Lattice $\mathcal{N}=4$ Supersymmetric Yang-Mills

David Schaich (Bern)

Quantum Gravity meets Lattice QFT
ECT* Trento 5 September 2018

arXiv:1505.03135 arXiv:1611.06561 arXiv:1709.07025
\& more to come with Simon Catterall, Raghav Jha and Toby Wiseman

Overview and plan

Central idea

Preserve (some) susy in discrete space-time
\longrightarrow practical lattice investigations

Goals

1) Reproduce reliable results in perturbative, holographic, etc. regimes
2) Access new domains

Overview and plan

Preserve (some) susy in discrete space-time
Reproduce reliable analytic results

Access new domains

Lattice $\mathcal{N}=4$ SYM formulation highlights
(I) Dimensionally reduced (2d) thermodynamics
(II) 4d static potential Coulomb coefficient
(III) Anomalous dimension of Konishi operator

Open questions and future directions

Motivations

Lattice field theory promises first-principles predictions for strongly coupled supersymmetric QFTs

BSM

Obstruction

$\left\{Q_{\alpha}^{\mathrm{I}}, \bar{Q}_{\dot{\alpha}}^{\mathrm{I}}\right\}=2 \delta^{\mathrm{I}} \sigma_{\alpha \dot{\alpha}}^{\mu}{ }_{\mu} \quad$ broken in discrete space-time
\longrightarrow relevant susy-violating operators

Solution

Preserve susy sub-algebra at non-zero lattice spacing

\Longrightarrow correct continuum limit with little or no fine tuning

Equivalent constructions from topological twisting and deconstruction

Review:

arXiv:0903.4881

Need 2^{d} supersymmetries in d dimensions
$\longrightarrow d=4$ picks out $\mathcal{N}=4$ SYM

Quick review of $\mathcal{N}=4$ SYM

Arguably simplest non-trivial 4d QFT

$\mathrm{SU}(N)$ gauge theory with four fermions ψ^{I} and six scalars ϕ^{IJ}, all massless and in adjoint rep.

Symmetries relate coeffs of kinetic, Yukawa and Φ^{4} terms

Maximal 16 supersymmetries Q_{α}^{I} and $\bar{Q}_{\dot{\alpha}}^{\mathrm{I}} \quad(\mathrm{I}=1, \cdots, 4)$ transform under global $\mathrm{SU}(4) \sim \mathrm{SO}(6) \mathrm{R}$ symmetry

Conformal $\longrightarrow \beta$ function is zero for any 't Hooft coupling $\lambda=g^{2} N$

Topological twisting for $\mathcal{N}=4$ SYM

Intuitive picture - expand 4×4 matrix of supersymmetries

$$
\text { with } a, b=1, \cdots, 5
$$

R-symmetry index along each row \times Lorentz index along each column $\Longrightarrow \mathcal{Q}$ transform in reps of 'twisted rotation group'

$$
\mathrm{SO}(4)_{t w} \equiv \operatorname{diag}\left[\mathrm{SO}(4)_{\mathrm{euc}} \otimes \mathrm{SO}(4)_{R}\right] \quad \mathrm{SO}(4)_{R} \subset \mathrm{SO}(6)_{R}
$$

Change of variables $\longrightarrow \mathcal{Q}$ transform with integer spin under $\mathrm{SO}(4)_{t w}$

Topological twisting for $\mathcal{N}=4$ SYM

Intuitive picture - expand 4×4 matrix of supersymmetries

$$
\left(\begin{array}{cccc}
Q_{\alpha}^{1} & Q_{\alpha}^{2} & Q_{\alpha}^{3} & Q_{\alpha}^{4} \\
\bar{Q}_{\dot{\alpha}}^{1} & \bar{Q}_{\dot{\alpha}}^{2} & \bar{Q}_{\dot{\alpha}}^{3} & \bar{Q}_{\dot{\alpha}}^{4}
\end{array}\right)=\begin{array}{r}
\longrightarrow \mathcal{Q}+\mathcal{Q}_{\mu} \gamma_{\mu}+\mathcal{Q}_{\mu \nu} \gamma_{\mu} \gamma_{\nu}+\overline{\mathcal{Q}}_{\mu} \gamma_{\mu} \gamma_{5}+\overline{\mathcal{Q}}_{\gamma_{5}} \\
\longrightarrow \mathcal{Q}+\mathcal{Q}_{a} \gamma_{a}+\mathcal{Q}_{a b} \gamma_{a} \gamma_{b} \\
\text { with } a, b=1, \cdots, 5
\end{array}
$$

