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Dark matter — we observe it...
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...we don’t yet know what it is
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Overview

Composite dark matter is an attractive possibility

Lattice field theory is needed
to constrain models from experimental results

Dark matter & compositeness

Lattice field theory

Experiments
Large underground detectors

High-energy particle colliders

Gravitational-wave observatories
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Gravitational evidence for dark matter
Rotation ∼ 103–106 light-years Lensing ∼ 106 light-years

Structure ∼ 109 light-years Cosmic background ∼ 1010 ly
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Non-gravitational dark matter interactions
Three search strategies
Direct scattering in underground detectors
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Non-gravitational dark matter interactions
Three search strategies
Direct scattering in underground detectors

Collider production at high energies

Indirect annihilation into cosmic rays
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Non-gravitational dark matter interactions

No clear signals so far
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Why we expect non-gravitational interactions

Ωdark

Ωordinary
≈ 5 . . . not 105 or 10−5

Explained by non-gravitational
interactions with known particles
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Composite dark matter

Early universe
Deconfined charged fermions −→ non-gravitational interactions

Present day
Confined neutral ‘dark baryons’ −→ no experimental detections
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Composite dark matter

Even neutral composites interact, via charged constituents
−→ need lattice calculations for quantitative predictions
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Lattice field theory in a nutshell

Formally 〈O〉 =
1
Z

∫
DΦ O(Φ) e−S[Φ]

Regularize by formulating theory in finite, discrete space-time −→ the lattice

Spacing between lattice sites (“a”)
−→ UV cutoff scale 1/a

Remove cutoff: a→ 0 (L/a→∞)

Hypercubic −→ automatic symmetries
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Numerical lattice field theory calculations

High-performance computing
−→ evaluate up to

∼billion-dimensional integrals

Importance sampling Monte Carlo

Algorithms sample field configurations with probability
1
Z e−S[Φ]

〈O〉 =
1
Z

∫
DΦ O(Φ) e−S[Φ] −→ 1

N

N∑
i=1

O(Φi) with stat. uncertainty ∝ 1√
N
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Lattice Strong Dynamics Collaboration

Argonne Xiao-Yong Jin, James Osborn
Bern Andrew Gasbarro

Boston Rich Brower, Dean Howarth, Claudio Rebbi
Colorado Ethan Neil, Oliver Witzel
UC Davis Joseph Kiskis
Livermore Pavlos Vranas
Liverpool DS

Nvidia Evan Weinberg
Oregon Graham Kribs
RIKEN Enrico Rinaldi

Yale Thomas Appelquist, Kimmy Cushman, George Fleming

Exploring the range of possible phenomena in strongly coupled field theories

David Schaich (Liverpool) Lattice dark matter Southampton, 29 November 2019 10 / 26



Direct detection of composite dark matter

Charged constituents −→ form factors −→ experimental signals

Photon exchange from electromagnetic form factors
Effective interactions suppressed by powers of dark matter mass

Magnetic moment ∼ 1
MDM

Charge radius ∼ 1
M2

DM

Polarizability ∼ 1
M3

DM
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Direct detection of composite dark matter

Charged constituents −→ form factors −→ experimental signals

Higgs exchange from scalar form factor
Can dominate cross section. . . if F mass comes from Higgs
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Direct detection of composite dark matter

Charged constituents −→ form factors −→ experimental signals

Simple first case: Dark matter like a “more-neutral neutron”
SU(3) with weak singlets −→ no Higgs-exchange interaction

Investigate leading photon-exchange contributions

Magnetic moment ∼ 1
MDM

Charge radius ∼ 1
M2

DM
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Magnetic moment and charge radius

〈
DM(p′)

∣∣Γµ(q2)
∣∣DM(p)

〉
∼ F1(q2) γµ + F2(q2)

iσµνqν

2MDM
, q = p′ − p

Electric charge: F1(0) = 0 Magnetic moment: F2(0)

Charge radius: −6
dF1(q2)

dq2

∣∣∣∣
q2=0

+
3F2(0)

2M2
DM
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Resulting direct detection constraints

Lattice calculations of magnetic moment and charge radius
−→ event rate vs. dark matter mass

XENON100 −→ MB & 10 TeV

XENON1T −→ MB & 30 TeV [1805.12562]

Little effect from varying model params
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Magnetic moment dominates event rate

Charge radius contributions (dashed) are suppressed ∼ 1/M2
DM
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XENON100 [1207.5988], 95% CL exclusion

Symmetries can forbid both
magnetic moment and charge radius

−→ More freedom for resulting model
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Smarter second case: Stealth Dark Matter

