambda = g^2 N$

Twisting $\mathcal{N}=4$ SYM

Intuitive picture — expand 4×4 matrix of supersymmetries

$$\begin{pmatrix} Q_{\alpha}^{1} & Q_{\alpha}^{2} & Q_{\alpha}^{3} & Q_{\alpha}^{4} \\ \overline{Q}_{\dot{\alpha}}^{1} & \overline{Q}_{\dot{\alpha}}^{2} & \overline{Q}_{\dot{\alpha}}^{3} & \overline{Q}_{\dot{\alpha}}^{4} \end{pmatrix} = \mathcal{Q} + \mathcal{Q}_{\mu}\gamma_{\mu} + \mathcal{Q}_{\mu\nu}\gamma_{\mu}\gamma_{\nu} + \overline{\mathcal{Q}}_{\mu}\gamma_{\mu}\gamma_{5} + \overline{\mathcal{Q}}\gamma_{5} \\ \longrightarrow \mathcal{Q} + \mathcal{Q}_{a}\gamma_{a} + \mathcal{Q}_{ab}\gamma_{a}\gamma_{b} \\ \text{with } a, b = 1, \cdots, 5$$

R-symmetry index × Lorentz index ⇒ reps of 'twisted rotation group'

$$SO(4)_{tw} \equiv diag \left[SO(4)_{euc} \otimes SO(4)_{R} \right]$$
 $SO(4)_{R} \subset SO(6)_{R}$

Change of variables $\longrightarrow \mathcal{Q}$ transform with integer 'spin' under SO(4)_{tw}

Twisting $\mathcal{N}=4$ SYM

Intuitive picture — expand 4×4 matrix of supersymmetries

$$\left(\begin{array}{ccc} Q_{\alpha}^{1} & Q_{\alpha}^{2} & Q_{\alpha}^{3} & Q_{\alpha}^{4} \\ \overline{Q}_{\dot{\alpha}}^{1} & \overline{Q}_{\dot{\alpha}}^{2} & \overline{Q}_{\dot{\alpha}}^{3} & \overline{Q}_{\dot{\alpha}}^{4} \end{array} \right) = \mathcal{Q} + \mathcal{Q}_{\mu}\gamma_{\mu} + \mathcal{Q}_{\mu\nu}\gamma_{\mu}\gamma_{\nu} + \overline{\mathcal{Q}}_{\mu}\gamma_{\mu}\gamma_{5} + \overline{\mathcal{Q}}\gamma_{5} \\ \longrightarrow \mathcal{Q} + \mathcal{Q}_{a}\gamma_{a} + \mathcal{Q}_{ab}\gamma_{a}\gamma_{b} \\ \text{with } a, b = 1, \cdots, 5$$

Discrete space-time

Can preserve closed sub-algebra

$$\{\mathcal{Q},\mathcal{Q}\}=2\mathcal{Q}^2=0$$

Twisting $\mathcal{N}=4$ SYM

Intuitive picture — expand 4×4 matrix of supersymmetries

$$\begin{pmatrix} Q_{\alpha}^{1} & Q_{\alpha}^{2} & Q_{\alpha}^{3} & Q_{\alpha}^{4} \\ \overline{Q}_{\dot{\alpha}}^{1} & \overline{Q}_{\dot{\alpha}}^{2} & \overline{Q}_{\dot{\alpha}}^{3} & \overline{Q}_{\dot{\alpha}}^{4} \end{pmatrix} = \mathcal{Q} + \mathcal{Q}_{\mu}\gamma_{\mu} + \mathcal{Q}_{\mu\nu}\gamma_{\mu}\gamma_{\nu} + \overline{\mathcal{Q}}_{\mu}\gamma_{\mu}\gamma_{5} + \overline{\mathcal{Q}}\gamma_{5} \\ \longrightarrow \mathcal{Q} + \mathcal{Q}_{a}\gamma_{a} + \mathcal{Q}_{ab}\gamma_{a}\gamma_{b} \\ \text{with } a, b = 1, \cdots, 5$$

Discrete space-time

Can preserve closed sub-algebra

$$\{\mathcal{Q},\mathcal{Q}\}=2\mathcal{Q}^2=0$$

Completing the twist

Fields also transform with integer spin under $SO(4)_{tw}$ — no spinors

$$\Psi$$
 and $\overline{\Psi}$ \longrightarrow $\eta,$ ψ_a and χ_{ab}

$$A_{\mu}$$
 and $\Phi^{\mathrm{I}} \longrightarrow \text{complexified gauge field } A_{a} \text{ and } \overline{A}_{a}$

$$\longrightarrow \mathsf{U}(N) = \mathsf{SU}(N) \otimes \mathsf{U}(1) \text{ gauge theory}$$

 $\checkmark \mathcal{Q}$ interchanges bosonic \longleftrightarrow fermionic d.o.f. with $\mathcal{Q}^2 = 0$

$$Q A_a = \psi_a$$

$$Q \psi_a = 0$$

$$\mathcal{Q} \; \chi_{\mathsf{a}\mathsf{b}} = - \overline{\mathcal{F}}_{\mathsf{a}\mathsf{b}}$$

$$\mathcal{Q} \; \overline{\mathcal{A}}_a = 0$$

$$Q \eta = d$$

$$Q d = 0$$

bosonic auxiliary field with e.o.m. $d=\overline{\mathcal{D}}_{a}\mathcal{A}_{a}$