'Twisted supersymmetries' \mathcal{Q}
transform with integer spin under twisted rotation group

$$
\mathrm{SO}(4)_{t w} \equiv \operatorname{diag}\left[\mathrm{SO}(4)_{\mathrm{euc}} \otimes \mathrm{SO}(4)_{R}\right] \quad \mathrm{SO}(4)_{R} \subset \mathrm{SO}(6)_{R}
$$

Can preserve closed subalgebra $\{\mathcal{Q}, \mathcal{Q}\}=2 \mathcal{Q}^{2}=0$ on the lattice

Susy subalgebra from twisted $\mathcal{N}=4$ SYM

Fields also transform with integer spin under $\mathrm{SO}(4)_{t w}$ - no spinors

$$
Q_{\alpha} \text { and } \bar{Q}_{\dot{\alpha}} \longrightarrow \mathcal{Q}, \mathcal{Q}_{a} \text { and } \mathcal{Q}_{a b}
$$

ψ and $\bar{\psi} \longrightarrow \eta, \psi_{a}$ and $\chi_{a b}$
A_{μ} and $\Phi^{I} \longrightarrow$ complexified gauge field \mathcal{A}_{a} and $\overline{\mathcal{A}}_{a}$

$$
\longrightarrow U(N)=S U(N) \otimes U(1) \text { gauge theory }
$$

Twisted-scalar supersymmetry \mathcal{Q} correctly interchanges bosonic \longleftrightarrow fermionic d.o.f. with $\mathcal{Q}^{2}=0$
$\mathcal{Q} \mathcal{A}_{a}=\psi_{a}$
$\mathcal{Q} \psi_{a}=0$
$\mathcal{Q} \chi_{a b}=-\overline{\mathcal{F}}_{a b}$
$\mathcal{Q} \overline{\mathcal{A}}_{a}=0$
$\mathcal{Q} \eta=d$
$\mathcal{Q} d=0$
bosonic auxiliary field with e.o.m. $d=\overline{\mathcal{D}}_{a} \mathcal{A}_{a}$

Lattice $\mathcal{N}=4$ SYM

Lattice theory looks nearly the same despite breaking \mathcal{Q}_{a} and $\mathcal{Q}_{a b}$
Covariant derivatives \longrightarrow finite difference operators

Complexified gauge fields $\mathcal{A}_{a} \longrightarrow$ gauge links $\mathcal{U}_{a} \in \mathfrak{g l}(N, \mathbb{C})$

$$
\begin{array}{cr}
\mathcal{Q} \mathcal{A}_{a} \longrightarrow \mathcal{Q} \mathcal{U}_{a}=\psi_{a} & \mathcal{Q} \psi_{a}=0 \\
\mathcal{Q} \chi_{a b}=-\overline{\mathcal{F}}_{a b} & \mathcal{Q} \overline{\mathcal{A}}_{a} \longrightarrow \mathcal{Q} \overline{\mathcal{U}}_{a}=0 \\
\mathcal{Q} \eta=d & \mathcal{Q} d=0
\end{array}
$$

Geometry: η on sites, ψ_{a} on links, etc.
Susy lattice action $(\mathcal{Q} S=0)$ from $\mathcal{Q}^{2} \cdot=0$ and Bianchi identity

$$
S=\frac{N}{4 \lambda_{\text {lat }}} \operatorname{Tr}\left[\mathcal{Q}\left(\chi_{a b} \mathcal{F}_{a b}+\eta \overline{\mathcal{D}}_{a} \mathcal{U}_{a}-\frac{1}{2} \eta d\right)-\frac{1}{4} \epsilon_{a b c d e} \chi_{a b} \overline{\mathcal{D}}_{c} \chi_{d e}\right]
$$

Five links in four dimensions $\longrightarrow A_{4}^{*}$ lattice

$A_{4}^{*} \sim 4 \mathrm{~d}$ analog of 2d triangular lattice

Basis vectors linearly dependent and non-orthogonal

Large S_{5} point group symmetry

S_{5} irreps precisely match onto irreps of twisted $\mathrm{SO}(4)_{t w}$

$$
\begin{aligned}
\mathbf{5}=\mathbf{4} \oplus \mathbf{1}: & \psi_{a} \longrightarrow \psi_{\mu}, \bar{\eta} \\
\mathbf{1 0}=\mathbf{6} \oplus \mathbf{4}: & \chi_{a b} \longrightarrow \chi_{\mu \nu}, \bar{\psi}_{\mu}
\end{aligned}
$$

