Lattice studies of maximally supersymmetric Yang–Mills theories

David Schaich (Bern)

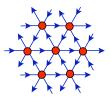
CERN Lattice Seminar, 7 June 2018

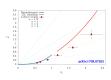
arXiv:1505.03135 arXiv:1611.06561 arXiv:1709.07025 & more to come with Simon Catterall, Raghav Jha and Toby Wiseman

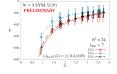
Overview and plan

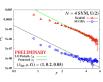
Central idea

Preserve (some) susy in discrete space-time to make lattice investigations practical









Goals

- Reproduce reliable results in perturbative, holographic, etc. regimes
- 2) Use lattice to access new domains

Overview and plan

Preserve (some) susy in discrete space-time

Reproduce reliable analytic results

Use lattice to access new domains

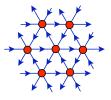
Lattice supersymmetry

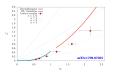
Lattice $\mathcal{N}=4$ supersymmetric Yang–Mills (SYM)

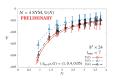
Selected results as time permits

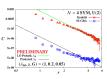
- Dimensionally reduced (2d) thermodynamics
- Static potential Coulomb coefficient
- Anomalous dimension of Konishi operator

Prospects and future directions









Motivation: Why lattice supersymmetry

Dualities, holography, confinement, conformality, BSM, ...

Lattice promises non-perturbative insights from first principles

Many potential lattice susy applications...

Motivation: Why lattice supersymmetry

Dualities, holography, confinement, conformality, BSM, ...

Lattice promises non-perturbative insights from first principles

Many potential lattice susy applications...

- Compute Wilson loops, spectrum, scaling dimensions, etc., going beyond perturbation theory, holography, bootstrap
- New non-perturbative tests of conjectured dualities
- Predict low-energy constants from dynamical susy breaking
- Validate or refine holographic models for QCD phase diagram, non-Fermi liquids, etc.

3/33

Motivation: Why lattice supersymmetry

Dualities, holography, confinement, conformality, BSM, ...

Lattice promises non-perturbative insights from first principles

Many potential lattice susy applications...

- Compute Wilson loops, spectrum, scaling dimensions, etc., going beyond perturbation theory, holography, bootstrap
- New non-perturbative tests of conjectured dualities
- Predict low-energy constants from dynamical susy breaking
- Validate or refine holographic models for QCD phase diagram, non-Fermi liquids, etc.

... relatively little exploration

Obstruction: Why not lattice supersymmetry

Supersymmetry extends 4d Poincaré symmetry by $4\mathcal{N}$ spinor generators \mathcal{Q}^I_{α} and $\overline{\mathcal{Q}}^I_{\dot{\alpha}}$ $(I=1,\cdots,\mathcal{N})$

Super-Poincaré algebra includes
$$\left\{ \mathbf{Q}_{lpha}^{\mathrm{I}},\overline{\mathbf{Q}}_{\dot{lpha}}^{\mathrm{J}}
ight\} = 2\delta^{\mathrm{IJ}}\sigma_{\alpha\dot{lpha}}^{\mu}\mathbf{P}_{\mu}$$

 \longrightarrow infinitesimal translations that don't exist in discrete space-time

Consequences for lattice calculations

Explicitly broken supersymmetry \Longrightarrow relevant susy-violating operators

Typically many such operators, especially with scalar fields

Fine-tuning to recover supersymmetric continuum limit generally not practical in numerical lattice calculations

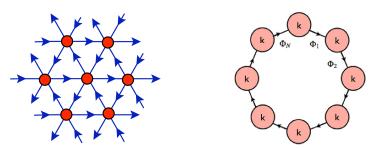
4/33

Solution: Exact supersymmetry on the lattice

If 2^d supersymmetries in d dimensions, can preserve susy sub-algebra at non-zero lattice spacing

⇒ Correct continuum limit with little or no fine tuning

Equivalent constructions arXiv:0903.4881 from 'topological' twisting and dimensional deconstruction



d=4 picks out maximally supersymmetric Yang-Mills ($\mathcal{N}=4$ SYM)

$\mathcal{N}=4$ SYM — the fruit fly of QFT

Widely used to develop continuum QFT tools & techniques, from scattering amplitudes to holography

Arguably simplest non-trivial 4d field theory

SU(N) gauge theory with four fermions $\,\Psi^{\rm I}\,$ and six scalars $\,\Phi^{\rm IJ},\,$ all massless and in adjoint rep.