Lattice $\mathcal{N} = 4$ SYM

Lattice theory looks nearly the same despite breaking Q_a and Q_{ab}

Covariant derivatives — finite difference operators

Complexified gauge fields $\mathcal{A}_a \longrightarrow \text{gauge links } \mathcal{U}_a \in \mathfrak{gl}(N,\mathbb{C})$

$$\begin{array}{cccc} \mathcal{Q} \ \mathcal{A}_{a} \longrightarrow \mathcal{Q} \ \mathcal{U}_{a} = \psi_{a} & \mathcal{Q} \ \psi_{a} = 0 \\ & \mathcal{Q} \ \chi_{ab} = -\overline{\mathcal{F}}_{ab} & \mathcal{Q} \ \overline{\mathcal{A}}_{a} \longrightarrow \mathcal{Q} \ \overline{\mathcal{U}}_{a} = 0 \\ & \mathcal{Q} \ \eta = d & \mathcal{Q} \ d = 0 \end{array}$$

Geometry: η on sites, ψ_a on links, etc.

Supersymmetric lattice action (QS = 0) from $Q^2 \cdot = 0$ and Bianchi identity

$$\mathcal{S} = rac{\mathcal{N}}{4\lambda_{\mathsf{lat}}}\mathsf{Tr}\left[\mathcal{Q}\left(\chi_{\mathsf{ab}}\mathcal{F}_{\mathsf{ab}} + \eta\overline{\mathcal{D}}_{\mathsf{a}}\mathcal{U}_{\mathsf{a}} - rac{1}{2}\eta d
ight) - rac{1}{4}\epsilon_{\mathsf{abcde}}\;\chi_{\mathsf{ab}}\overline{\mathcal{D}}_{\mathsf{c}}\;\chi_{\mathsf{de}}
ight]$$

Five links in four dimensions $\longrightarrow A_4^*$ lattice

 $A_4^* \sim 4$ d analog of 2d triangular lattice

Basis vectors linearly dependent and non-orthogonal

9/28

Large S₅ point group symmetry

 S_5 irreps precisely match onto irreps of twisted SO(4)_{tw}

$$\psi_{\mathbf{a}} \longrightarrow \psi_{\mu}, \ \overline{\eta}$$
 is $\mathbf{5} \longrightarrow \mathbf{4} \oplus \mathbf{1}$

$$\chi_{\mathsf{ab}} \longrightarrow \chi_{\mu\nu}, \ \overline{\psi}_{\mu} \qquad \text{is} \qquad \mathbf{10} \longrightarrow \mathbf{6} \oplus \mathbf{4}$$

 $S_5 \longrightarrow SO(4)_{tw}$ in continuum limit restores \mathcal{Q}_a and \mathcal{Q}_{ab}

Checkpoint

Analytic results for twisted $\mathcal{N}=4$ SYM on A_4^* lattice

U(N) gauge invariance + Q + S_5 lattice symmetries

- \longrightarrow Moduli space preserved to all orders
- \longrightarrow One-loop lattice β function vanishes
- \longrightarrow Only one log. tuning to recover continuum \mathcal{Q}_a and \mathcal{Q}_{ab}

[arXiv:1102.1725, arXiv:1306.3891, arXiv:1408.7067]

Not yet suitable for numerical calculations

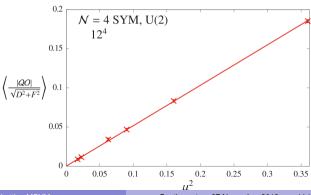
Must regulate zero modes and flat directions, especially in U(1) sector

Two deformations stabilize lattice calculations

(i) Add SU(N) scalar potential $\propto \mu^2 \sum_a \left(\text{Tr} \left[\mathcal{U}_a \overline{\mathcal{U}}_a \right] - N \right)^2$

Softly breaks susy $\longrightarrow \mathcal{Q}$ -violating operators vanish $\propto \mu^2 \to 0$

Test via Ward identity violations $\mathcal{Q}\left[\eta\mathcal{U}_{a}\overline{\mathcal{U}}_{a}\right]\neq0$



Two deformations stabilize lattice calculations

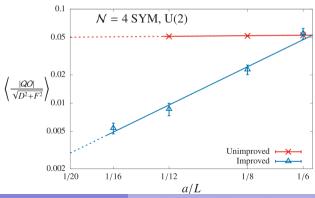
(ii) Constrain U(1) plaquette determinant $\sim G \sum_{a < b} (\det \mathcal{P}_{ab} - 1)$

Implemented supersymmetrically as Fayet–Iliopoulos D-term potential

Test via Ward identity violations $\mathcal{Q}\left[\eta\mathcal{U}_{a}\overline{\mathcal{U}}_{a}\right]\neq0$

Log-log axes

 \longrightarrow violations $\propto (a/L)^2$



Advertisement: Public code for lattice $\mathcal{N}=4$ SYM

so that the full improved action becomes

$$S_{\text{imp}} = S_{\text{exact}}' + S_{\text{closed}} + S_{\text{soft}}'$$

$$S_{\text{exact}}' = \frac{N}{4\lambda_{\text{lat}}} \sum_{n} \text{Tr} \left[-\overline{\mathcal{F}}_{ab}(n) \mathcal{F}_{ab}(n) - \chi_{ab}(n) \mathcal{D}_{[a}^{(+)} \psi_{b]}(n) - \eta(n) \overline{\mathcal{D}}_{a}^{(-)} \psi_{a}(n) \right]$$

$$+ \frac{1}{2} \left(\overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}(n) + G \sum_{a \neq b} (\det \mathcal{P}_{ab}(n) - 1) \mathbb{I}_{N} \right)^{2} \right] - S_{\text{det}}$$