$S_{5} \longrightarrow \mathrm{SO}(4)_{t w}$ in continuum limit restores \mathcal{Q}_{a} and $\mathcal{Q}_{a b}$

Checkpoint

Analytic results for twisted $\mathcal{N}=4$ SYM on A_{4}^{*} lattice
$\mathrm{U}(\mathrm{N})$ gauge invariance $+\mathcal{Q}+S_{5}$ lattice symmetries
\longrightarrow Moduli space preserved to all orders
\longrightarrow One-loop lattice β function vanishes
\longrightarrow Only one log. tuning to recover continuum \mathcal{Q}_{a} and $\mathcal{Q}_{a b}$
[arXiv:1102.1725, arXiv:1306.3891, arXiv:1408.7067]

Not quite suitable for numerical calculations
Must regulate zero modes and flat directions, especially in $\mathrm{U}(1)$ sector

Two deformations in lattice action

$\operatorname{SU}(N)$ scalar potential $\propto \mu^{2} \sum_{a}\left(\operatorname{Tr}\left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right]-N\right)^{2}$
Softly breaks susy $\longrightarrow \mathcal{Q}$-violating operators vanish $\propto \mu^{2} \rightarrow 0$
$U(1)$ plaquette determinant $\sim G \sum_{a<b}\left(\operatorname{det} \mathcal{P}_{a b}-1\right)$ Implemented supersymmetrically as Fayet-lliopoulos D-term potential

Test via Ward identity violations: $\mathcal{Q}\left[\eta \mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right] \neq 0$

Advertisement: Public code for lattice $\mathcal{N}=4$ SYM

so that the full improved action becomes

$$
\begin{align*}
S_{\text {imp }}= & S_{\text {exact }}^{\prime}+S_{\text {closed }}+S_{\text {soft }}^{\prime} \tag{18}\\
S_{\text {exact }}^{\prime}= & \frac{N}{4 \lambda_{\text {lat }}} \sum_{n} \operatorname{Tr}\left[-\overline{\mathcal{F}}_{a b}(n) \mathcal{F}_{a b}(n)-\chi_{a b}(n) \mathcal{D}_{[a}^{(+)} \psi_{b]}(n)-\eta(n) \overline{\mathcal{D}}_{a}^{(-)} \psi_{a}(n)\right. \\
& \left.\quad+\frac{1}{2}\left(\overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}(n)+G \sum_{a \neq b}\left(\operatorname{det} \mathcal{P}_{a b}(n)-1\right) \mathbb{I}_{N}\right)^{2}\right]-S_{\text {det }} \\
S_{\text {det }}= & \frac{N}{4 \lambda_{\text {lat }}} G \sum_{n} \operatorname{Tr}[\eta(n)] \sum_{a \neq b}\left[\operatorname{det} \mathcal{P}_{a b}(n)\right] \operatorname{Tr}\left[\mathcal{U}_{b}^{-1}(n) \psi_{b}(n)+\mathcal{U}_{a}^{-1}\left(n+\widehat{\mu}_{b}\right) \psi_{a}\left(n+\widehat{\mu}_{b}\right)\right] \\
S_{\text {closed }}= & -\frac{N}{16 \lambda_{\text {lat }}} \sum_{n} \operatorname{Tr}\left[\epsilon_{a b c d e} \chi_{\text {de }}\left(n+\widehat{\mu}_{a}+\widehat{\mu}_{b}+\widehat{\mu}_{c}\right) \overline{\mathcal{D}}_{c}^{(-)} \chi_{a b}(n)\right], \\
S_{\text {soft }}^{\prime}= & \frac{N}{4 \lambda_{\text {lat }}} \mu^{2} \sum_{n} \sum_{a}\left(\frac{1}{N} \operatorname{Tr}\left[\mathcal{U}_{a}(n) \overline{\mathcal{U}}_{a}(n)\right]-1\right)^{2}
\end{align*}
$$

$\gtrsim 100$ inter-node data transfers in the fermion operator - non-trivial. . .
Reduce barriers to entry \longrightarrow public parallel code at github.com/daschaich/susy