Action consists of kinetic, Yukawa and four-scalar terms with coefficients related by symmetries

Maximal 16 supersymmetries Q^I_{α} and $\overline{Q}^I_{\dot{\alpha}}$ $(I=1,\cdots,4)$ transform under global $SU(4)\sim SO(6)$ R symmetry

Conformal: β function is zero for any 't Hooft coupling $\lambda = g^2 N$

6/33

Topological twisting for $\mathcal{N}=4$ SYM

Intuitive picture — expand 4×4 matrix of supersymmetries

$$\begin{pmatrix} Q_{\alpha}^{1} & Q_{\alpha}^{2} & Q_{\alpha}^{3} & Q_{\alpha}^{4} \\ \overline{Q}_{\dot{\alpha}}^{1} & \overline{Q}_{\dot{\alpha}}^{2} & \overline{Q}_{\dot{\alpha}}^{3} & \overline{Q}_{\dot{\alpha}}^{4} \end{pmatrix} = \mathcal{Q} + \mathcal{Q}_{\mu}\gamma_{\mu} + \mathcal{Q}_{\mu\nu}\gamma_{\mu}\gamma_{\nu} + \overline{\mathcal{Q}}_{\mu}\gamma_{\mu}\gamma_{5} + \overline{\mathcal{Q}}\gamma_{5} \\ \longrightarrow \mathcal{Q} + \mathcal{Q}_{a}\gamma_{a} + \mathcal{Q}_{ab}\gamma_{a}\gamma_{b} \\ \text{with } a, b = 1, \cdots, 5$$

Kähler–Dirac muliplet of 'twisted' supersymmetries \mathcal{Q} transform with integer spin under 'twisted rotation group'

$$\mathrm{SO}(4)_{\mathit{tw}} \equiv \mathrm{diag} \bigg[\mathrm{SO}(4)_{\mathrm{euc}} \otimes \mathrm{SO}(4)_{\mathit{R}} \bigg] \hspace{1cm} \mathrm{SO}(4)_{\mathit{R}} \subset \mathrm{SO}(6)_{\mathit{R}}$$

Change of variables \longrightarrow closed subalgebra $\{\mathcal{Q},\mathcal{Q}\}=2\mathcal{Q}^2=0$ that can be **exactly preserved on the lattice**

7/33

Susy subalgebra from twisted $\mathcal{N}=4$ SYM

Fields & Qs transform with integer spin under $SO(4)_{tw}$ — no spinors

$$egin{aligned} \mathcal{Q}_{lpha} & ext{and } \overline{\mathcal{Q}}_{\dot{lpha}} & \longrightarrow \ \mathcal{Q}, \ \mathcal{Q}_{a} \ ext{and } \mathcal{Q}_{ab} \ & \Psi \ ext{and } \overline{\Psi} & \longrightarrow \ \eta, \ \psi_{a} \ ext{and } \chi_{ab} \ & A_{\mu} \ ext{and } \Phi^{\mathrm{I}} & \longrightarrow \ ext{complexified gauge field } \mathcal{A}_{a} \ ext{and } \overline{\mathcal{A}}_{a} \ & \longrightarrow \ ext{U(N)} = ext{SU(N)} \otimes ext{U(1)} \ ext{gauge theory} \end{aligned}$$

Schematically, under
$$SO(d)_{tw} = diag[SO(d)_{euc} \otimes SO(d)_{R}]$$

 $A_{\mu} \sim \operatorname{vector} \otimes \operatorname{scalar} \longrightarrow \operatorname{vector}$

 $\Phi^{\rm I} \sim {\sf scalar} \otimes {\sf vector} \longrightarrow {\sf vector}$

Easiest to see by dimensionally reducing from 5d

$$A_a = A_a + i\Phi_a \longrightarrow (A_\mu, \phi) + i(\Phi_\mu, \overline{\phi})$$

Susy subalgebra from twisted $\mathcal{N}=4$ SYM

Fields & Qs transform with integer spin under SO(4)_{tw} — no spinors

$$Q_{lpha}$$
 and $\overline{Q}_{\dot{lpha}} \longrightarrow \mathcal{Q}, \ \mathcal{Q}_{a}$ and \mathcal{Q}_{ab}
 Ψ and $\overline{\Psi} \longrightarrow \eta, \ \psi_{a}$ and χ_{ab}
 A_{μ} and $\Phi^{\mathrm{I}} \longrightarrow \mathrm{complexified}\ \mathrm{gauge}\ \mathrm{field}\ \mathcal{A}_{a}$ and $\overline{\mathcal{A}}_{a}$
 $\longrightarrow \mathrm{U}(N) = \mathrm{SU}(N) \otimes \mathrm{U}(1)\ \mathrm{gauge}\ \mathrm{theory}$