$$S_{\text{det}} = \frac{N}{4\lambda_{\text{lat}}} G \sum_{n} \text{Tr} \left[\eta(n) \right] \sum_{a \neq b} \left[\det \mathcal{P}_{ab}(n) \right] \text{Tr} \left[\mathcal{U}_{b}^{-1}(n) \psi_{b}(n) + \mathcal{U}_{a}^{-1}(n + \widehat{\mu}_{b}) \psi_{a}(n + \widehat{\mu}_{b}) \right]$$

$$S_{\text{closed}} = -\frac{N}{16\lambda_{\text{lat}}} \sum_{n} \text{Tr} \left[\epsilon_{abcde} \chi_{de}(n + \widehat{\mu}_{a} + \widehat{\mu}_{b} + \widehat{\mu}_{c}) \overline{\mathcal{D}}_{c}^{(-)} \chi_{ab}(n) \right] ,$$

$$S_{\text{soft}}' = \frac{N}{4\lambda_{\text{lat}}} \mu^{2} \sum_{n} \sum_{a} \left(\frac{1}{N} \text{Tr} \left[\mathcal{U}_{a}(n) \overline{\mathcal{U}}_{a}(n) \right] - 1 \right)^{2}$$

≥100 inter-node data transfers in the fermion operator — non-trivial...

Public parallel code to reduce barriers to entry: github.com/daschaich/susy

Evolved from MILC QCD code, user guide in arXiv:1410.6971

(i) Thermodynamics on $(r_L \times r_\beta)$ 2-torus

arXiv:1709.07025

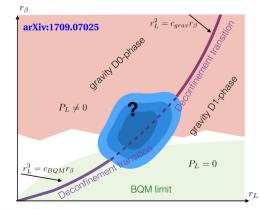
Dimensionally reduce to (deconfined) 2d $\mathcal{N}=(8,8)$ SYM with four scalar \mathcal{Q} Low temperatures $t=1/r_{\beta} \longleftrightarrow$ black holes in dual supergravity

For decreasing r_L at large N

homogeneous black string (D1)

→ localized black hole (D0)

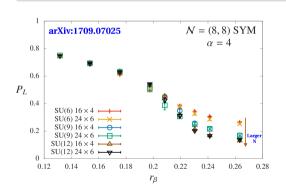
"spatial deconfinement" signalled by Wilson line P_L

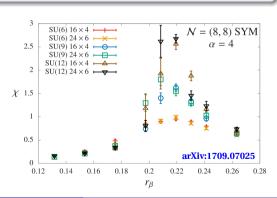


Spatial deconfinement transition signals

Peaks in Wilson line susceptibility match change in its magnitude |PL|, grow with size of SU(N) gauge group, comparing N=6, 9, 12

Agreement for 16×4 vs. 24×6 lattices (aspect ratio $\alpha = r_L/r_\beta = 4$)

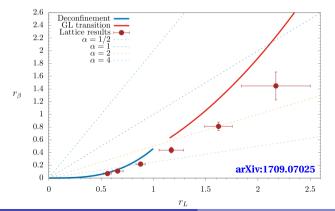




Lattice 2d $\mathcal{N} = (8,8)$ SYM phase diagram

Large $\alpha = r_L/r_\beta \gtrsim 4 \longrightarrow \text{good agreement with high-temperature bosonic QM}$

Small $\alpha \lesssim 2 \longrightarrow$ harder to control uncertainties with $6 \le N \le 16$



Overall consistent with holography

Comparing multiple lattice sizes

Controlled extrapolations are work in progress

15/28

David Schaich (Liverpool) Lattice MSYM Southampton, 27 November 2019

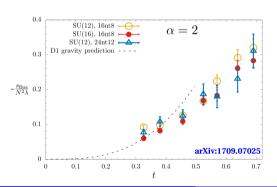
Dual black hole thermodynamics

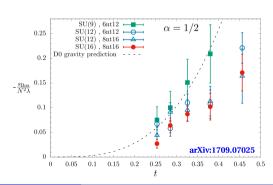
Dual black hole energy from 2d $\mathcal{N} = (8,8)$ SYM $\propto t^3$ for large- r_l D1 phase

 $\propto t^{3.2}$ for small- r_L D0 phase

16/28

Lattice results consistent with holography for sufficiently low $t \leq 0.4$



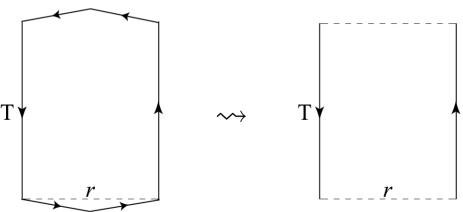


(ii) 4d $\mathcal{N}=4$ SYM static potential V(r)

Static probes \longrightarrow $r \times T$ Wilson loops $W(r, T) \propto e^{-V(r) T}$

17/28

Coulomb gauge trick reduces A_{\perp}^* lattice complications

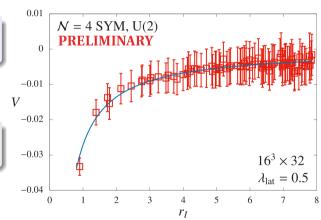


Static potential is Coulombic at all λ

Fits to confining $V(r) = A - C/r + \sigma r \longrightarrow \text{vanishing string tension } \sigma$