Evolved from MILC lattice QCD code, presented in arXiv:1410.6971

(I) Thermodynamics on a 2-torus

Dimensionally reduce to $2 \mathrm{~d} \mathcal{N}=(8,8)$ SYM with four scalar \mathcal{Q}, study low temperatures $t=1 / r_{\beta} \longleftrightarrow$ black holes in dual supergravity

For decreasing r_{L} at large \boldsymbol{N} homogeneous black string (D1) \longrightarrow localized black hole (D0)

"spatial deconfinement"
signalled by Wilson line P_{L}

$\mathcal{N}=(8,8)$ SYM lattice phase diagram results

Good agreement
with high-temp. bosonic QM

Consistent with holography at low temperatures

Example spatial deconfinement transition in Wilson line

Fixing aspect ratio $\alpha=r_{L} / r_{\beta}=4$,
scanning in $r_{\beta}=r_{L} / \alpha$

Dual black hole thermodynamics

Holography: bosonic action \longleftrightarrow dual black hole internal energy
$\propto t^{3}$ for large- r_{L} D1 phase $\quad \propto t^{3.2}$ for small $-r_{L}$ D0 phase

Lattice results consistent with holography for sufficiently low $t \lesssim 0.4$

Need larger $N>16$ to avoid instabilities at lower temperatures

(II) Static potential $V(r)$

Static probes $\longrightarrow \quad r \times T$ Wilson loops $\quad W(r, T) \propto e^{-V(r) T}$

Coulomb gauge trick reduces A_{4}^{*} lattice complications

Static potential is Coulombic at all λ

Fits to confining $V(r)=A-C / r+\sigma r \longrightarrow$ vanishing string tension σ
\Longrightarrow Fit to just $V(r)=A-C / r$ to extract Coulomb coefficient $C(\lambda)$

Discretization artifacts reduced by tree-level improved analysis

Coupling dependence of Coulomb coefficient

Continuum perturbation theory $\longrightarrow \boldsymbol{C}(\lambda)=\lambda /(4 \pi)+\mathcal{O}\left(\lambda^{2}\right)$
Holography $\longrightarrow C(\lambda) \propto \sqrt{\lambda}$ for $N \rightarrow \infty$ and $\lambda \rightarrow \infty$ with $\lambda \ll N$

Consistent with leading-order perturbation theory for $\lambda_{\text {lat }} \leq 2$

(III) Konishi operator scaling dimension

$\mathcal{O}_{K}(x)=\sum_{\mathrm{I}} \operatorname{Tr}\left[\phi^{\mathrm{I}}(x) \Phi^{\mathrm{I}}(x)\right]$ is simplest conformal primary operator

Scaling dimension $\Delta_{K}(\lambda)=2+\gamma_{K}(\lambda)$ investigated through perturbation theory (\& S duality), holography, conformal bootstrap
$C_{K}(r) \equiv \mathcal{O}_{K}(x+r) \mathcal{O}_{K}(x) \propto r^{-2 \Delta_{K}}$
'SUGRA' is 20^{\prime} op., $\Delta_{s}=2$

Will compare:
Direct power-law decay
Finite-size scaling
Monte Carlo RG

(III) Konishi operator scaling dimension

Lattice scalars $\varphi(n)$ from polar decomposition of complexified links

$$
\left.\begin{array}{rl}
\mathcal{U}_{a}(n) \longrightarrow e^{\varphi_{a}(n)} U_{a}(n) \quad \mathcal{O}_{K}^{\text {lat }}(n) & =\sum_{a} \operatorname{Tr}\left[\varphi_{a}(n) \varphi_{a}(n)\right]-\operatorname{vev} \\
& \mathcal{O}_{S}^{\text {lat }}(n)
\end{array}\right) \operatorname{Tr}\left[\varphi_{a}(n) \varphi_{b}(n)\right] \$
$$

$C_{K}(r) \equiv \mathcal{O}_{K}(x+r) \mathcal{O}_{K}(x) \propto r^{-2 \Delta_{K}}$
'SUGRA' is 20^{\prime} op., $\Delta_{S}=2$
Will compare:
Direct power-law decay
Finite-size scaling
Monte Carlo RG

Scaling dimensions from MCRG stability matrix

Lattice system: $H=\sum_{i} c_{i} \mathcal{O}_{i} \quad$ (infinite sum)
Couplings flow under RG blocking $\longrightarrow H^{(n)}=R_{b} H^{(n-1)}=\sum_{i} c_{i}^{(n)} \mathcal{O}_{i}^{(n)}$
Fixed point $\longrightarrow H^{\star}=R_{b} H^{\star}$ with couplings c_{i}^{\star}

