
Physics Out Of The Box — The Impact of Lattice Field Theory —

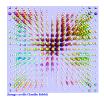
David Schaich (University of Bern)

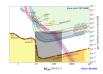
University of Liverpool, 5 July 2018

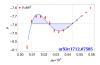
schaich@itp.unibe.ch

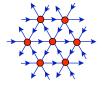
www.davidschaich.net

Overview

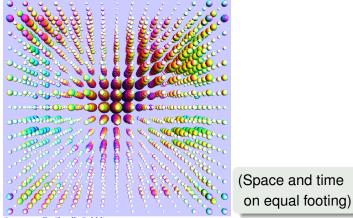

Lattice field theory is a broadly applicable tool to study strongly coupled quantum field theories


A high-level summary of lattice field theory


Applications — recent results & future plans


- Composite dark matter
- Dense nuclear matter
- Supersymmetry and holographic duality
- Composite Higgs boson

Outlook



Lattice field theory in a nutshell: QFT

Quantum Field Theory = quantum mechanics + special relativity

Picture relativistic quantum fields filling four-dimensional space-time

(Image credit: Claudio Rebbi)

David Schaich (Bern)

The QFT / StatMech Correspondence

Generating functional (Feynman path integral)

$$\mathcal{Z} = \int \mathcal{D}\Phi \ e^{-S[\Phi] \ / \ \hbar}$$

Action
$$S[\Phi] = \int d^4x \mathcal{L}[\Phi(x)]$$

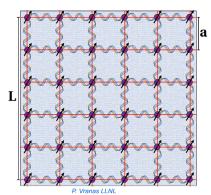
Partition function

$$\int \mathcal{D}q \mathcal{D}p \ e^{-H(q,p) / k_B T}$$

Hamiltonian H

 $\hbar \leftrightarrow$ quantum fluctuations (natural units: $\hbar = 1$) $k_BT \iff$ thermal fluctuations

Lattice field theory in a nutshell: Discretization


Formally
$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}\Phi \ \mathcal{O}(\Phi) \ e^{-S[\Phi]}$$

... but infinite-dimensional integrals in general intractable

Lattice field theory in a nutshell: Discretization Formally $\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}\Phi \ \mathcal{O}(\Phi) \ e^{-S[\Phi]}$

... but infinite-dimensional integrals in general intractable

Formulate theory in finite, discrete space-time \longrightarrow the lattice

Spacing between lattice sites ("a") \longrightarrow UV cutoff scale 1/a

Removing cutoff: $a \rightarrow 0$ ($L/a \rightarrow \infty$)

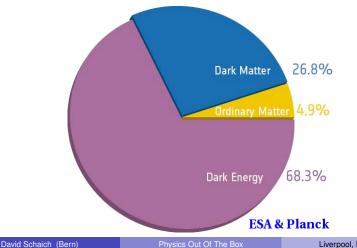
Hypercubic \longrightarrow automatic symmetries

Numerical lattice field theory calculations

 $\begin{array}{l} \mbox{High-performance computing} \\ \longrightarrow \mbox{evaluate up to} \\ \sim \mbox{billion-dimensional integrals} \end{array}$

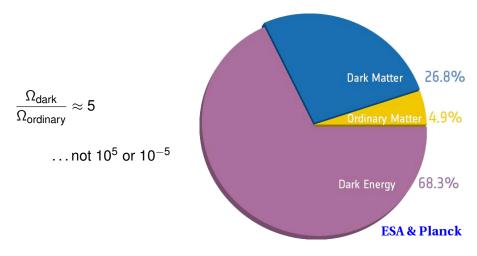
Importance sampling Monte Carlo

Algorithms sample field configurations with probability


$$\frac{1}{\mathcal{Z}}e^{-S[\Phi]}$$

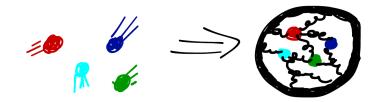
$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}\Phi \ \mathcal{O}(\Phi) \ e^{-S[\Phi]}$$

 $\longrightarrow \ \frac{1}{N} \sum_{i=1}^{N} \mathcal{O}(\Phi_i) \text{ with statistical uncertainty } \propto \frac{1}{\sqrt{N}}$


David Schaich (Bern)