 \implies Fit to just V(r) = A - C/r to extract Coulomb coefficient $C(\lambda)$

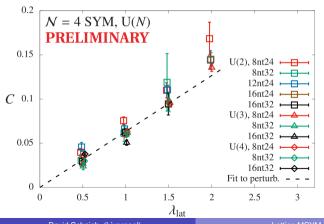
Discretization artifacts reduced by tree-level improved analysis



Coupling dependence of Coulomb coefficient

Continuum perturbation theory \longrightarrow $C(\lambda) = \lambda/(4\pi) + \mathcal{O}(\lambda^2)$

Holography $\longrightarrow C(\lambda) \propto \sqrt{\lambda}$ for $N \to \infty$ and $\lambda \to \infty$ with $\lambda \ll N$



For $\lambda_{\text{lat}} \leq$ 2, consistent with leading-order perturbation theory

(iii) Konishi operator scaling dimension

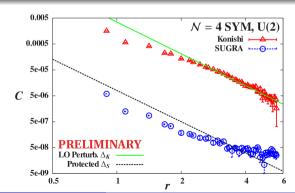
$$\mathcal{O}_K(x) = \sum_{\mathrm{I}} \mathrm{Tr} \left[\Phi^{\mathrm{I}}(x) \Phi^{\mathrm{I}}(x) \right]$$
 is simplest conformal primary operator

Scaling dimension $\Delta_K(\lambda) = 2 + \gamma_K(\lambda)$ investigated through perturbation theory (& S duality), holography, conformal bootstrap

$$C_K(r) \equiv \mathcal{O}_K(x+r)\mathcal{O}_K(x) \propto r^{-2\Delta_K}$$

'SUGRA' is 20' op., $\Delta_{\mathcal{S}}=2$

Will compare:
Direct power-law decay
Finite-size scaling
Monte Carlo BG



(iii) Konishi operator scaling dimension

Lattice scalars $\varphi(n)$ from polar decomposition $\mathcal{U}_a(n) \longrightarrow e^{\varphi_a(n)} \mathcal{U}_a(n)$

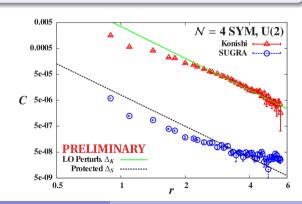
$$\mathcal{O}_{\mathcal{K}}^{\mathsf{lat}}(\textit{n}) = \sum_{\textit{a}} \mathsf{Tr} \left[\varphi_{\textit{a}}(\textit{n}) \varphi_{\textit{a}}(\textit{n}) \right] - \mathsf{vev}$$

$$\mathcal{O}_{\mathcal{S}}^{\mathsf{lat}}(n) \sim \mathsf{Tr}\left[\varphi_{\mathsf{a}}(n)\varphi_{\mathsf{b}}(n)\right]$$

$$C_K(r) \equiv \mathcal{O}_K(x+r)\mathcal{O}_K(x) \propto r^{-2\Delta_K}$$

'SUGRA' is 20' op., $\Delta_{\mathcal{S}}=2$

Will compare:
Direct power-law decay
Finite-size scaling
Monte Carlo BG



Scaling dimensions from MCRG stability matrix

Lattice system: $H = \sum_{i} c_{i} \mathcal{O}_{i}$ (infinite sum)

Couplings flow under RG blocking $\longrightarrow H^{(n)} = R_b H^{(n-1)} = \sum_i c_i^{(n)} \mathcal{O}_i^{(n)}$

Fixed point $\longrightarrow H^* = R_b H^*$ with couplings c_i^*

Linear expansion around fixed point \longrightarrow stability matrix T_{ik}^{\star}

$$\left| oldsymbol{c}_i^{(n)} - oldsymbol{c}_i^\star = \sum_k \left. rac{\partial oldsymbol{c}_i^{(n)}}{\partial oldsymbol{c}_k^{(n-1)}}
ight|_{H^\star} \left(oldsymbol{c}_k^{(n-1)} - oldsymbol{c}_k^\star
ight) \equiv \sum_k oldsymbol{\mathcal{T}}_{ik}^\star \left(oldsymbol{c}_k^{(n-1)} - oldsymbol{c}_k^\star
ight)$$

Correlators of \mathcal{O}_i , $\mathcal{O}_k \longrightarrow$ elements of stability matrix

[Swendsen, 1979]

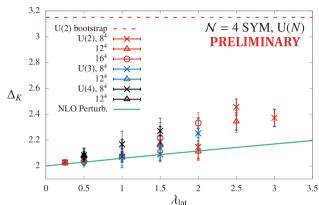
Eigenvalues of $T_{ik}^{\star} \longrightarrow \text{scaling dimensions of corresponding operators}$

Preliminary Δ_K results from Monte Carlo RG

Analyzing both $\mathcal{O}_{\mathcal{K}}^{\mathrm{lat}}$ and $\mathcal{O}_{\mathcal{S}}^{\mathrm{lat}}$

 $\begin{array}{c} \text{Imposing protected} \ \ \Delta_{\mathcal{S}} = 2 \\ \longrightarrow \Delta_{\textit{K}}(\lambda) \ \ \text{looks perturbative} \end{array}$

Systematic uncertainties from different amounts of smearing



Complication from twisting $SO(4)_R \subset SO(6)_R$

 $\mathcal{O}_{K}^{\text{lat}}$ mixes with SO(4)_R-singlet part of SO(6)_R-nonsinglet \mathcal{O}_{S}