SU(4) composite dark matter with four F
Scalar particle −→ no magnetic moment X

+/- charge symmetry −→ no charge radius X

(Tiny) Coupling to Higgs needed for nucleosynthesis

Polarizability ∼ 1/M3
DM dominates direct detection

−→ Unavoidable lower bound
on broad class of composite dark matter models
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‘Stealth’ composites constructed from conspicuous constituents

Direct detection cross section (pb) Radar cross section (m2)

Neutrino
σ ∼ 10−2

747
σ ∼ 102
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‘Stealth’ composites constructed from conspicuous constituents

Direct detection cross section (pb) Radar cross section (m2)

Neutrino
σ ∼ 10−2

SUSY neutralino
10−6 . σ . 10−5

747
σ ∼ 102

Falcon
σ ∼ 10−2

David Schaich (Liverpool) Lattice dark matter Southampton, 29 November 2019 16 / 26



‘Stealth’ composites constructed from conspicuous constituents

Direct detection cross section (pb) Radar cross section (m2)

Neutrino
σ ∼ 10−2

SUSY neutralino
10−6 . σ . 10−5

Stealth Dark Matter

σ ∼
(

200 GeV
MDM

)6

×10−9

747
σ ∼ 102

Falcon
σ ∼ 10−2

Stealth F-22
σ < 10−3
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Polarizability of Stealth Dark Matter

Unavoidable lower bound
on broad class of composite dark matter models

Nuclear physics very complicated
with large uncertanties

Polarizability is dependence
of lattice MDM on external field E
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Lower bound on direct detection

Results specific
to Xenon detectors

Uncertainty dominated
by Xenon nuclear physics

Shaded region is complementary constraint from particle colliders
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Stealth Dark Matter at colliders arXiv:1809.10184

The dark matter is the only stable composite particle, not the lightest

Main constraints from much lighter charged “Π”
−→ standard ‘missing energy’ searches not efficient
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Stealth Dark Matter collider detection arXiv:1809.10184

Production Decay

“Particularly tricky” at the LHC: Current bounds only MΠ & 130 GeV
similar to MΠ & 100 GeV from LEP searches for SUSY tau-partner

Lattice calculation of MDM/MΠ −→ MDM & 300 GeV

More form factors to compute: F1(4M2
Π) for Π and decay constant FΠ
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Gravitational waves

Gravitational-wave observatories opening new window on cosmology

First-order confinement transition −→ stochastic background of grav. waves

=⇒ Lattice studies of stealth dark matter phase transition
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Phase diagram expectations

Pure-gauge transition is first order

Becomes stronger as N increases

First-order transition persists
for sufficiently heavy fermions

Preliminary: Seem to need MP/MV & 0.9

Form factor calculations considered
0.55 ≤ MP/MV ≤ 0.77
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From first-order transition to gravitational wave signal

First-order transition −→ gravitational wave background will be produced

Four key parameters
Transition temperature T∗ . Tc

Vacuum energy fraction from latent heat

Bubble nucleation rate (transition duration)

Bubble wall speed

BSM transitions −→ low frequencies requiring space-based observatories
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Next step: Latent heat ∆ε

First-order transition −→ gravitational wave background will be produced

Vacuum energy fraction

α ≈ 30
4N(N2 − 1)

∆ε

π2T 4
∗

Latent heat ∆ε

is change in energy density
at transition
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Recapitulation and outlook

Composite dark matter is an attractive possibility

Lattice field theory is needed
to constrain models from experimental results

Minimize EM form factors for direct detection
−→ Stealth Dark Matter

Collider constraints on dark sector

Future searches for gravitational waves

And more: relic abundance; indirect detection; . . .
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Thank you!

Lattice Strong Dynamics Collaboration
Especially Graham Kribs, Ethan Neil, Enrico Rinaldi

Funding and computing resources
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Backup: Thermal freeze-out for relic density
Requires non-gravitational interactions with known particles

DM←→ SM for T & MDM

DM −→ SM for T . MDM

=⇒ rapid depletion of ΩDM

Hubble expansion
=⇒ dilution −→ freeze-out

2→ 2 scattering relates coupling and mass, 200α ∼ MDM

100 GeV
Strong α ∼ 16 −→ ‘natural’ mass scale MDM ∼ 300 TeV

Smaller MDM & 1 TeV possible from 2→ n scattering or asymmetry
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Backup: Two roads to natural asymmetric dark matter

Idea: Dark matter relic density related to baryon asymmetry

ΩD ≈ 5ΩB

=⇒ MDnD ≈ 5MBnB

nD ∼ nB =⇒ MD ∼ 5MB ≈ 5 GeV
High-dim. interactions relate baryon# and DM# violation

MD � MB =⇒ nB � nD ∼ exp [−MD/Ts] Ts ∼ 200 GeV
EW sphaleron processes above Ts distribute asymmetries

Both require non-gravitational interactions with known particles
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Backup: Hybrid Monte Carlo (HMC) algorithm

