Stealth dark matter and gravitational waves

David Schaich (University of Liverpool)
Lattice 2019, 19 June

Work in progress with the Lattice Strong Dynamics Collaboration

Lattice Strong Dynamics Collaboration

Argonne Xiao-Yong Jin, James Osborn
Bern Andrew Gasbarro
Boston Rich Brower, Dean Howarth, Claudio Rebbi Colorado Ethan Neil, Oliver Witzel UC Davis Joseph Kiskis
Livermore Pavlos Vranas
Liverpool DS
Nvidia Evan Weinberg
Oregon Graham Kribs
RIKEN Enrico Rinaldi
Yale Thomas Appelquist, Kimmy Cushman, George Fleming
Exploring the range of possible phenomena in strongly coupled field theories

Overview

Stealth dark matter

Attractive and viable composite dark matter model
Exploring gravitational waves from first-order transition

Stealth dark matter motivational review

4-flavor SU(4) lattice phase diagram

Gravitational wave prospects

Dark matter

Consistent gravitational evidence from kiloparsec to Gpc scales

$\frac{\Omega_{\text {dark }}}{\Omega_{\text {ordinary }}} \approx 5 \ldots$ not 10^{5} or 10^{-5}
\longrightarrow non-gravitational interactions with standard model

Composite dark matter

Early universe
 Deconfined charged fermions \longrightarrow non-gravitational interactions

Present day
 Confined neutral 'dark baryons’ \longrightarrow no experimental detections

Stealth dark matter

SU(4) dark sector with four moderately heavy fundamental fermions
Lightest scalar 'baryon' is stable dark matter candidate
Direct detection
Symmetries
\longrightarrow electric polarizability is leading interaction

Collider searches
Charged 'meson' Drell-Yan rules out shaded region

Gravitational waves

Gravitational waves

First-order confinement transition \longrightarrow stochastic background

$$
\Longrightarrow \text { Lattice studies of stealth dark matter phase transition }
$$

Phase diagram expectations

Pure-gauge transition is first order Becomes stronger as N increases

First-order transition persists for sufficiently heavy fermions

How heavy is sufficient for $\operatorname{SU}(4)$?

Using $N_{F}=4$ unrooted staggered fermions gauge action with both fundamental \& adjoint plaquette terms

The lattice phase diagram game

Fermion masses $m=0.05,0.067,0.1,0.2$ (and pure gauge)

$$
\times
$$

Temporal extents $N_{T}=4,6,8,12$

Aspect ratios $L / N_{T}=2,3,4,6,8$

Scan coupling β_{F} to sweep temperatures high \longrightarrow low and low \longrightarrow high
= 985 ensembles and counting
[5,000-50,000 MD time units per ensemble]

The lattice phase diagram game

Fermion masses $m=0.05,0.067,0.1,0.2$ (and pure gauge)
\times
Temporal extents $N_{T}=4,6,8,12$ \times

Aspect ratios $L / N_{T}=2,3,4,6,8$

Scan coupling β_{F} to sweep temperatures high \longrightarrow low and low \longrightarrow high
= 985 ensembles and counting
[5,000-50,000 MD time units per ensemble]

Pure gauge checks: Bulk and thermal transitions

Try to avoid bulk transition for small $N_{T} \longrightarrow$ use $\beta_{A}=-\beta_{F} / 4$
Still need $N_{T}>4$ for clear separation between bulk \& thermal transitions

Pure gauge checks: Bulk and thermal transitions

Try to avoid bulk transition for small $N_{T} \longrightarrow$ use $\beta_{A}=-\beta_{F} / 4$
Still need $N_{T}>4$ for clear separation between bulk \& thermal transitions

Pure gauge checks: Bulk and thermal transitions

Try to avoid bulk transition for small $N_{T} \longrightarrow$ use $\beta_{A}=-\beta_{F} / 4$
Still need $N_{T}>4$ for clear separation between bulk \& thermal transitions

Pure gauge checks: Order of thermal transition

Two peaks in Polyakov loop magnitude histogram \longrightarrow first-order transition \checkmark

Hysteresis not clearly visible even in pure-gauge case

Dynamical results: Still looks first order

Pure-gauge \& dynamical susceptibilities show same behavior
\longrightarrow evidence for first-order transition with $m \geq 0.1$
Fundamental fermions explicitly break $Z_{N} \longrightarrow$ don't see two peaks in histograms

What does $m \geq 0.1$ mean?