---- disentangle via variational analyses

Future: Pushing $\mathcal{N}=4$ SYM to stronger coupling

- ✓ Reproduce reliable 4d results in perturbative regime
- ---- Check holographic predictions and access new domains

Sign problem seems to become obstruction

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int [d\mathcal{U}] [d\overline{\mathcal{U}}] \ \mathcal{O} \ e^{-\mathcal{S}_B[\mathcal{U},\overline{\mathcal{U}}]} \ \mathsf{pf} \, \mathcal{D}[\mathcal{U},\overline{\mathcal{U}}]$$

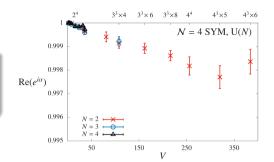
Complex pfaffian pf $\mathcal{D} = |\text{pf } \mathcal{D}| e^{i\alpha}$ complicates importance sampling

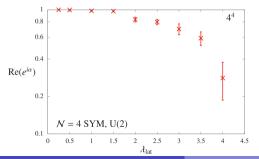
We phase quench, pf $\mathcal{D} \longrightarrow |\mathsf{pf}\,\mathcal{D}|$, need to reweight $\langle \mathcal{O} \rangle = \frac{\left\langle \mathcal{O}e^{i\alpha}\right\rangle_{pq}}{\left\langle e^{i\alpha}\right\rangle_{pq}}$

$\mathcal{N}=4$ SYM sign problem

Fix
$$\lambda_{\text{lat}} = g_{\text{lat}}^2 N = 0.5$$

Pfaffian nearly real positive
for all accessible volumes





Fix 4⁴ volume

Fluctuations increase with coupling

Signal-to-noise becomes obstruction for $\lambda_{\mathrm{lat}} \gtrsim$ 4

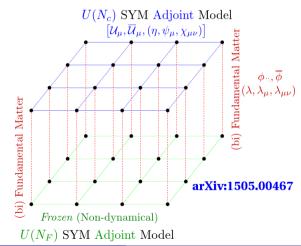
25/28

Preserve twisted supersymmetry sub-algebra in 2d or 3d

2-slice lattice SYM
with U(N) × U(F) gauge group
Adj. fields on each slice
Bi-fundamental in between

Decouple U(F) slice

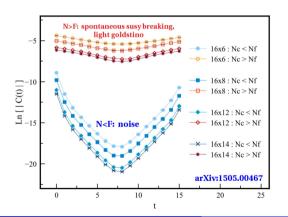
 \longrightarrow U(N) SQCD in d-1 dims. with F fund. hypermultiplets

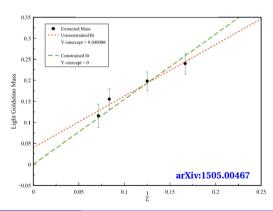


Dynamical susy breaking in 2d lattice superQCD

U(N) superQCD with F fundamental hypermultiplets

Spontaneous susy breaking requires N > F





26/28

David Schaich (Liverpool) Lattice MSYM Southampton, 27 November 2019

Recap: An exciting time for lattice supersymmetry

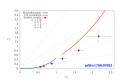
✓ Preserve (some) susy in discrete space-time

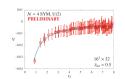
 \longrightarrow practical lattice $\mathcal{N}=$ 4 SYM, public code available

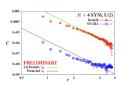
Reproduce reliable analytic results

- \checkmark 2d $\mathcal{N}=(8,8)$ SYM thermodynamics consistent with holography
- \checkmark Perturbative static potential Coulomb coefficient $C(\lambda)$ and Konishi operator conformal scaling dimension $\Delta_K(\lambda)$

Access new domains \longrightarrow sign problem, lower-dim'l superQCD and more...







Thank you!

Collaborators

Simon Catterall, Raghav Jha, Toby Wiseman also Georg Bergner, Poul Damgaard, Joel Giedt, Anosh Joseph

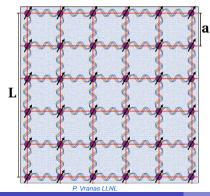
Funding and computing resources

UK Research and Innovation

Backup: Lattice field theory in a nutshell

Formally
$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D} \Phi \ \mathcal{O}(\Phi) \ e^{-S[\Phi]}$$

Regularize by formulating theory in finite, discrete space-time $\,\longrightarrow\,$ the lattice



Spacing between lattice sites ("a")

 \longrightarrow UV cutoff scale 1/a

Remove cutoff: $a \to 0$ $(L/a \to \infty)$

Hypercubic \longrightarrow automatic symmetries

Backup: Numerical lattice field theory calculations

High-performance computing

 \longrightarrow evaluate up to

 \sim billion-dimensional integrals

Importance sampling Monte Carlo

Algorithms sample field configurations with probability $\frac{1}{Z}e^{-S[\Phi]}$

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D} \Phi \ \mathcal{O}(\Phi) \ e^{-\mathcal{S}[\Phi]} \longrightarrow \ \frac{1}{N} \sum_{i=1}^N \mathcal{O}(\Phi_i) \ \text{with stat. uncertainty} \ \propto \frac{1}{\sqrt{N}}$$

Backup: Breakdown of Leibniz rule on the lattice

$$\left\{Q_{\alpha},\overline{Q}_{\dot{\alpha}}\right\}=2\sigma^{\mu}_{\alpha\dot{\alpha}}P_{\mu}=2i\sigma^{\mu}_{\alpha\dot{\alpha}}\partial_{\mu} \ \ \text{is problematic}$$
 $\Longrightarrow ext{try finite difference} \ \ \partial\phi(x) \ \longrightarrow \ \Delta\phi(x)=rac{1}{a}\left[\phi(x+a)-\phi(x)
ight]$