Application: Dark matter

Abundant **gravitational** evidence spanning many scales \implies most matter in the universe is **dark** — details **unknown**


Non-gravitational dark matter interactions

 \rightarrow Non-gravitational interactions with known particles, not yet detected by ongoing experiments

David Schaich (Bern)

Composite dark matter

Early universe

Deconfined charged fermions \longrightarrow non-gravitational interactions

Present day

Confined neutral 'dark baryons' \longrightarrow no experimental detections

David Schaich (Bern)

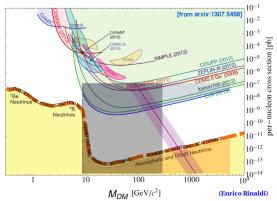
Composite dark matter

Direct detection signals

Depend on form factors of composite dark matter

(magnetic moment, charge radius, polarizability)

Need lattice calculations for quantitative predictions

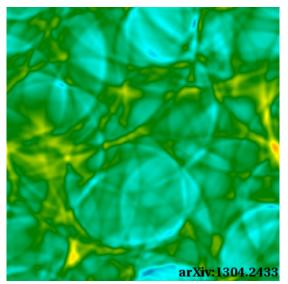

Recent result: Lower bound for composite dark matter

Stealth Dark Matter \longrightarrow electric polarizability is leading interaction

Lattice calculation \longrightarrow lower bound on the direct detection rate

Results specific to Xenon detectors

Uncertainties dominated by Xenon matrix element

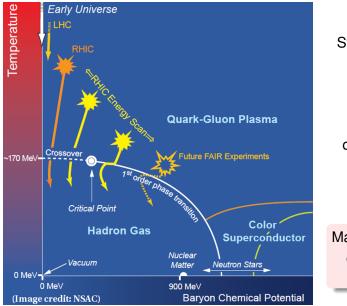


Shaded region is complementary constraint from particle colliders

David Schaich (Bern)

Future plan: Gravitational wave signals

Gravitational wave observatories opening new window on cosmology



First-order dark transition \longrightarrow colliding bubbles \longrightarrow gravitational waves

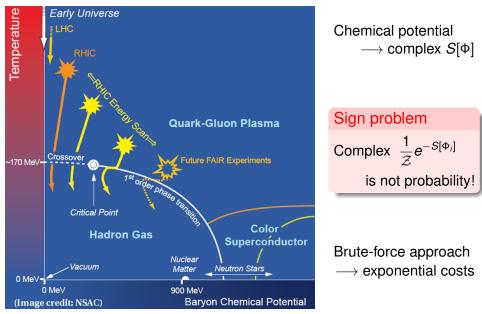
Lattice calculations predict properties of transition & resulting signals

David Schaich (Bern)

Application: Dense nuclear matter

Strong nuclear force

Dynamics of quarks and gluons (QCD)

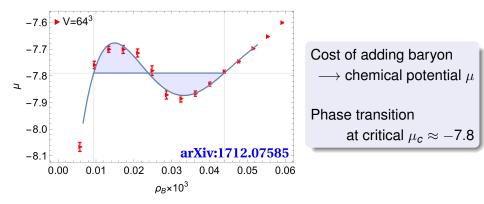

Many features of phase diagram not well known

David Schaich (Bern)

Physics Out Of The Box

Liverpool, 5 July 2018 11 / 22

Application: Dense nuclear matter

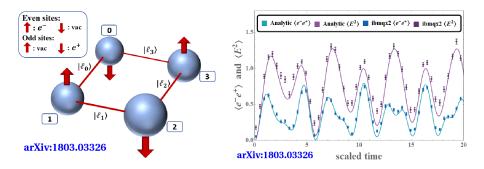


David Schaich (Bern)

Recent result: Canonical cluster solution arXiv:1712.07585

Canonical formulation of simplified (Z_3 spin) model solves sign problem

Clusters correspond to 'baryons' \rightarrow exponential signal enhancement



Work in progress to use for less-simplified systems

David Schaich (Bern)

Future plan: Quantum computing

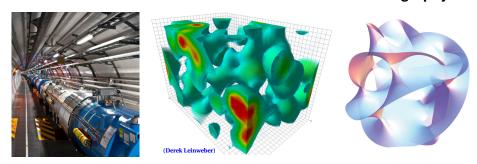
Nature can 'compute' how dense nuclear matter behaves \implies we should use the same (quantum) methods