Goal: Sample field configurations Φ with probability
1
Z e−S[Φ]

HMC is Markov process based on
Metropolis–Rosenbluth–Teller

Fermions −→ extensive action computation

=⇒ Global updates via fictitious molecular dynamics

1 Introduce fictitious random momenta and “MD time” τ

2 Inexact MD evolution along trajectory in τ −→ new configuration

3 Accept/reject test on MD discretization error
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Backup: More details about form factors
Photon exchange via electromagnetic form factors
Interactions suppressed by powers of confinement scale Λ ∼ MDM

Dimension 5: Magnetic moment −→
(
XσµνX

)
Fµν/Λ

Dimension 6: Charge radius −→
(
XX
)

vµ∂νFµν/Λ2

Dimension 7: Polarizability −→
(
XX
)

vµvνFµαF ν
α /Λ3

Higgs exchange via scalar form factors

Higgs couples through σ terms
〈
B
∣∣mψψψ

∣∣B〉
Produces rapid charged ‘Π’ decay

needed for Big Bang nucleosynthesis
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Backup: More details about SU(3) composite dark matter model

Same SU(3) gauge group as QCD

Re-analyze existing data sets:
323×64 lattices, domain wall fermions

Scan relatively heavy fermion masses mF −→ 0.55 . MΠ/MV . 0.75

Compare NF = 2 or 6 degenerate flavors with same MB0 ≡ lim
mF→0

MB

Unlike QCD, fermions are all SU(2)L singlets −→ Q = Y
Half have QP = 2/3, half QM = −1/3

Dark matter candidate is singlet “dark baryon” B = PMM
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Backup: Form factor calculations on the lattice

RΓ (τ,T ,p,p′) −→
〈
DM(p′)

∣∣Γµ(q2)
∣∣DM(p)

〉
+O

(
e−∆τ , e−∆T , e−∆(T−τ)

)
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Backup: Electromagnetic form factor results
Magnetic moment κ Charge radius

〈
r 2
〉

Little dependence on NF or on mF ∼ MB/MB0

κ comparable to neutron’s κN = −1.91〈
r 2
〉

smaller than neutron’s
〈
r 2
〉

N ≈ −38 (related to larger MΠ/MV )

Insert into standard event rate formulas. . .
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Backup: Event rate formulas and lattice input

Rate =
Mdetector

MT

ρDM

MDM

∫ Emax

Emin

dER Acc(ER)

〈
vDM

dσ
dER

〉
f

dσ
dER

=
|MSI|2 + |MSD|2

16π (MDM + MT )2 Emax
R

Emax
R =

2M2
DMMT v2

col

(MDM + MT )2

From magnetic moment κ and charge radius
〈
r 2
〉

|MSI|2
e4 [ZFc(Q)]2

=

(
MT

MDM

)2
[

4
9

M4
DM

〈
r 2〉2

+
κ2 (MT + MDM)2 (Emax

R − ER)

M2
T ER

]

|MSD|2 = e4 2
3

(
J + 1

J

)[(
A
µT

µn

)
Fs(Q)

]2

κ2
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Backup: Event rate formulas and lattice input

Rate =
Mdetector

MT

ρDM

MDM

∫ Emax

Emin

dER Acc(ER)

〈
vDM

dσ
dER

〉
f

dσ
dER

=
|MSI|2 + |MSD|2

16π (MDM + MT )2 Emax
R

Emax
R =

2M2
DMMT v2

col

(MDM + MT )2

From polarizability CF

σSI =
Z 4

A2

144πα4
emM̃2

n,DM

M6
DMR2

C2
F ∝

Z 4

A2 per nucleon
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Backup: More details about SU(4) Stealth Dark Matter

Quenched SU(4) lattice ensembles

Lattice volumes up to 643 × 128,
several lattice spacings to check systematic effects

Dark matter candidate is spin-zero baryon −→ no magnetic moment

Need at least two flavors to anti-symmetrize −→ no charge radius

David Schaich (Liverpool) Lattice dark matter Southampton, 29 November 2019 26 / 26



Backup: Even more details about SU(4) Stealth Dark Matter

Mass terms mV (F1F2 + F3F4) + y
(
F1 · HF4 + F2 · H†F3

)
+ h.c.