Crucial difference between ∂ and Δ

$$\Delta [\phi \eta] = a^{-1} [\phi(x+a)\eta(x+a) - \phi(x)\eta(x)]$$
$$= [\Delta \phi] \eta + \phi \Delta \eta + a[\Delta \phi] \Delta \eta$$

Full supersymmetry requires Leibniz rule $\ \partial \left[\phi\eta\right] = \left[\partial\phi\right]\eta + \phi\partial\eta$ only recoverd in $\ a\to 0$ continuum limit for any local finite difference

Backup: Complexified gauge field from twisting

Combining A_μ and $\Phi^{\rm I}$ \longrightarrow \mathcal{A}_a and $\overline{\mathcal{A}}_a$ produces $\mathsf{U}(\textit{N})=\mathsf{SU}(\textit{N})\otimes\mathsf{U}(1)$ gauge theory

Complicates lattice action but needed so that $Q A_a = \psi_a$

Further motivation: Under
$$SO(d)_{tw} = diag[SO(d)_{euc} \otimes SO(d)_{R}]$$

 $A_{\mu} \sim \operatorname{vector} \otimes \operatorname{scalar} = \operatorname{vector}$

 $\Phi^{\rm I} \sim {\sf scalar} \otimes {\sf vector} = {\sf vector}$

Easiest to see in 5d (then dimensionally reduce)

$$\mathcal{A}_a = \mathcal{A}_a + i\Phi_a \longrightarrow (\mathcal{A}_\mu, \phi) + i(\Phi_\mu, \overline{\phi})$$

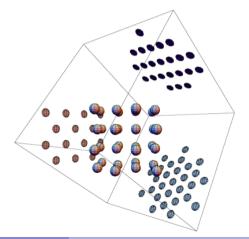
Backup: A_4^* lattice from five dimensions

Again dimensionally reduce, treating all five gauge links symmetrically

Start with hypercubic lattice in 5d momentum space

Symmetric constraint $\sum_{a} \partial_{a} = 0$ projects to 4d momentum space

Result is A_4 lattice \longrightarrow dual A_4^* lattice in real space

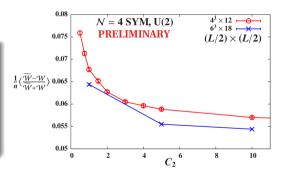


Backup: Restoration of Q_a and Q_{ab} supersymmetries

"
$$\mathcal{Q}$$
 + discrete $R_a \subset SO(4)_{tw} = \mathcal{Q}_a$ and \mathcal{Q}_{ab} "

Test R_a on Wilson loops $\widetilde{\mathcal{W}}_{ab} \equiv R_a \mathcal{W}_{ab}$

Tune coeff. c_2 of d^2 term to ensure restoration in continuum



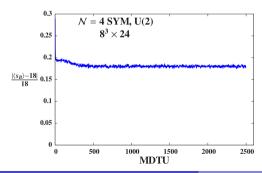
Backup: Problem with SU(*N*) flat directions

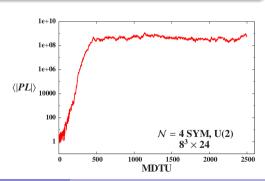
 $\mu^2/\lambda_{\text{lat}}$ too small $\longrightarrow \mathcal{U}_a$ can move far from continuum form $\mathbb{I}_N + \mathcal{A}_a$

Example: $\mu = 0.2$ and $\lambda_{lat} = 2.5$ on $8^3 \times 24$ volume

Left: Bosonic action stable \sim 18% off its supersymmetric value

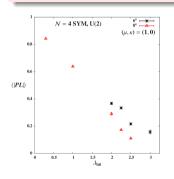
Right: (Complexified) Polyakov loop wanders off to $\sim 10^9$

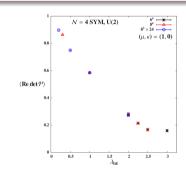


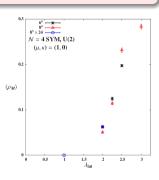


Backup: Problem with U(1) flat directions

Monopole condensation \longrightarrow confined lattice phase not present in continuum







28/28

Around the same $2\lambda_{lat} \approx 2...$

Left: Polyakov loop falls towards zero

Center: Plaquette determinant falls towards zero

Right: Density of U(1) monopole world lines becomes non-zero

Backup: Regulating SU(N) flat directions

Add soft Q-breaking scalar potential to lattice action

$$\mathcal{S} = \frac{\textit{N}}{\textit{4}\lambda_{\text{lat}}} \left[\mathcal{Q} \left(\chi_{\textit{ab}} \mathcal{F}_{\textit{ab}} + \eta \overline{\mathcal{D}}_{\textit{a}} \mathcal{U}_{\textit{a}} - \frac{1}{2} \eta \textit{d} \right) - \frac{1}{\textit{4}} \epsilon_{\textit{abcde}} \; \chi_{\textit{ab}} \overline{\mathcal{D}}_{\textit{c}} \; \chi_{\textit{de}} + \mu^{2} \textit{V} \right]$$

$$V = \sum_{a} \left(\frac{1}{N} \text{Tr} \left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a} \right] - 1 \right)^{2}$$
 lifts SU(N) flat directions, ensures $\mathcal{U}_{a} = \mathbb{I}_{N} + \mathcal{A}_{a}$ in continuum limit