Algorithms and apparatus are being designed and tested \longrightarrow potential revolution in near future

David Schaich (Bern)

Physics Out Of The Box

Liverpool, 5 July 2018 13 / 22


Application: Lattice supersymmetry

Lattice field theory promises first-principles predictions for strongly coupled supersymmetric QFTs

Many directions to be explored

QFT

BSM

David Schaich (Bern)

Physics Out Of The Box

Holography

A brief history of lattice supersymmetry

Supersymmetries are "square roots" of infinitesimal translations \longrightarrow do not exist in discrete space-time

Solution: Reformulate theory to preserve subset of supersymmetries \implies recover others in continuum limit

Testing holographic duality

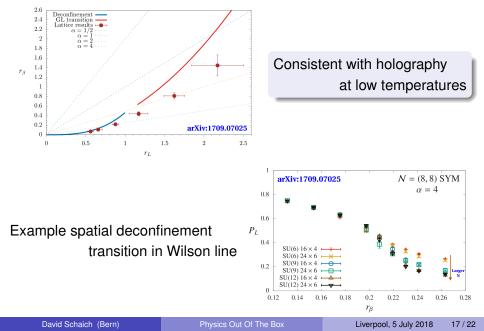
arXiv:1709.07025

Holographic duality conjecture

Thermodynamics of supersymmetric QFT \longleftrightarrow stringy black holes

 r_{β} $r_L^2 = c_{qrav}r$ arXiv:1709.07025 Details: $\mathcal{N} = (8, 8)$ SYM gravity D0:phast (Supersymmetric Yang–Mills) involves gluon + superpartners $P_L \neq 0$ Gauge group SU(N), 6 < N < 16 'colours' $P_L = 0$ Lives on 2*d* torus, size $r_{\beta} \times r_{I}$ $r_L^3 = c_{BQM} r_\beta$ \rightarrow temperature $t = 1/r_{\beta}$ **BQM** limit r_L

Testing holographic duality

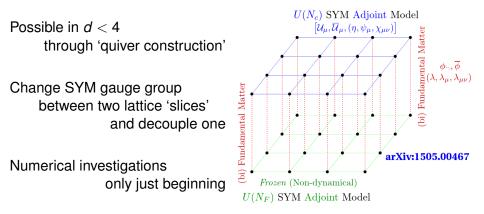

arXiv:1709.07025

Holographic duality conjecture

Thermodynamics of supersymmetric QFT \longleftrightarrow stringy black holes

 r_{β} $r_L^2 = c_{arav}$ For decreasing r_{l} arXiv:1709.07025 at low $t = 1/r_{\beta}$ and large N homogeneous black string (D1) \rightarrow localized black hole (D0) $P_L \neq 0$ $P_L = 0$ $= c_{BQM} r_{\beta}$ "spatial deconfinement" **BQM** limit signalled by Wilson line r_L

Recent result: 2d SYM lattice phase diagram



Future plan: Supersymmetric QCD

Supersymmetric Yang-Mills involves only analog of gluons

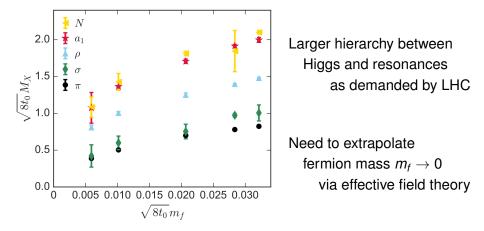
Adding analogs of quarks

 \longrightarrow other dualities, dynamical supersymmetry breaking and more

David Schaich (Bern)

Application: Composite Higgs boson

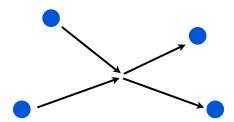
Large Hadron Collider priority Determine fundamental nature of the Higgs boson


Composite Higgs boson could arise from **new strong dynamics**

Protects against extreme sensitivity to quantum effects, being investigated via lattice field theory

Recent result: Light composite Higgs arXiv:180?.????