How heavy is sufficient for $\operatorname{SU}(4)$?

Spectrum measurements
Zero-temp. $24^{3} \times 48$ ensembles

around each transition
$\longrightarrow M_{P} / M_{V}=0.80(3)$ for $m=0.1$
$M_{P} / M_{V}=0.91(1)$ for $m=0.2$

Previous work considered $0.55 \leq M_{P} / M_{V} \leq 0.77 \longrightarrow$ now adding $m=0.05$

From first-order transition to gravitational wave signal
First-order transition \longrightarrow gravitational wave background will be produced How do we predict its features?

Four key parameters
Transition temperature $T_{*} \lesssim T_{c}$
Vacuum energy fraction from latent heat
Bubble nucleation rate (transition duration)
Bubble wall speed

Next step: Latent heat $\Delta \epsilon$

First-order transition \longrightarrow gravitational wave background will be produced How do we predict its features?

> Vacuum energy fraction $$
\alpha \approx \frac{30}{4 N\left(N^{2}-1\right)} \frac{\Delta \epsilon}{\pi^{2} T_{*}^{4}}
$$

Latent heat $\Delta \epsilon$
is change in energy density at transition

Recapitulation and outlook

Stealth dark matter

Attractive and viable composite dark matter model

Exploring gravitational waves from first-order transition

Gravitational wave observatories will add to constraints from collider searches and direct detection experiments

SU(4) confinement transition appears first order

$$
\text { for } M_{P} / M_{V} \gtrsim 0.8 \text {, smaller masses underway }
$$

Next steps are latent heat, etc., for signal prediction

Thank you!

Lattice Strong Dynamics Collaboration
 Especially Graham Kribs, Ethan Neil, Enrico Rinaldi

Funding and computing resources

UK Research and Innovation

Backup: Thermal freeze-out for relic density

Requires non-gravitational
DM-SM interactions
$\mathrm{DM} \longleftrightarrow \mathrm{SM}$ for $T \gtrsim M_{D M}$
$\mathrm{DM} \longrightarrow \mathrm{SM}$ for $T \lesssim M_{D M}$ \Longrightarrow rapid depletion of $\Omega_{D M}$

Hubble expansion
\Longrightarrow dilution \longrightarrow freeze-out

$2 \rightarrow 2$ scattering relates coupling and mass, $200 \alpha \sim \frac{M_{D M}}{100 \mathrm{GeV}}$
Strong $\alpha \sim 16 \longrightarrow$ 'natural' $M_{D M} \sim 300 \mathrm{TeV}$
(smaller for $2 \rightarrow n$ scattering)

Backup: Two roads to natural asymmetric dark matter

Relate dark matter relic density to baryon asymmetry

$$
\begin{aligned}
\Omega_{D} & \approx 5 \Omega_{B} \\
\Longrightarrow M_{D} n_{D} & \approx 5 M_{B} n_{B}
\end{aligned}
$$

$n_{D} \sim n_{B} \quad \Longrightarrow \quad M_{D} \sim 5 M_{B} \approx 5 \mathrm{GeV}$
High-dim. interactions relate baryon\# and DM\# violation
$M_{D} \gg M_{B} \quad \Longrightarrow \quad n_{B} \gg n_{D} \sim \exp \left[-M_{D} / T_{s}\right] \quad T_{s} \sim 200 \mathrm{GeV}$
EW sphaleron processes above T_{s} distribute asymmetries

Both require non-gravitational interactions with known particles

Backup: Confirming thermal transition

Fix $m \cdot N_{T} \approx 0.8 \longrightarrow$ transition moves to $\beta_{F} \rightarrow \infty$ as $N_{T} \rightarrow \infty \checkmark$

