Stealth dark matter and gravitational waves

David Schaich (University of Liverpool)

Lattice 2019, 19 June

Work in progress with the Lattice Strong Dynamics Collaboration

Lattice Strong Dynamics Collaboration

Argonne Xiao-Yong Jin, James Osborn Bern Andrew Gasbarro Boston Rich Brower, Dean Howarth, Claudio Rebbi Colorado Ethan Neil. Oliver Witzel UC Davis Joseph Kiskis Livermore Paylos Vranas Liverpool **DS** Nvidia Evan Weinberg Oregon Graham Kribs **BIKEN Enrico Binaldi** Yale Thomas Appelguist, Kimmy Cushman, George Fleming

Exploring the range of possible phenomena in strongly coupled field theories

Overview

Stealth dark matter

Attractive and viable composite dark matter model

Exploring gravitational waves from first-order transition

Stealth dark matter motivational review

4-flavor SU(4) lattice phase diagram

Gravitational wave prospects

Dark matter

Consistent gravitational evidence from kiloparsec to Gpc scales

$$\frac{\Omega_{dark}}{\Omega_{ordinary}}\approx 5 ~~\dots not~10^5~or~10^{-5}$$

\longrightarrow non-gravitational interactions with standard model

Composite dark matter

Early universe

Deconfined charged fermions \longrightarrow non-gravitational interactions

Present day

Confined neutral 'dark baryons' \longrightarrow no experimental detections

David Schaich (Liverpool)

Stealth dark matter

[PRL 115 171803; PRD 92 075030]

SU(4) dark sector with four moderately heavy fundamental fermions Lightest scalar 'baryon' is stable dark matter candidate

Gravitational waves

Gravitational waves

First-order confinement transition \longrightarrow stochastic background

 \implies Lattice studies of stealth dark matter phase transition

David Schaich (Liverpool)

Phase diagram expectations

Using $N_F = 4$ unrooted staggered fermions gauge action with both fundamental & adjoint plaquette terms

The lattice phase diagram game

Fermion masses m = 0.05, 0.067, 0.1, 0.2 (and pure gauge)

 \times

Temporal extents $N_T = 4$, 6, 8, 12

 \times

X

Aspect ratios $L/N_T = 2, 3, 4, 6, 8$

Scan coupling β_F to sweep temperatures high \longrightarrow low and low \longrightarrow high

= 985 ensembles and counting [5,000–50,000 MD time units per ensemble]

The lattice phase diagram game

Fermion masses m = 0.05, 0.067, 0.1, 0.2 (and pure gauge)

 \times

Х

X

Temporal extents $N_T = 4$, 6, 8, 12

Aspect ratios $L/N_T = 2, 3, 4, 6, 8$

Scan coupling β_F to sweep temperatures high \longrightarrow low and low \longrightarrow high

= 985 ensembles and counting [5,000–50,000 MD time units per ensemble]

Pure gauge checks: Bulk and thermal transitions

Try to avoid bulk transition for small $N_T \longrightarrow \text{use } \beta_A = -\beta_F/4$

Still need $N_T > 4$ for clear separation between bulk & thermal transitions

David Schaich (Liverpool)

Pure gauge checks: Bulk and thermal transitions

Try to avoid bulk transition for small $N_T \longrightarrow \text{use } \beta_A = -\beta_F/4$

Still need $N_T > 4$ for clear separation between bulk & thermal transitions

David Schaich (Liverpool)

Pure gauge checks: Bulk and thermal transitions

Try to avoid bulk transition for small $N_T \longrightarrow \text{use } \beta_A = -\beta_F/4$

Still need $N_T > 4$ for clear separation between bulk & thermal transitions

David Schaich (Liverpool)

Pure gauge checks: Order of thermal transition

Two peaks in Polyakov loop magnitude histogram \longrightarrow first-order transition \checkmark

Hysteresis not clearly visible even in pure-gauge case

David Schaich (Liverpool)

Dynamical results: Still looks first order

Fundamental fermions explicitly break $Z_N \rightarrow$ don't see two peaks in histograms

What does $m \ge 0.1$ mean?

Previous work considered $0.55 \le M_P/M_V \le 0.77 \longrightarrow$ now adding m = 0.05

From first-order transition to gravitational wave signal

First-order transition \longrightarrow gravitational wave background will be produced

How do we predict its features?

Four key parameters Transition temperature $T_* \leq T_c$

Vacuum energy fraction from latent heat

Bubble nucleation rate (transition duration)

Bubble wall speed

Next step: Latent heat $\Delta \epsilon$

First-order transition \longrightarrow gravitational wave background will be produced

How do we predict its features?

0.5 $SU(4) = N_T = 8$ VERY Vacuum energy fraction 0.4PRELIMINARY $\alpha \approx \frac{30}{4N(N^2-1)} \frac{\Delta \epsilon}{\pi^2 T_*^4}$ 0.3 $\frac{\Delta \epsilon}{\pi^2 T^4}$ 0.2 Latent heat $\Delta \epsilon$ ¥ 0.1 is change in energy density φ m = 0.2at transition Pure gauge \mapsto 24 32 36 12 16 L

Recapitulation and outlook

Stealth dark matter

Attractive and viable composite dark matter model

Exploring gravitational waves from first-order transition

Gravitational wave observatories will add to constraints from collider searches and direct detection experiments

SU(4) confinement transition appears first order for $M_P/M_V \gtrsim 0.8$, smaller masses underway

Next steps are latent heat, etc., for signal prediction

Thank you!

Lattice Strong Dynamics Collaboration Especially Graham Kribs, Ethan Neil, Enrico Rinaldi

Funding and computing resources

Backup: Thermal freeze-out for relic density

Backup: Two roads to natural asymmetric dark matter

Relate dark matter relic density to baryon asymmetry

 $\Omega_D pprox 5\Omega_B \ \Longrightarrow M_D n_D pprox 5 M_B n_B$

 $n_D \sim n_B \implies M_D \sim 5M_B \approx 5 \text{ GeV}$ High-dim. interactions relate baryon# and DM# violation

 $M_D \gg M_B \implies n_B \gg n_D \sim \exp[-M_D/T_s] \qquad T_s \sim 200 \text{ GeV}$ EW sphaleron processes above T_s distribute asymmetries

Both require non-gravitational interactions with known particles

David Schaich (Liverpool)

Backup: Confirming thermal transition

Fix $m \cdot N_T \approx 0.8 \longrightarrow$ transition moves to $\beta_F \to \infty$ as $N_T \to \infty \checkmark$