Twisted-scalar supersymmetry Q correctly interchanges bosonic \longleftrightarrow fermionic d.o.f. with $Q^2 = 0$

$$egin{aligned} \mathcal{Q} \ \mathcal{A}_a &= \psi_a & \mathcal{Q} \ \psi_a &= 0 \\ \mathcal{Q} \ \chi_{ab} &= -\overline{\mathcal{F}}_{ab} & \mathcal{Q} \ \overline{\mathcal{A}}_a &= 0 \\ \mathcal{Q} \ \eta &= d & \mathcal{Q} \ d &= 0 \end{aligned}$$

bosonic auxiliary field with e.o.m. $d = \overline{\mathcal{D}}_a \mathcal{A}_a$

8/33

Lattice $\mathcal{N} = 4$ SYM

Lattice theory looks nearly the same despite breaking Q_a and Q_{ab}

Covariant derivatives \longrightarrow finite difference operators

Complexified gauge fields $A_a \longrightarrow \text{gauge links } \mathcal{U}_a \in \mathfrak{gl}(N,\mathbb{C})$

$$\mathcal{Q} \mathcal{A}_{a} \longrightarrow \mathcal{Q} \mathcal{U}_{a} = \psi_{a}$$
 $\qquad \qquad \mathcal{Q} \psi_{a} = 0$ $\qquad \qquad \mathcal{Q} \chi_{ab} = -\overline{\mathcal{F}}_{ab}$ $\qquad \qquad \mathcal{Q} \overline{\mathcal{A}}_{a} \longrightarrow \mathcal{Q} \overline{\mathcal{U}}_{a} = 0$ $\qquad \qquad \mathcal{Q} d = 0$

(geometrically η on sites, ψ_a on links, etc.)

Susy lattice action (QS = 0) from $Q^2 \cdot = 0$ and Bianchi identity

$$S = \frac{\textit{N}}{\textit{4}\lambda_{\text{lat}}} \mathsf{Tr} \left[\mathcal{Q} \left(\chi_{\textit{ab}} \mathcal{F}_{\textit{ab}} + \eta \overline{\mathcal{D}}_{\textit{a}} \mathcal{U}_{\textit{a}} - \frac{1}{2} \eta \textit{d} \right) - \frac{1}{\textit{4}} \epsilon_{\textit{abcde}} \; \chi_{\textit{ab}} \overline{\mathcal{D}}_{\textit{c}} \; \chi_{\textit{de}} \right]$$

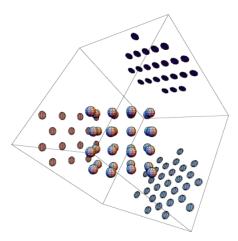
Five links in four dimensions $\longrightarrow A_4^*$ lattice

Again easiest to dimensionally reduce from 5d, treating all five gauge links $\,\mathcal{U}_a\,$ symmetrically

Start with hypercubic lattice in 5d momentum space

Symmetric constraint $\sum_a \partial_a = 0$ projects to 4d momentum space

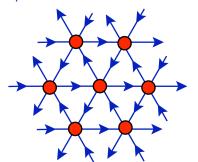
Result is A_4 lattice \longrightarrow dual A_4^* lattice in real space



Twisted SO(4) symmetry on the A_4^* lattice

Can view A_4^* lattice as 4d analog of 2d triangular lattice

Basis vectors linearly dependent and non-orthogonal $\longrightarrow \lambda = \lambda_{\rm lat}/\sqrt{5}$



11/33

Preserves S₅ point group symmetry

 S_5 irreps precisely match onto irreps of twisted SO(4)_{tw}

$$\mathbf{5} = \mathbf{4} \oplus \mathbf{1} : \quad \psi_{\mathbf{a}} \longrightarrow \psi_{\mu}, \quad \overline{\eta}$$

10 = **6**
$$\oplus$$
 4 : $\chi_{ab} \longrightarrow \chi_{\mu\nu}, \ \overline{\psi}_{\mu}$

 $S_5 \longrightarrow SO(4)_{tw}$ in continuum limit restores Q_a and Q_{ab}

Summary of twisted $\mathcal{N}=4$ SYM on the A_4^* lattice

Moduli space preserved to all orders of lattice perturbation theory — no scalar potential induced by radiative corrections

