Phase diagram from lattice calculations

System: Berenstein-Maldacena-Nastase deformation
of maximally supersymmetric Yang-Mills quantum mechanics

Fix dim'less coupling $g \equiv \lambda / \mu^{3}=g_{Y M}^{2} N / \mu^{3}$, find dim'less transition temperature $(T / \mu)_{\text {crit }}$

Goal: Interpolate between $g \rightarrow 0$ perturbation theory and large- $N g \rightarrow \infty$ holographic prediction

Comparing gauge groups $\operatorname{SU}(N)$ with $N=8,12,16$ lattice sizes $N_{\tau}=8,12,16,24$

Confinement transition observables

Polyakov loop (PL) trace large for high T / μ
Tunnels among Z_{N} vacua around critical T / μ Vanishes for low T / μ (in large- N limit)

PL eigenvalue distribution evolves

 from localized to uniform

Transition signals

$(T / \mu)_{\text {crit }}$ from interpolating PL trace magnitude using four-parameter ansatz

$$
|\mathrm{PL}|=A-\frac{B}{1+\exp [C(T / \mu-D)]}
$$

Peaks in corresponding susceptibility χ match $(T / \mu)_{\text {crit }}=D$ from interpolations

Susceptibility peaks grow with N
S_{0} is dim. reduction of $10 \mathrm{~d} \mathcal{N}=1$ supersymmetric Yang-Mills with gauge group $\operatorname{SU}(N)$ $\longrightarrow 16$ fermions ψ_{α} and 9 scalars X_{i} are all $N \times N$ matrices evolving in time S_{μ} is deformation splitting X_{i} into $3 X_{\mathrm{I}}$ and $6 X_{A}$ with different masses
\longrightarrow lifts flat directions while preserving all 16 supersymmetries

$$
\begin{aligned}
& S=S_{0}+S_{\mu} \\
& S_{0}=\frac{N}{4 \lambda} \int d \tau \operatorname{Tr}\left[-\left(D_{\tau} X_{i}\right)^{2}+\Psi_{\alpha}^{T} \gamma_{\alpha \beta}^{\tau} D_{\tau} \psi_{\beta}-\frac{1}{2} \sum_{i<j}\left[X_{i}, X_{j}\right]^{2}+\frac{1}{\sqrt{2}} \psi_{\alpha}^{T} \gamma_{\alpha \beta}^{i}\left[X_{i}, \Psi_{\beta}\right]\right] \\
& S_{\mu}=-\frac{N}{4 \lambda} \int d \tau \operatorname{Tr}\left[\left(\frac{\mu}{3} X_{\mathrm{I}}\right)^{2}+\left(\frac{\mu}{6} X_{A}\right)^{2}+\frac{\mu}{4} \psi_{\alpha}^{T} \gamma_{\alpha \beta}^{123} \psi_{\beta}-\frac{\sqrt{2} \mu}{3} \epsilon_{\mathrm{IJK}} X_{\mathrm{I}} X_{\mathrm{J}} X_{\mathrm{K}}\right]
\end{aligned}
$$

Holography: At large N, equivalent to M-theory on "pp-wave" 11d supergravity background