Correct continuum limit requires $\mu^2 \to 0$ to restore $\mathcal Q$ and recover moduli space

Typically scale $\mu \propto 1/L$ in $L \to \infty$ continuum extrapolation

Backup: Poorly regulating U(1) flat directions

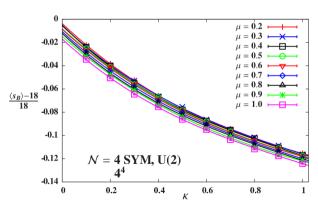
In earlier work we added another soft *Q*-breaking term

$$\mathcal{S}_{\mathsf{soft}} = rac{\mathit{N}}{4\lambda_{\mathsf{lat}}} \mu^2 \sum_{\mathit{a}} \left(rac{1}{\mathit{N}} \mathsf{Tr} \left[\mathcal{U}_{\mathit{a}} \overline{\mathcal{U}}_{\mathit{a}}
ight] - 1
ight)^2 + \kappa \sum_{\mathit{a} < \mathit{b}} \left| \det \mathcal{P}_{\mathit{ab}} - 1
ight|^2$$

More sensitivity to κ than to μ^2

Showing Q Ward identity from bosonic action

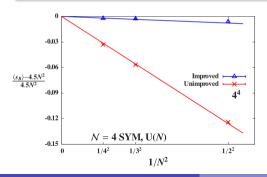
$$\langle s_B \rangle = 9N^2/2$$

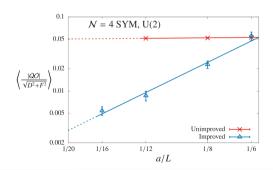


Backup: Better regulating U(1) flat directions

$$S = \frac{\textit{N}}{4\lambda_{\text{lat}}} \left[\mathcal{Q} \left(\chi_{ab} \mathcal{F}_{ab} + \eta \left\{ \overline{\mathcal{D}}_{a} \mathcal{U}_{a} + G \sum_{a < b} \left[\det \mathcal{P}_{ab} - 1 \right] \mathbb{I}_{\textit{N}} \right\} - \frac{1}{2} \eta d \right) - \frac{1}{4} \epsilon_{abcde} \chi_{ab} \overline{\mathcal{D}}_{c} \chi_{de} + \mu^{2} V \right]$$

 ${\cal Q}$ Ward identity violations scale $\propto 1/N^2$ (**left**) and $\propto (a/L)^2$ (**right**) \sim effective 'O(a) improvement' since ${\cal Q}$ forbids all dim-5 operators





Backup: Supersymmetric moduli space modification

[arXiv:1505.03135]

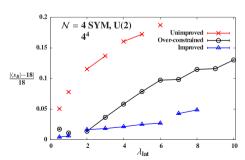
28/28

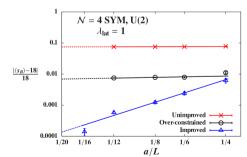
Method to impose \mathcal{Q} -invariant constraints on generic site operator $\mathcal{O}(n)$

Modify auxiliary field equations of motion \longrightarrow moduli space

$$d(n) = \overline{\mathcal{D}}_a^{(-)} \mathcal{U}_a(n) \qquad \longrightarrow \qquad d(n) = \overline{\mathcal{D}}_a^{(-)} \mathcal{U}_a(n) + G\mathcal{O}(n) \mathbb{I}_N$$

However, both U(1) and SU(N) $\in \mathcal{O}(n)$ over-constrains system





David Schaich (Liverpool) Lattice MSYM Southampton, 27 November 2019

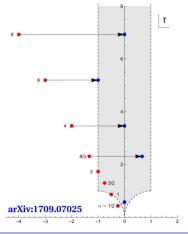
Backup: Dimensional reduction to 2d $\mathcal{N}=(8,8)$ SYM

Naive for now: 4d $\mathcal{N}=4$ SYM code with $N_x=N_y=1$

$$A_4^* \longrightarrow A_2^*$$
 (triangular) lattice

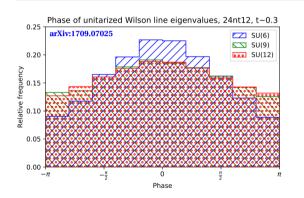
Torus **skewed** depending on $\alpha = N_t/L$

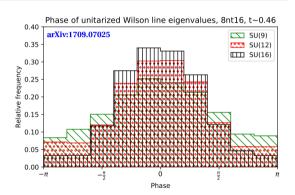
Also need to stabilize compactified links to ensure broken center symmetries



Backup: 2d $\mathcal{N} = (8,8)$ SYM Wilson line eigenvalues

Check 'spatial deconfinement' through Wilson line eigenvalue phases



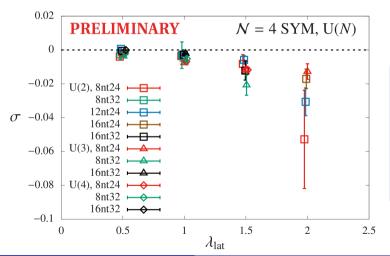


Left: $\alpha = 2$ distributions more extended as *N* increases \longrightarrow D1 black string **Right:** $\alpha = 1/2$ distributions more compact as *N* increases \longrightarrow D0 black hole