 β function vanishes at one loop in lattice perturbation theory

Real-space RG blocking transformations preserving $\mathcal Q$ and $\mathcal S_5$ \longrightarrow no new terms in long-distance effective action

Only one log. tuning to recover continuum Q_a and Q_{ab}

Not quite suitable for numerical calculations

Exact zero modes and flat directions must be regulated, especially important in U(1) sector

12 / 33

Regulating SU(N) flat directions

$$S = \frac{\textit{N}}{\textit{4}\lambda_{\textrm{lat}}} \left[\mathcal{Q} \left(\chi_{\textit{ab}} \mathcal{F}_{\textit{ab}} + \eta \overline{\mathcal{D}}_{\textit{a}} \mathcal{U}_{\textit{a}} - \frac{1}{2} \eta \textit{d} \right) - \frac{1}{\textit{4}} \epsilon_{\textit{abcde}} \; \chi_{\textit{ab}} \overline{\mathcal{D}}_{\textit{c}} \; \chi_{\textit{de}} + \mu^{2} \textit{V} \right]$$

Scalar potential
$$V = \sum_{a} \left(\frac{1}{N} \text{Tr} \left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a} \right] - 1 \right)^{2}$$
 lifts SU(N) flat directions

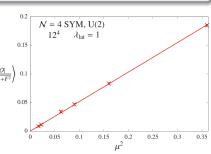
and ensures $\;\mathcal{U}_{\pmb{a}} = \mathbb{I}_{\pmb{N}} + \mathcal{A}_{\pmb{a}}\;$ in continuum limit

Softly breaks Q — all susy violations $\propto \mu^2 \to 0$ in continuum limit

Ward identity violations, $\langle \mathcal{QO} \rangle \neq 0$, show $\mathcal Q$ breaking and restoration

Here considering

$$\mathcal{Q}\left[\eta\mathcal{U}_{a}\overline{\mathcal{U}}_{a}\right]=d\mathcal{U}_{a}\overline{\mathcal{U}}_{a}-\eta\psi_{a}\overline{\mathcal{U}}_{a}$$



Full $\mathcal{N} = 4$ SYM lattice action

arXiv:1505.03135

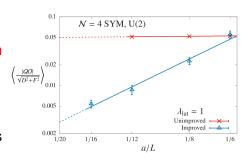
$$S = \frac{N}{4\lambda_{\text{lat}}} \left[\mathcal{Q} \left(\chi_{ab} \mathcal{F}_{ab} + \bigvee_{a < b} -\frac{1}{2} \eta d \right) - \frac{1}{4} \epsilon_{abcde} \chi_{ab} \overline{\mathcal{D}}_{c} \chi_{de} + \mu^{2} V \right]$$
$$\eta \left\{ \overline{\mathcal{D}}_{a} \mathcal{U}_{a} + G \sum_{a < b} \left[\det \mathcal{P}_{ab} - 1 \right] \mathbb{I}_{N} \right\}$$

Modify e.o.m. for *d* to constrain plaquette determinant

 \longrightarrow lifts U(1) zero mode & flat directions without susy breaking

Much better than adding another soft Q-breaking term

$$\langle \mathcal{QO} \rangle \propto (a/L)^2,$$
 effective ' $O(a)$ improvement', since $\mathcal Q$ forbids all dim-5 operators