Lattice studies of QFTs with many light 'quarks' find composite Higgs boson much lighter than in QCD



Future plan: Interactions of light Higgs

There are many candidate effective field theories including pions and a light Higgs

Lattice computations of more observables will test which are consistent with the non-perturbative dynamics

Now studying interactions of light Higgs and pions starting with 2 \rightarrow 2 elastic scattering

Outlook: An exciting time for lattice field theory

Lattice field theory is a broadly applicable tool to study strongly coupled quantum field theories

- Predicting experimental signals of composite dark matter
- Solving the sign problem of simplified dense nuclear matter
- Testing holographic dualities of supersymmetric QFTs
- Exploring features of composite Higgs boson

Thank you!

schaich@itp.unibe.ch

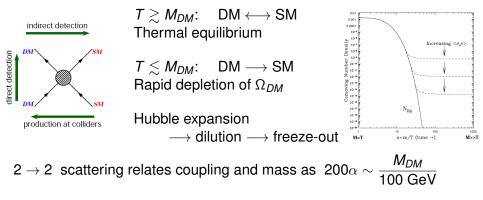
www.davidschaich.net

Outlook: An exciting time for lattice field theory

Lattice field theory is a broadly applicable tool to study strongly coupled quantum field theories

- Predicting experimental signals of composite dark matter
- Solving the sign problem of simplified dense nuclear matter
- Testing holographic dualities of supersymmetric QFTs
- Exploring features of composite Higgs boson

Thank you!


schaich@itp.unibe.ch

www.davidschaich.net

David Schaich (Bern)

Backup: Thermal freeze-out for relic density

Requires coupling between ordinary matter and dark matter

Strong $\alpha \sim$ 16 \longrightarrow 'natural' mass scale $M_{DM} \sim$ 300 TeV

Smaller $M_{DM} \gtrsim 1$ TeV possible from 2 $\rightarrow n$ scattering or asymmetry

David Schaich (Bern)

Backup: Two roads to natural asymmetric dark matter

Idea: Dark matter relic density related to baryon asymmetry

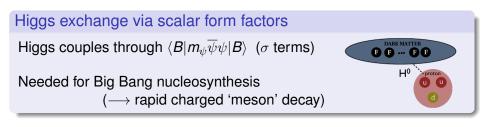
 $\Omega_D pprox 5\Omega_B \ \Longrightarrow M_D n_D pprox 5M_B n_B$

 $n_D \sim n_B \implies M_D \sim 5M_B \approx 5 \text{ GeV}$

High-dim. interactions relate baryon# and DM# violation

 $M_D \gg M_B \implies n_B \gg n_D \sim \exp[-M_D/T_s] \qquad T_s \sim 200 \text{ GeV}$ EW sphaleron processes above T_s distribute asymmetries

Both require coupling between ordinary matter and dark matter


David Schaich (Bern)

Backup: Composite dark matter interactions

Photon exchange via electromagnetic form factors

Interactions suppressed by powers of confinement scale $\Lambda \sim M_{DM}$

- **Dimension 5:** Magnetic moment $\longrightarrow (\overline{\psi}\sigma^{\mu\nu}\psi) F_{\mu\nu}/\Lambda$
- **Dimension 6:** Charge radius $\longrightarrow (\overline{\psi}\gamma^{\nu}\psi) \partial^{\mu}F_{\mu\nu}/\Lambda^2$
- **Dimension 7:** Polarizability $\longrightarrow (\overline{\psi}\psi) F^{\mu\nu} F_{\mu\nu} / \Lambda^3$

Non-perturbative form factors \implies lattice calculations

David Schaich (Bern)

Lattice Strong Dynamics Collaboration

Argonne Xiao-Yong Jin, James Osborn

Bern DS

Backup:

Boston Rich Brower, Claudio Rebbi, Evan Weinberg

Colorado Anna Hasenfratz, Ethan Neil, Oliver Witzel

UC Davis Joseph Kiskis

Livermore Pavlos Vranas

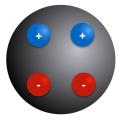
Oregon Graham Kribs

RBRC Enrico Rinaldi

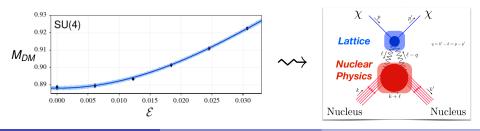
Yale Thomas Appelquist, George Fleming, Andrew Gasbarro