David Schaich (Liverpool) Lattice MSYM Southampton, 27 November 2019 28/28

Backup: Static potential is Coulombic at all λ

String tension σ from fits to confining form $V(r) = A - C/r + \sigma r$

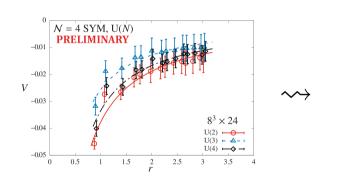


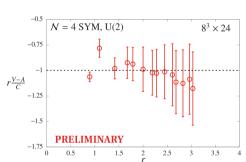
Slightly negative values flatten $V(r_l)$ for $r_l \lesssim L/2$

 $\sigma \rightarrow 0$ as accessible range of r_l increases on larger volumes

Backup: Discretization artifacts in static potential

Discretization artifacts visible at short distances where Coulomb term in V(r) = A - C/r is most significant





28/28

Danger of distorting Coulomb coefficient C

Backup: Tree-level improvement

Classic trick to reduce discretization artifacts in static potential

Associate V(r) data with r from Fourier transform of gluon propagator

Recall
$$\frac{1}{4\pi^2 r^2} = \int_{-\pi}^{\pi} \frac{d^4k}{(2\pi)^4} \frac{e^{ir \cdot k}}{k^2}$$
 where $\frac{1}{k^2} = G(k)$ in continuum

$$A_4^*$$
 lattice $\longrightarrow \frac{1}{r_l^2} \equiv 4\pi^2 \int_{-\pi}^{\pi} \frac{d^4 \widehat{k}}{(2\pi)^4} \frac{\cos\left(ir_l \cdot \widehat{k}\right)}{4\sum_{\mu=1}^4 \sin^2\left(\widehat{k} \cdot \widehat{e}_\mu / 2\right)}$

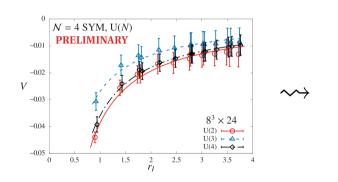
Tree-level lattice propagator from arXiv:1102.1725

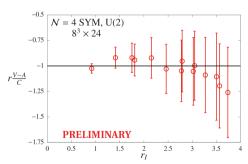
 \hat{e}_{μ} are A_4^* lattice basis vectors;

momenta $\hat{k} = \frac{2\pi}{L} \sum_{\mu=1}^{4} n_{\mu} \hat{g}_{\mu}$ depend on dual basis vectors

Backup: Tree-level-improved static potential

Significantly reduced discretization artifacts





Backup: Real-space RG for lattice $\mathcal{N}=4$ SYM

Must preserve \mathcal{Q} and S_5 symmetries \longleftrightarrow geometric structure

Simple transformation constructed in arXiv:1408.7067

$$\begin{aligned} \mathcal{U}_{\mathsf{a}}'(\mathsf{n}') &= \xi \, \mathcal{U}_{\mathsf{a}}(\mathsf{n}) \mathcal{U}_{\mathsf{a}}(\mathsf{n} + \widehat{\mu}_{\mathsf{a}}) & \eta'(\mathsf{n}') &= \eta(\mathsf{n}) \\ \psi_{\mathsf{a}}'(\mathsf{n}') &= \xi \left[\psi_{\mathsf{a}}(\mathsf{n}) \mathcal{U}_{\mathsf{a}}(\mathsf{n} + \widehat{\mu}_{\mathsf{a}}) + \mathcal{U}_{\mathsf{a}}(\mathsf{n}) \psi_{\mathsf{a}}(\mathsf{n} + \widehat{\mu}_{\mathsf{a}}) \right] & \text{etc.} \end{aligned}$$

Doubles lattice spacing $a \longrightarrow a' = 2a$, with tunable rescaling factor ξ

Scalar fields from polar decomposition $\mathcal{U}(n) = e^{\varphi(n)}U(n)$ $\Longrightarrow \text{shift } \varphi \longrightarrow \varphi + \log \xi \text{ to keep blocked } U \text{ unitary}$

Q-preserving RG transformation needed

to show only one log. tuning to recover continuum $\mathcal{Q}_{\textit{a}}$ and $\mathcal{Q}_{\textit{ab}}$

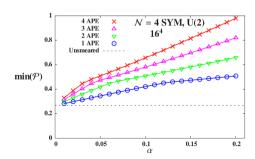
Backup: Smearing for Konishi analyses

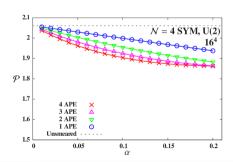
Smear to enlarge (MCRG or variational) operator basis

staples built from unitary parts of links but no final unitarization

Average plaquette stable upon smearing (right),

minimum plaquette steadily increases (**left**)





Backup: More on dynamical susy breaking

Spontaneous susy breaking means $\langle 0 | H | 0 \rangle > 0$ or equivalently $\langle QO \rangle \neq 0$

Twisted superQCD auxiliary field e.o.m. \longleftrightarrow Fayet–Iliopoulos *D*-term potential

$$d = \overline{\mathcal{D}}_{a}\mathcal{U}_{a} + \sum_{i=1}^{F} \phi_{i}\overline{\phi}_{i} - r\mathbb{I}_{N} \qquad \longleftrightarrow \qquad \text{Tr}\left[\left(\sum_{i} \phi_{i}\overline{\phi}_{i} - r\mathbb{I}_{N}\right)^{2}\right] \in \mathcal{H}$$

Have F scalar vevs to zero out N diagonal elements

$$\longrightarrow$$
 $N>F$ suggests susy breaking, $\langle 0 | H | 0 \rangle > 0 \longleftrightarrow \langle Q \eta \rangle = \langle d \rangle \neq 0$