Advertisement: Public code for lattice $\mathcal{N}=4$ SYM

so that the full improved action becomes

$$\begin{split} S_{\text{imp}} &= S_{\text{exact}}' + S_{\text{closed}} + S_{\text{soft}}' \\ S_{\text{exact}}' &= \frac{N}{2\lambda_{\text{lat}}} \sum_{n} \text{Tr} \left[-\overline{\mathcal{F}}_{ab}(n) \mathcal{F}_{ab}(n) - \chi_{ab}(n) \mathcal{D}_{[a}^{(+)} \psi_{b]}(n) - \eta(n) \overline{\mathcal{D}}_{a}^{(-)} \psi_{a}(n) \right. \\ &\qquad \qquad + \frac{1}{2} \left(\overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}(n) + G \sum_{a \neq b} \left(\det \mathcal{P}_{ab}(n) - 1 \right) \mathbb{I}_{N} \right)^{2} \right] - S_{\text{det}} \\ S_{\text{det}} &= \frac{N}{2\lambda_{\text{lat}}} G \sum_{n} \text{Tr} \left[\eta(n) \right] \sum_{a \neq b} \left[\det \mathcal{P}_{ab}(n) \right] \text{Tr} \left[\mathcal{U}_{b}^{-1}(n) \psi_{b}(n) + \mathcal{U}_{a}^{-1}(n + \widehat{\mu}_{b}) \psi_{a}(n + \widehat{\mu}_{b}) \right] \\ S_{\text{closed}} &= -\frac{N}{2\lambda_{\text{lat}}} \sum_{n} \sum_{n} \text{Tr} \left[\epsilon_{abcde} \chi_{de}(n + \widehat{\mu}_{a} + \widehat{\mu}_{b} + \widehat{\mu}_{c}) \overline{\mathcal{D}}_{c}^{(-)} \chi_{ab}(n) \right], \\ S_{\text{soft}}' &= \frac{N}{2\lambda_{\text{lat}}} \mathcal{V} \sum_{n} \sum_{n} \sum_{a} \left(\frac{1}{N} \text{Tr} \left[\mathcal{U}_{a}(n) \overline{\mathcal{U}}_{a}(n) \right] - 1 \right)^{2} \end{split}$$

The full $\mathcal{N}=4$ SYM lattice action is somewhat complicated (\gtrsim 100 inter-node data transfers in the fermion operator)

To reduce barriers to entry our parallel code is publicly developed at github.com/daschaich/susy

Evolved from MILC lattice QCD code, presented in arXiv:1410.6971

David Schaich (Bern) Lattice MSYM CERN, 7 June 2018 15 / 33

Application I: Thermodynamics on a 2-torus

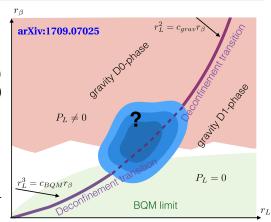
Improve arXiv:1008.4964 with new parallel code

Dimensionally reduce to 2d $\mathcal{N}=(8,8)$ SYM with four scalar $\mathcal{Q},$ study low temperatures $t=1/r_{\beta}\longleftrightarrow$ black holes in dual supergravity

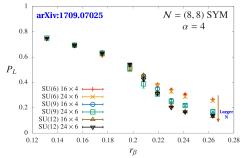
For decreasing r_L at large N

homogeneous black string (D1) — localized black hole (D0)

"spatial deconfinement" signalled by Wilson line P_L



$\mathcal{N}=(8,8)$ SYM lattice phase diagram results

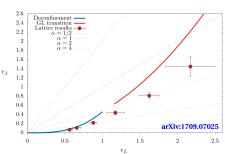


Fix aspect ratio $\alpha=r_L/r_\beta$, scan in $r_\beta=r_L/\alpha=\beta\sqrt{\lambda}$ Clear transition in Wilson line

and its susceptibility

Lower-temperature transitions at smaller $\alpha < 1 \longrightarrow \text{larger errors}$

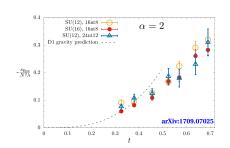
Results consistent with holography and high-temp. bosonic QM

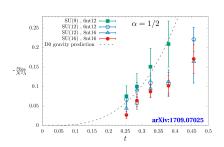


Dual black hole thermodynamics

Holography predicts bosonic action for corresponding dual black holes $\propto t^3$ for large- r_L D1 phase $\propto t^{3.2}$ for small- r_L D0 phase

Lattice results consistent with holography for sufficiently low $t \lesssim 0.4$





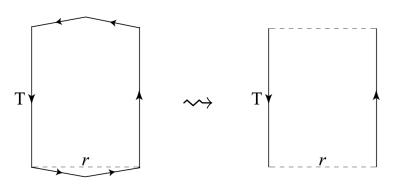
Need larger N > 16 to avoid instabilities at lower temperatures

David Schaich (Bern) Lattice MSYM CERN, 7 June 2018 18 / 33

Application II: Static potential V(r)

Static probes
$$\longrightarrow$$
 $r \times T$ Wilson loops $W(r,T) \propto e^{-V(r)T}$

Coulomb gauge trick reduces A_4^* lattice complications

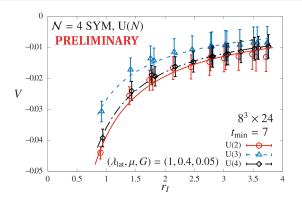


19/33

Static potential is Coulombic at all λ

Fits to confining $V(r) = A - C/r + \sigma r \longrightarrow \text{vanishing string tension } \sigma$