Linear expansion around fixed point \longrightarrow stability matrix $T_{i k}^{\star}$

$$
c_{i}^{(n)}-c_{i}^{\star}=\left.\sum_{k} \frac{\partial c_{i}^{(n)}}{\partial c_{k}^{(n-1)}}\right|_{H^{\star}}\left(c_{k}^{(n-1)}-c_{k}^{\star}\right) \equiv \sum_{k} T_{i k}^{\star}\left(c_{k}^{(n-1)}-c_{k}^{\star}\right)
$$

Correlators of $\mathcal{O}_{i}, \mathcal{O}_{k} \longrightarrow$ elements of stability matrix [Swendsen, 1979]
Eigenvalues of $T_{i k}^{\star} \longrightarrow$ scaling dimensions of corresponding operators

Preliminary Δ_{K} results from Monte Carlo RG

 Analyzing both $\mathcal{O}_{K}^{\text {lat }}$ and $\mathcal{O}_{S}^{\text {lat }}$ Imposing protected $\Delta_{S}=2$$\longrightarrow \Delta_{K}(\lambda)$ looks perturbative

Systematic uncertainties from different amounts of smearing

Complication: Twisting involves only $\mathrm{SO}(4)_{R} \subset \mathrm{SO}(6)_{R}$
\Longrightarrow Lattice Konishi op. mixes with $\mathrm{SO}(4)_{R}$-singlet part
of $\mathrm{SO}(6)_{R}$-nonsinglet SUGRA op.
Working on variational analyses to disentangle operators

Future: Pushing $\mathcal{N}=4$ SYM to stronger coupling

\checkmark Reproduce reliable (4d) results in perturbative regime
\longrightarrow Check holographic predictions and access new domains

Sign problem seems to become obstruction

Quick review of sign problem

$$
\langle\mathcal{O}\rangle=\frac{1}{\mathcal{Z}} \int[d \mathcal{U}][d \bar{U}] \mathcal{O} e^{-S_{B}[\mathcal{U}, \overline{\mathcal{U}}]} \operatorname{pf} \mathcal{D}[\mathcal{U}, \overline{\mathcal{U}}]
$$

Complex pfaffian $\operatorname{pf} \mathcal{D}=|\operatorname{pf} \mathcal{D}| e^{i \alpha}$ complicates importance sampling
We phase quench, pf $\mathcal{D} \longrightarrow|\operatorname{pf} \mathcal{D}|$, need to reweight $\langle\mathcal{O}\rangle=\frac{\left\langle\mathcal{O} e^{i \alpha}\right\rangle_{p q}}{\left\langle e^{i \alpha}\right\rangle_{p q}}$

$\mathcal{N}=4 \mathrm{SYM}$ sign problem puzzles

Pfaffian nearly real positive for all accessible volumes
(at fixed $\lambda_{\text {lat }}=0.5$)
$\left\langle e^{i \alpha}\right\rangle_{p q}$ extremely sensitive to boundary conditions

But other $\langle\mathcal{O}\rangle_{p q}$ are not!

Future: Lattice superQCD (in 2d \& 3d)

Preserve twisted supersymmetry sub-algebra on the lattice Proposed by Matsuura [0805.4491] and Sugino [0807.2683], first numerical study by Catterall \& Veernala [1505.00467]

2-slice lattice SYM
with $\mathrm{U}(N) \times \mathrm{U}(F)$ gauge group
Adj. fields on each slice
Bi-fundamental in between

Decouple $U(F)$ slice
$\longrightarrow \mathrm{U}(N)$ SQCD in $d-1$ dims. with F fund. hypermultiplets

Dynamical susy breaking in 2d lattice superQCD

 Auxiliary field e.o.m. \longrightarrow Fayet-lliopoulos D-term potential$$
d=\overline{\mathcal{D}}_{a} \mathcal{U}_{a}+\sum_{i=1}^{F} \phi_{i} \bar{\phi}_{i}+r \mathbb{I}_{N} \quad \longrightarrow \quad S_{D} \propto \sum_{i=1}^{F}\left(\operatorname{Tr}\left[\phi_{i} \bar{\phi}_{i}+r \mathbb{I}_{N}\right]\right)^{2}
$$

Zero out N diagonal elements via F scalar vevs or else susy breaking, $\langle\mathcal{Q} \eta\rangle=\langle d\rangle \neq 0 \longleftrightarrow\langle 0| H|0\rangle>0$