Exploring the range of possible phenomena

in strongly coupled field theories

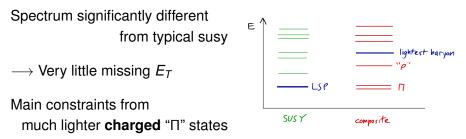

Backup: Stealth dark matter EM form factors

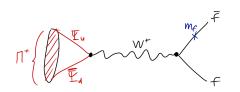
Lightest SU(4) dark baryon


Scalar \longrightarrow no magnetic moment

+/- charge symmetry \longrightarrow no charge radius

Small $\alpha \longrightarrow$ Higgs exchange suppressed




Polarizability \longrightarrow lower bound on direct-detection cross section Compute on lattice as dependence of M_{DM} on external field \mathcal{E}

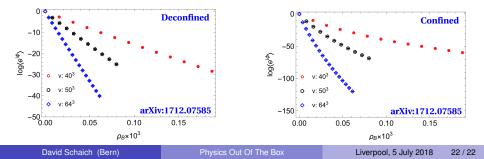
David Schaich (Bern)

Backup: Stealth dark matter at colliders

Rapid Π decays, $\Gamma \propto m_f^2$

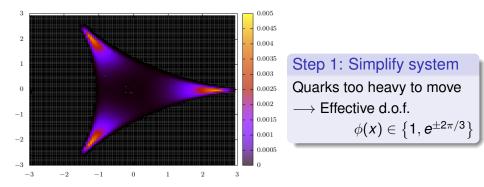
Best current constraints recast LEP stau searches

LHC can search for $t\overline{b} + \overline{t}b$ from $\Pi^+\Pi^-$ Drell–Yan

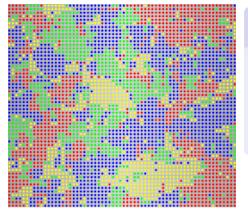

Backup: Phase reweighting

Idea: Move complex phase from $e^{-S} = |e^{-S}|e^{i\alpha}$ into observable

$$\langle \mathcal{O} \rangle = \frac{\int \mathcal{D}\Phi \ \mathcal{O}(\Phi) \ e^{-S[\Phi]}}{\int \mathcal{D}\Phi \ e^{-S[\Phi]}} = \frac{\int \mathcal{D}\Phi \ \mathcal{O}e^{i\alpha} \ |e^{-S|}}{\int \mathcal{D}\Phi \ e^{i\alpha} \ |e^{-S|}} = \frac{\langle \mathcal{O}e^{i\alpha} \rangle_{||}}{\langle e^{i\alpha} \rangle_{||}}$$


Issue:
$$\left\langle e^{i\alpha} \right\rangle_{||} = \mathcal{Z}/\mathcal{Z}_{||} = \exp\left[-V(f - f_{||})/T\right]$$
 and $f \ge f_{||}$

Sign problem $\leftrightarrow \rightarrow$ exponential signal-to-noise problem


Backup: Canonical solution of the sign problem

Consider system with fixed number of (3-quark) baryons [arXiv:1712.07585]

Backup: Canonical solution of the sign problem

Consider system with fixed number of (3-quark) baryons [arXiv:1712.07585]

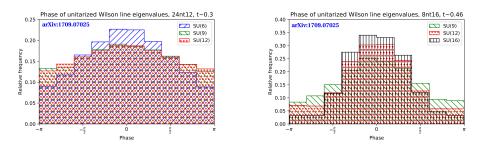
(Image credit: SonEnvir)

 Step 2: Divide space-time into clusters with constant φ
 Complex contribution only if

 or 2 extra quarks in cluster

Sum to zero in path integral \longrightarrow sign problem solved

Benefit from physical intuition: no free quarks in nature


David Schaich (Bern)

Physics Out Of The Box

Liverpool, 5 July 2018 22 / 22

Backup: $\mathcal{N} = (8, 8)$ SYM Wilson line eigenvalues

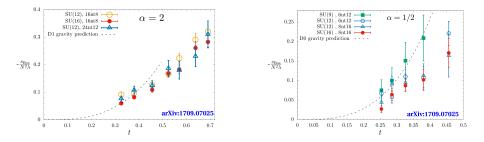
Check 'spatial deconfinement' through histograms of Wilson line eigenvalue phases

Left: $\alpha = 2$ distributions more extended as *N* increases

 \rightarrow dual gravity describes homogeneous black string (D1 phase)