 \implies Fit to just V(r) = A - C/r to extract Coulomb coefficient $C(\lambda)$



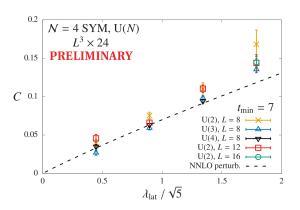
Recent progress: Incorporating tree-level improvement into analysis

David Schaich (Bern) Lattice MSYM CERN, 7 June 2018 20 / 33

Coupling dependence of Coulomb coefficient

Continuum perturbation theory predicts $C(\lambda) = \lambda/(4\pi) + \mathcal{O}(\lambda^2)$

Holography predicts $C(\lambda) \propto \sqrt{\lambda}$ for $N \to \infty$ and $\lambda \to \infty$ with $\lambda \ll N$



Surprisingly good agreement with perturbation theory for $\lambda_{\text{lat}} \leq 4$

David Schaich (Bern) Lattice MSYM CERN, 7 June 2018 21 / 33

Application III: Konishi operator scaling dimension

Conformality \longrightarrow spectrum of scaling dimensions $\Delta(\lambda)$ govern power-law decays of correlation functions

Konishi is simplest conformal primary operator

$$\mathcal{O}_K(x) = \sum_{\mathbf{r}} \operatorname{Tr} \left[\Phi^{\mathrm{I}}(x) \Phi^{\mathrm{I}}(x) \right] \qquad \mathcal{C}_K(r) \equiv \mathcal{O}_K(x+r) \mathcal{O}_K(x) \propto r^{-2\Delta_K}$$

Predictions for Konishi scaling dimension $\Delta_K(\lambda) = 2 + \gamma_K(\lambda)$

- From weak-coupling perturbation theory, related to strong coupling by $\frac{4\pi N}{\lambda}\longleftrightarrow \frac{\lambda}{4\pi N}$ S duality
- From holography for $N \to \infty$ and $\lambda \to \infty$ with $\lambda \ll N$
- Upper bounds from conformal bootstrap

Only lattice gauge theory can access nonperturbative λ at moderate N

Konishi operator on the lattice

Scalar fields $\varphi(n)$ from polar decomposition of complexified links

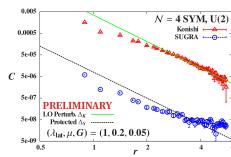
$$\mathcal{U}_a(n) \longrightarrow e^{\varphi_a(n)} \mathcal{U}_a(n)$$

$$\mathcal{O}_{K}^{\mathrm{lat}}(n) = \sum_{a} \mathrm{Tr} \left[\varphi_{a}(n) \varphi_{a}(n) \right] - \mathrm{vev}$$

Also looking at 'SUGRA' (20') $\mathcal{O}_{\mathcal{S}} \sim \varphi_a \varphi_b$ with protected $\Delta_{\mathcal{S}} = 2$

Challenging systematics from directly fitting power-law decay

Better lattice tools to find Δ: Finite-size scaling Monte Carlo RG



Need lattice RG blocking transformation to carry out MCRG...

Real-space RG for lattice $\mathcal{N}=4$ SYM

Must preserve Q and S_5 symmetries \longleftrightarrow geometric structure

Simple transformation constructed in arXiv:1408.7067

$$\mathcal{U}_{a}'(n') = \xi \, \mathcal{U}_{a}(n) \mathcal{U}_{a}(n + \widehat{\mu}_{a})$$
 $\eta'(n') = \eta(n)$ $\psi'_{a}(n') = \xi \left[\psi_{a}(n) \mathcal{U}_{a}(n + \widehat{\mu}_{a}) + \mathcal{U}_{a}(n) \psi_{a}(n + \widehat{\mu}_{a}) \right]$ etc.

Doubles lattice spacing $a \longrightarrow a' = 2a$, with ξ a tunable rescaling factor

Scalar fields from polar decomposition $\mathcal{U}(n) = e^{\varphi(n)}U(n)$ are shifted, $\varphi \longrightarrow \varphi + \log \xi$, since blocked U must remain unitary

 $\mathcal Q$ -preserving RG blocking needed to show only one log. tuning to recover continuum $\mathcal Q_a$ and $\mathcal Q_{ab}$

Scaling dimensions from MCRG stability matrix

System as (infinite) sum of operators $H = \sum_i c_i \mathcal{O}_i$ Couplings c_i flow under RG blocking R_b

n-times-blocked system
$$H^{(n)} = R_b H^{(n-1)} = \sum_i c_i^{(n)} \mathcal{O}_i^{(n)}$$