Recap: An exciting time for lattice supersymmetry

\checkmark Preserve (some) susy in discrete space-time
\longrightarrow practical lattice $\mathcal{N}=4$ SYM, public code available
Reproduce reliable analytic results
$\checkmark 2 \mathrm{~d} \mathcal{N}=(8,8)$ SYM thermodynamics consistent with holography
\checkmark Perturbative static potential Coulomb coefficient $C(\lambda)$ and Konishi operator conformal scaling dimension $\Delta_{K}(\lambda)$

Access new domains
\longrightarrow Understanding the sign problem at stronger couplings
\longrightarrow Lower-dimensional superQCD and more...

Thank you!

Collaborators

Simon Catterall, Raghav Jha, Toby Wiseman also Georg Bergner, Poul Damgaard, Joel Giedt, Anosh Joseph

Funding and computing resources

USQCD

Backup: Breakdown of Leibniz rule on the lattice

$\left\{Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\right\}=2 \sigma_{\alpha \dot{\alpha}}^{\mu} P_{\mu}=2 i i_{\alpha \dot{\alpha}}^{\mu} \partial_{\mu}$ is problematic
\Longrightarrow try finite difference $\partial \phi(x) \longrightarrow \Delta \phi(x)=\frac{1}{a}[\phi(x+a)-\phi(x)]$

Crucial difference between ∂ and Δ

$$
\begin{aligned}
\Delta[\phi \eta] & =a^{-1}[\phi(x+a) \eta(x+a)-\phi(x) \eta(x)] \\
& =[\Delta \phi] \eta+\phi \Delta \eta+a[\Delta \phi] \Delta \eta
\end{aligned}
$$

Only recover Leibniz rule $\partial[\phi \eta]=[\partial \phi] \eta+\phi \partial \eta$ when $a \rightarrow 0$
\Longrightarrow "discrete supersymmetry" breaks down on the lattice

Backup: Complexified gauge field from twisting

Why combine A_{μ} and $\Phi^{I} \longrightarrow$ complexified gauge field \mathcal{A}_{a} and $\overline{\mathcal{A}}_{a}$?
This is source of $\mathrm{U}(N)=\mathrm{SU}(N) \otimes \mathrm{U}(1)$ that complicates lattice action

Schematically, under SO $(d)_{t w}=\operatorname{diag}\left[\mathrm{SO}(d)_{\text {euc }} \otimes \mathrm{SO}(d)_{R}\right]$

$$
\begin{aligned}
A_{\mu} & \sim \text { vector } \otimes \text { scalar } \longrightarrow \text { vector } \\
\Phi^{I} & \sim \text { scalar } \otimes \text { vector } \longrightarrow \text { vector }
\end{aligned}
$$

Easiest to see by dimensionally reducing from 5 d

$$
\mathcal{A}_{a}=A_{a}+i \Phi_{a} \longrightarrow\left(A_{\mu}, \phi\right)+i\left(\Phi_{\mu}, \bar{\phi}\right)
$$

Backup: A_{4}^{*} lattice from five dimensions

Again dimensionally reduce, treating all five gauge links symmetrically

Start with hypercubic lattice in 5 d momentum space

Symmetric constraint $\sum_{a} \partial_{a}=0$ projects to 4d momentum space

Result is A_{4} lattice
\longrightarrow dual A_{4}^{*} lattice in real space

Backup: Restoration of \mathcal{Q}_{a} and $\mathcal{Q}_{a b}$ supersymmetries

$$
" \mathcal{Q}+\text { discrete } R_{a} \subset \mathrm{SO}(4)_{t w}=\mathcal{Q}_{a} \text { and } \mathcal{Q}_{a b} "
$$

Test R_{a} on Wilson loops $\widetilde{\mathcal{W}}_{a b} \equiv R_{a} \mathcal{W}_{a b}$, tune coeff. c_{2} of d^{2} term to ensure restoration in continuum

Results from arXiv:1411.0166 to be revisited with improved action

Backup: Problem with $\mathrm{SU}(\mathrm{N})$ flat directions

$\mu^{2} / \lambda_{\text {lat }}$ too small $\longrightarrow \mathcal{U}_{a}$ can move far from continuum form $\mathbb{I}_{N}+\mathcal{A}_{a}$