Vector-like masses evade Higgs-exchange direct detection bounds

Higgs couplings −→ charged meson decay before Big Bang nucleosynthesis
Both required −→ four flavors
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Backup: Stealth Dark Matter mass scales

Lattice studies focus on mψ ' ΛDM where effective theories least reliable

mψ ' ΛDM could arise dynamically

Collider constraints on MDM

become stronger as mψ decreases
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Backup: Effective Higgs interaction

MH = 125 GeV −→ Higgs exchange can dominate direct detection

σ
(SI)
H ∝

∣∣∣∣∣M̃DM,N

M2
H

yψ
〈
DM

∣∣ψψ∣∣DM
〉

yq 〈N |qq|N〉
∣∣∣∣∣
2

Quark yq =
mq

v

Dark yψ = α
mψ

v
suppressed by α ≡ v

mψ

∂mψ(h)

∂h

∣∣∣∣
h=v

=
yv

yv + mV

Determine using Feynman–Hellmann theorem
〈
DM

∣∣ψψ∣∣DM
〉

=
∂MDM

∂mψ
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Backup: Feynman–Hellmann theorem

mψψψ is the only term in the hamiltonian that depends on mψ

=⇒
〈

B

∣∣∣∣∣ ∂Ĥ
∂mψ

∣∣∣∣∣B
〉

=
〈
B
∣∣ψψ∣∣B〉

Since Ĥ |B〉 = MB |B〉 and 〈B| Ĥ = 〈B|MB we have

∂

∂mψ

MB =
∂

∂mψ

〈
B
∣∣∣Ĥ∣∣∣B〉 =

〈
∂B
∂mψ

∣∣∣Ĥ∣∣∣B〉+

〈
B
∣∣∣Ĥ∣∣∣ ∂B

∂mψ

〉
+

〈
B

∣∣∣∣∣ ∂Ĥ
∂mψ

∣∣∣∣∣B
〉

= MB〈
∂B
∂mψ

|B〉+ MB〈B|
∂B
∂mψ

〉+
〈
B
∣∣ψψ∣∣B〉

= MB
∂

∂mψ

〈B|B〉+
〈
B
∣∣ψψ∣∣B〉 =

〈
B
∣∣ψψ∣∣B〉 �
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Backup: Lattice results for Higgs exchange constrain α

σ
(SI)
H ∝

∣∣yψ 〈DM
∣∣ψψ∣∣DM

〉∣∣2
Matrix element ∝ ∂MDM

∂mψ

(Feynman–Hellmann)

Stealth Dark Matter:
0.15 . mψ

MDM

∂MDM
∂mψ

. 0.34

Larger than QCD
0.04 . mq

MN

∂MN
∂mq
. 0.08
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Backup: Bounds on effective Higgs coupling

Higgs-exchange cross section −→ maximum α allowed by LUX [1310.8214]

Maximum α depends on MΠ/MV

and dark matter mass

Smaller MΠ/MV ←→ mF

−→ stronger constraints from colliders

Effective Higgs interaction tightly constrained
α . 0.3 for MΠ/MV & 0.55 −→ fermion masses must be mainly vector-like
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Backup: More about Stealth Dark Matter at the LHC

Π pair production cross section
Integrate over proton parton dist.,

set F1(4M2
Π) = 1

LHC can search for Π+Π− −→ tb + tb in addition to τ+τ− +��ET

Should eventually surpass MΠ & 100 GeV from LEP
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Backup: Indirect detection

Lattice results for composite spectrum
Predict γ-rays from splitting between

baryons with spin S = 0, 1 and 2

Much more challenging future work

DM–DM annihilation into (many) lighter Π that then decay
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Backup: Volume and discretization effects

Baryon masses vs. L at fixed lattice spacing (set by β ' 8/g2
0) and fermion mass
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Backup: Volume and discretization effects

Edinburgh-style plot of
MS0

MV
vs.

MΠ

MV
and line of constant physics (LCP)
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Backup: Volume and discretization effects

Lattice spacing and discretization effects for
MS2,S1

MS0
on line of constant physics
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Backup: Large-N predictions for SU(4) baryons

Tune (β, mF ) to match SU(3) MΠ and MV (dashed)

Rotor spectrum for spin-J baryons: M(N, J) = NM0 + C + B
J(J + 1)

N
+O

(
1

N2

)
Fit M0, C and B with nucleon, ∆ and spin-0 baryon masses

−→ predictions for S = 1, 2 baryons (diamonds)
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Backup: Pure gauge checks — Bulk and thermal transitions

0

0.2

0.4

0.6

0.8

1

10 12 14 16 18 20

SU(4)

N f = 0

α = 4

Rel. χ

βF

NT = 4, �

PLW

Try to avoid bulk transition for small NT −→ use βA = −βF/4

Still need NT > 4 for clear separation between bulk & thermal transitions
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Backup: Pure gauge checks — Bulk and thermal transitions
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Try to avoid bulk transition for small NT −→ use βA = −βF/4

Still need NT > 4 for clear separation between bulk & thermal transitions
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Backup: Pure gauge checks — Order of thermal transition

Two peaks in Polyakov loop magnitude histogram −→ first-order transition X

Hysteresis not clearly visible even in pure-gauge case
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