Fixed point defined by $H^* = R_b H^*$ with couplings c_i^*

Linear expansion around fixed point defines stability matrix T_{ij}^{\star}

$$\left|c_i^{(n)}-c_i^\star
ight|=\sum_k \left.rac{\partial c_i^{(n)}}{\partial c_k^{(n-1)}}
ight|_{H^\star} \left(c_k^{(n-1)}-c_k^\star
ight)\equiv \sum_j extstyle T_{ik}^\star \left(c_k^{(n-1)}-c_k^\star
ight)$$

Correlators of $\mathcal{O}_i,\,\mathcal{O}_k\longrightarrow$ elements of stability matrix [Swendsen, 1979]

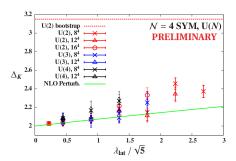
Eigenvalues of $T^{\star}_{ik} \longrightarrow$ scaling dimensions of corresponding operators

Preliminary Δ_K results from Monte Carlo RG

MCRG stability matrix includes both $\mathcal{O}_{K}^{\mathrm{lat}}$ and $\mathcal{O}_{S}^{\mathrm{lat}}$

Impose protected $\Delta_S = 2$

Systematic uncertainties from different amounts of smearing



Complication: Twisted $SO(4)_{tw}$ involves only $SO(4)_R \subset SO(6)_R$ $\Longrightarrow \text{Lattice Konishi operator mixes with } SO(4)_R\text{-singlet part}$ of the $SO(6)_R$ -nonsinglet SUGRA operator

Working on variational analyses to disentangle operators

Recapitulation and outlook

- Lattice promises non-perturbative insights from first principles
- Lattice $\mathcal{N}=4$ SYM is practical thanks to exact \mathcal{Q} susy
- Public code to reduce barriers to entry

Significant progress toward goals of lattice investigations

- \bullet 2d $\mathcal{N}=(8,8)$ SYM thermodynamics consistent with holography
- Static potential Coulomb coefficient $C(\lambda)$ at weak coupling
- Preliminary conformal scaling dimension of Konishi operator

Many more directions are being — or can be — pursued

- Understanding the (absence of a) sign problem
- Systems with less supersymmetry, in lower dimensions, including matter fields, exhibiting spontaneous susy breaking, ...

Thank you!

Collaborators

Simon Catterall, Raghav Jha, Toby Wiseman also Georg Bergner, Poul Damgaard, Joel Giedt, Anosh Joseph

Funding and computing resources

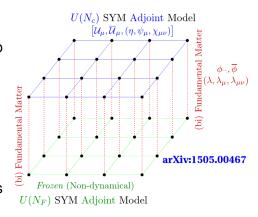
Supplement: Lattice superQCD in 2d & 3d

Add fundamental matter multiplets without breaking $\mathcal{Q}^2 = \mathbf{0}$

Proposed by Matsuura [arXiv:0805.4491] and Sugino [arXiv:0807.2683], first numerical study by Catterall & Veernala [arXiv:1505.00467]

2-slice lattice SYM
with U(N) × U(F) gauge group
Adj. fields on each slice
Bi-fundamental in between

Set U(F) coupling to zero $\longrightarrow U(N)$ SQCD in d-1 dims. with F fund. hypermultiplets

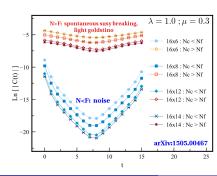


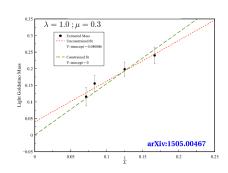
Dynamical susy breaking in 2d quiver superQCD

Auxiliary field e.o.m. → Fayet–Iliopoulos *D*-term potential

$$d = \overline{\mathcal{D}}_{a} \mathcal{U}_{a} + \sum_{i=1}^{F} \phi_{i} \overline{\phi}_{i} + r \mathbb{I}_{N} \longrightarrow S_{D} \propto \sum_{i=1}^{F} \left(\text{Tr} \left[\phi_{i} \overline{\phi}_{i} + r \mathbb{I}_{N} \right] \right)^{2}$$

Zero out N diagonal elements via F scalar vevs or else susy breaking, $\langle \mathcal{Q}\eta \rangle = \langle d \rangle \neq 0 \longleftrightarrow \langle 0 | H | 0 \rangle > 0$