Example: $\mu=0.2$ and $\lambda_{\text {lat }}=2.5$ on $8^{3} \times 24$ volume

Left: Bosonic action stable $\sim 18 \%$ off its supersymmetric value
Right: (Complexified) Polyakov loop wanders off to $\sim 10^{9}$

Backup: Problem with $\mathrm{U}(1)$ flat directions

Monopole condensation \longrightarrow confined lattice phase
not present in continuum $\mathcal{N}=4 \mathrm{SYM}$

Around the same $2 \lambda_{\text {lat }} \approx 2 \ldots$
Left: Polyakov loop falls towards zero
Center: Plaquette determinant falls towards zero
Right: Density of $U(1)$ monopole world lines becomes non-zero

Backup: Regulating $\operatorname{SU}(N)$ flat directions

Add soft \mathcal{Q}-breaking scalar potential to lattice action

$$
S=\frac{N}{4 \lambda_{\text {lat }}}\left[\mathcal{Q}\left(\chi_{a b} \mathcal{F}_{a b}+\eta \overline{\mathcal{D}}_{a} \mathcal{U}_{a}-\frac{1}{2} \eta d\right)-\frac{1}{4} \epsilon_{a b c d e} \chi_{a b} \overline{\mathcal{D}}_{c} \chi_{d e}+\mu^{2} V\right]
$$

$V=\sum_{a}\left(\frac{1}{N} \operatorname{Tr}\left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right]-1\right)^{2}$ lifts $\operatorname{SU}(N)$ flat directions,
ensures $\mathcal{U}_{a}=\mathbb{I}_{N}+\mathcal{A}_{a}$ in continuum limit

Correct continuum limit requires $\mu^{2} \rightarrow 0$ to restore \mathcal{Q} and recover physical flat directions

Typically scale $\mu \propto 1 / L$ in $L \rightarrow \infty$ continuum extrapolation

Backup: Poorly regulating $U(1)$ flat directions

Until 2015 we added another soft \mathcal{Q}-breaking term

$$
S_{\text {soft }}=\frac{N}{4 \lambda_{\text {lat }}} \mu^{2} \sum_{a}\left(\frac{1}{N} \operatorname{Tr}\left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right]-1\right)^{2}+\kappa \sum_{a<b}\left|\operatorname{det} \mathcal{P}_{a b}-1\right|^{2}
$$

More sensitivity to κ
than to μ^{2}

Showing \mathcal{Q} Ward identity from bosonic action

$$
\left\langle s_{B}\right\rangle=9 N^{2} / 2
$$

Backup: Better regulating $\mathrm{U}(1)$ flat directions

$$
\begin{gathered}
S=\frac{N}{4 \lambda_{\text {lat }}}\left[\mathcal{Q}\left(\chi_{a b} \mathcal{F}_{a b}+\downarrow-\frac{1}{2} \eta d\right)-\frac{1}{4} \epsilon_{a b c d e} \chi_{a b} \overline{\mathcal{D}}_{c} \chi_{d e}+\mu^{2} V\right] \\
\eta\left\{\overline{\mathcal{D}}_{a} \mathcal{U}_{a}+G \sum_{a<b}\left[\operatorname{det} \mathcal{P}_{a b}-1\right] \mathbb{I}_{N}\right\}
\end{gathered}
$$

\mathcal{Q} Ward identity violations scale $\propto 1 / N^{2}$ (left) and $\propto(a / L)^{2}$ (right) \sim effective ' $O(a)$ improvement' since \mathcal{Q} forbids all dim-5 operators

Backup: Supersymmetric moduli space modification

Method to impose \mathcal{Q}-invariant constraints applicable to generic site operator $\mathcal{O}(n) \quad$ [arXiv:1505.03135]

Modify auxiliary field equations of motion \longrightarrow moduli space

$$
d(n)=\overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}(n) \quad \longrightarrow \quad d(n)=\overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}(n)+G \mathcal{O}(n) \mathbb{I}_{N}
$$

However, both $\mathrm{U}(1)$ and $\mathrm{SU}(N) \in \mathcal{O}(n)$ over-constrains system

Backup: $\mathcal{N}=(8,8)$ SYM Wilson line eigenvalues

Check 'spatial deconfinement' through Wilson line eigenvalue phases

Left: $\alpha=2$ distributions more extended as N increases
\longrightarrow dual gravity describes homogeneous black string (D1 phase)
Right: $\alpha=1 / 2$ distributions more compact as N increases \longrightarrow dual gravity describes localized black hole (D0 phase)