Right: $\alpha = 1/2$ distributions more compact as *N* increases \longrightarrow dual gravity describes localized black hole (D0 phase)

David Schaich (Bern)


Physics Out Of The Box

22/22

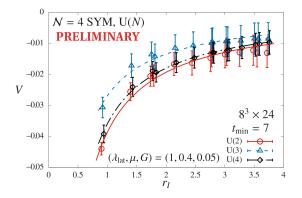
Backup: Dual black hole thermodynamics

Holography relates black holes' energy to action of SYM field theory $\propto t^3$ for large- r_L D1 phase $\propto t^{3.2}$ for small- r_L D0 phase

Lattice results consistent with holography for sufficiently low $t \lesssim 0.4$

Need larger N > 16 to avoid instabilities at lower temperatures

David Schaich (Bern)

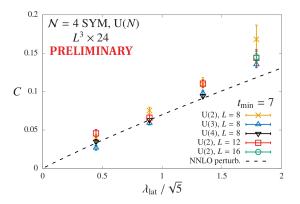

Physics Out Of The Box

Liverpool, 5 July 2018 22 / 22

Backup: Static potential is Coulombic at all λ

Fits to confining $V(r) = A - C/r + \sigma r \longrightarrow$ vanishing string tension σ

 \implies Fit to just V(r) = A - C/r to extract Coulomb coefficient $C(\lambda)$


Recent progress: Incorporating tree-level improvement into analysis

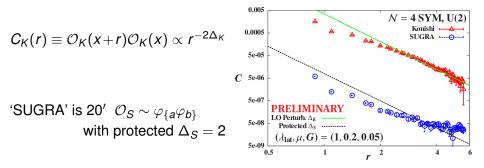
David Schaich (Bern)

Backup: Coupling dependence of Coulomb coefficient

Continuum perturbation theory predicts $C(\lambda) = \lambda/(4\pi) + O(\lambda^2)$

Holography predicts $C(\lambda) \propto \sqrt{\lambda}$ for $N \to \infty$ and $\lambda \to \infty$ with $\lambda \ll N$

Surprisingly good agreement with perturbation theory for $\lambda_{\text{lat}} \leq 4$


David Schaich (Bern)

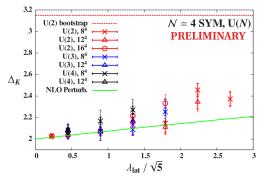
Physics Out Of The Box

Liverpool, 5 July 2018 22 / 22

Backup: Konishi operator on the lattice

Lattice scalars $\varphi(n)$ from polar decomposition of complexified links $\mathcal{U}_a(n) \longrightarrow e^{\varphi_a(n)} \mathcal{U}_a(n) \qquad \qquad \mathcal{O}_K^{\text{lat}}(n) = \sum_a \text{Tr} \left[\varphi_a(n)\varphi_a(n)\right] - \text{vev}$

To handle systemics, comparing direct power-law decays vs. finite-size scaling vs. Monte Carlo RG


David Schaich (Bern)

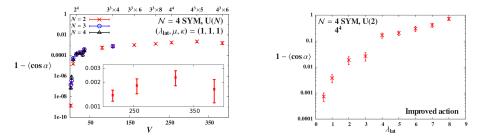
Backup: Preliminary Δ_K results from Monte Carlo RG

MCRG stability matrix includes both $\mathcal{O}_{K}^{\text{lat}}$ and $\mathcal{O}_{S}^{\text{lat}}$

Impose protected $\Delta_S = 2$

Systematic uncertainties from different amounts of smearing

Complication: Twisted SO(4)_{*tw*} involves only SO(4)_{*R*} \subset SO(6)_{*R*}


 \implies Lattice Konishi operator mixes with SO(4)_R-singlet part of the SO(6)_R-nonsinglet SUGRA operator

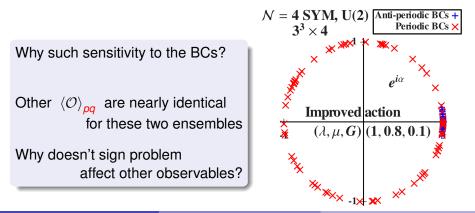
Current work: Variational analyses to disentangle operators

David Schaich (Bern)

Backup: $\mathcal{N} = 4$ SYM phase vs. volume and coupling Left: $1 - \langle \cos(\alpha) \rangle_{pq} \ll 1$ independent of volume and N at $\lambda_{lat} = 1$

Right: New 4⁴ results at $4 \le \lambda_{lat} \le 8$ show much larger fluctuations

Next step: Analyze more volumes, N, λ_{lat}

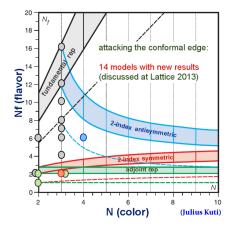

Extremely expensive computation despite new parallel algorithm: $O(n^3)$ scaling $\longrightarrow \sim 50$ hours for single U(2) 4⁴ measurement

David Schaich (Bern)

Backup: $\mathcal{N} = 4$ SYM sign problem puzzles

Periodic temporal boundary conditions for the fermions \longrightarrow obvious sign problem, $\langle e^{i\alpha} \rangle_{na} \approx 0$

Anti-periodic BCs $\longrightarrow e^{i\alpha} \approx 1$, phase reweighting negligible



Backup: Strategy for composite Higgs studies

Systematically depart from familiar ground of lattice QCD

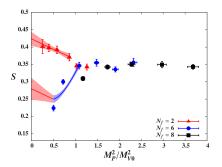
 $(N = 3 \text{ with } N_F = 2 \text{ light flavors in fundamental rep})$

Explore the range of possible phenomena in strongly coupled theories

Add more light flavors

 $\longrightarrow N_F = 8$ fundamental

Enlarge fermion rep $\longrightarrow N_F = 2$ two-index symmetric


Explore N = 2 and 4 \longrightarrow (pseudo)real reps for cosets SU(n)/Sp(n) and SU(n)/SO(n)

Backup: S parameter on the lattice

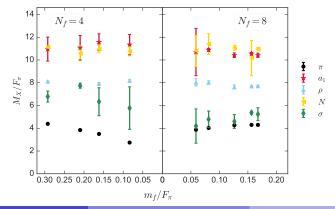
$$\mathcal{L}_{\chi} \supset \frac{\alpha_1}{2} g_1 g_2 \mathcal{B}_{\mu\nu} \operatorname{Tr} \left[\mathcal{U}_{\tau_3} \mathcal{U}^{\dagger} \mathcal{W}^{\mu\nu} \right] \longrightarrow \gamma, Z \longrightarrow \mathbb{N}$$

Lattice vacuum polarization calculation provides $S = -16\pi^2 \alpha_1$

Non-zero masses and chiral extrapolation needed to avoid sensitivity to finite lattice volume

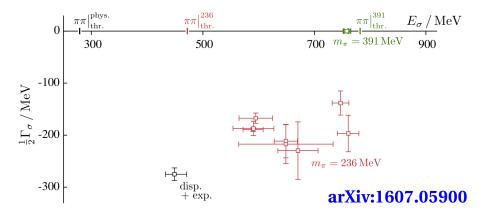
$$S = 0.42(2)$$
 for $N_F = 2$
matches scaled-up QCD

Larger $N_F \longrightarrow$ significant reduction


Extrapolation to correct zero-mass limit becomes more challenging

David Schaich (Bern)

Backup: More on composite Higgs spectrum $N_F = 8$ Higgs much lighter than in QCD-like systems Clear qualitative difference vs. QCD-like $N_F = 4$

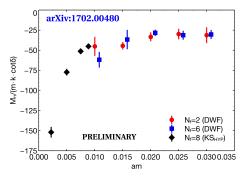

Hierarchy between Higgs and resonances

increasing as fermion mass $m_F \rightarrow 0$

David Schaich (Bern)

Backup: Composite Higgs in QCD spectrum

In lattice QCD, scalar mass $M_S \gtrsim 2M_P$


 \longrightarrow significant mixing with two-pion scattering states

Backup: Initial $2 \rightarrow 2$ elastic scattering results

Simplest case: Analog of QCD $I = 2 \pi \pi$ scattering

(no fermion-line-disconnected diagrams)

Simplest observable: Scattering length $a_{PP} \approx 1/(k \cot \delta)$

Chiral perturbation theory predicts $M_P a_{PP}/m \sim \text{constant}$, clearly not good description of $N_F = 8$ results

David Schaich (Bern)