Backup: Static potential is Coulombic at all λ

String tension σ from fits to confining form $V(r)=A-C / r+\sigma r$

Slightly negative values flatten $V\left(r_{l}\right)$ for $r_{l} \lesssim L / 2$
$\sigma \rightarrow 0$ as accessible range of r_{l} increases on larger volumes

Backup: Discretization artifacts in static potential

Discretization artifacts visible at short distances
where Coulomb term in $V(r)=A-C / r$ is most significant
Right: Fluctuations around Coulomb fit highlight artifacts

Danger of distorting Coulomb coefficient C

Backup: Tree-level improvement

Classic trick to reduce discretization artifacts in static potential (Lang \& Rebbi '82; Sommer '93; Necco '03)

Associate $V(r)$ data with r from Fourier transform of gluon propagator
Recall $\frac{1}{4 \pi^{2} r^{2}}=\int_{-\pi}^{\pi} \frac{d^{4} k}{(2 \pi)^{4}} \frac{e^{i r \cdot k}}{k^{2}}$ where $\frac{1}{k^{2}}=G(k)$ in continuum

$$
A_{4}^{*} \text { lattice } \longrightarrow \frac{1}{r_{l}^{2}} \equiv 4 \pi^{2} \int_{-\pi}^{\pi} \frac{d^{4} \widehat{k}}{(2 \pi)^{4}} \frac{\cos \left(i r_{l} \cdot \widehat{k}\right)}{4 \sum_{\mu=1}^{4} \sin ^{2}\left(\widehat{k} \cdot \widehat{e}_{\mu} / 2\right)}
$$

Tree-level lattice propagator from arXiv:1102.1725
\widehat{e}_{μ} are A_{4}^{*} lattice basis vectors;
momenta $\widehat{k}=\frac{2 \pi}{L} \sum_{\mu=1}^{4} n_{\mu} \widehat{g}_{\mu}$ depend on dual basis vectors

Backup: Tree-level-improved static potential

Tree-level improvement significantly reduces discretization artifacts

Backup: Real-space RG for lattice $\mathcal{N}=4$ SYM

Must preserve \mathcal{Q} and S_{5} symmetries \longleftrightarrow geometric structure

Simple transformation constructed in arXiv:1408.7067

$$
\begin{array}{lr}
\mathcal{U}_{a}^{\prime}\left(n^{\prime}\right)=\xi \mathcal{U}_{a}(n) \mathcal{U}_{a}\left(n+\widehat{\mu}_{a}\right) & \eta^{\prime}\left(n^{\prime}\right)=r \\
\psi_{a}^{\prime}\left(n^{\prime}\right)=\xi\left[\psi_{a}(n) \mathcal{U}_{a}\left(n+\widehat{\mu}_{a}\right)+\mathcal{U}_{a}(n) \psi_{a}\left(n+\widehat{\mu}_{a}\right)\right] & \text { etc. }
\end{array}
$$

Doubles lattice spacing $a \longrightarrow a^{\prime}=2 a$, with tunable rescaling factor ξ
Scalar fields from polar decomposition $\mathcal{U}(n)=e^{\varphi(n)} U(n)$
\longrightarrow shift $\varphi \longrightarrow \varphi+\log \xi$ to keep blocked U unitary

This \mathcal{Q}-preserving RG transformation needed to show only one log. tuning to recover continuum \mathcal{Q}_{a} and $\mathcal{Q}_{a b}$

Backup: Smearing for Konishi analyses

Smear to enlarge (MCRG or variational) operator basis

APE-like smearing: $\quad \longrightarrow \quad(1-\alpha)-\quad+\frac{\alpha}{8} \sum \sqcap$,
staples built from unitary parts of links but no final unitarization (unitarized smearing - e.g. stout - doesn't affect Konishi)

Average plaquette stable upon smearing (right),
minimum plaquette steadily increases (left)

Backup: Dimensional reduction to $\mathcal{N}=(8,8)$ SYM

Naive for now: $4 \mathrm{~d} \mathcal{N}=4 \mathrm{SYM}$ code with $N_{x}=N_{y}=1$
$A_{4}^{*} \longrightarrow A_{2}^{*}$ (triangular) lattice

Torus skewed depending on $\alpha=N_{t} / L$
Modular trans. into fund. domain
\longrightarrow some skewed tori actually rectangular

Also need to stabilize compactified links to ensure broken center symmetries