Supplement: Potential sign problem

Observables:
$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int [d\mathcal{U}] [d\overline{\mathcal{U}}] \ \mathcal{O} \ e^{-S_B[\mathcal{U},\overline{\mathcal{U}}]} \ \text{pf} \ \mathcal{D}[\mathcal{U},\overline{\mathcal{U}}]$$

Pfaffian can be complex for lattice $\mathcal{N}=4$ SYM, $\ \mathsf{pf}\,\mathcal{D}=|\mathsf{pf}\,\mathcal{D}|e^{i\alpha}$

Complicates interpretation of $\{e^{-S_B} \text{ pf } \mathcal{D}\}$ as Boltzmann weight

RHMC uses phase quenching, $pf \mathcal{D} \longrightarrow |pf \mathcal{D}|$, needs reweighting

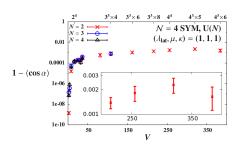
$$\langle \mathcal{O} \rangle = \frac{\left\langle \mathcal{O} e^{i\alpha} \right\rangle_{pq}}{\left\langle e^{i\alpha} \right\rangle_{pq}} \qquad \text{with } \left\langle \mathcal{O} e^{i\alpha} \right\rangle_{pq} = \frac{1}{\mathcal{Z}_{pq}} \int [d\mathcal{U}] [d\overline{\mathcal{U}}] \, \mathcal{O} e^{i\alpha} \, e^{-S_B} \, |\text{pf} \, \mathcal{D}|$$

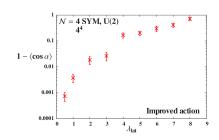
 \Longrightarrow Monitor $\langle e^{ilpha}\rangle_{pq}$ as function of volume, coupling, N

Pfaffian phase dependence on volume and coupling

Left: $1 - \langle \cos(\alpha) \rangle_{pq} \ll 1$ independent of volume and N at $\lambda_{lat} = 1$

Right: Larger $\lambda_{lat} \geq 4 \longrightarrow much$ larger phase fluctuations





To do: Analyze more volumes and *N* with improved action

Extremely expensive $\mathcal{O}(n^3)$ computation

 \sim 50 hours \times 16 cores for single U(2) 4⁴ measurement

Two puzzles posed by the sign problem

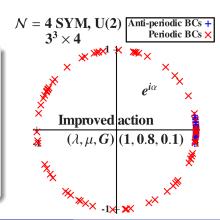
Periodic temporal boundary conditions for the fermions \longrightarrow obvious sign problem, $\left\langle e^{i\alpha}\right\rangle _{pq}pprox$

Anti-periodic BCs $\longrightarrow e^{i\alpha} \approx 1$, phase reweighting negligible

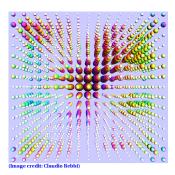
Why such sensitivity to the BCs?

Other pq observables are nearly identical for these two ensembles

Why doesn't the sign problem affect other observables?



Backup: Essence of numerical lattice calculations



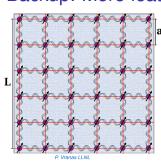
Evaluate observables from functional integral via importance sampling Monte Carlo

$$\begin{split} \langle \mathcal{O} \rangle &= \frac{1}{\mathcal{Z}} \int \mathcal{D} U \ \mathcal{O}(U) \ e^{-\mathcal{S}[U]} \\ &\longrightarrow \frac{1}{N} \sum_{i=1}^{N} \mathcal{O}(U_i) \ \text{with uncert.} \ \propto \sqrt{\frac{1}{N}} \end{split}$$

U are field configurations in discretized euclidean space-time, sampled with probability $\propto e^{-S}$

S[U] is lattice action, should be real and positive $\longrightarrow \frac{1}{Z}e^{-S}$ as probability distribution

Backup: More features of lattice calculations



Spacing "a" between lattice sites \longrightarrow UV cutoff scale 1/a

Removing cutoff: $a \to 0$ (with $L/a \to \infty$)

Lattice cutoff preserves hypercubic subgroup

→ restore Poincaré in continuum limit

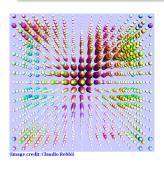
Lattice action S defined by bare lagrangian at the UV cutoff 1/a

After generating and saving ensembles $\{U_n\}$ distributed $\propto e^{-S}$ often quick and easy to measure many observables $\langle \mathcal{O} \rangle$

Changing the action (generally) requires generating new ensembles

Backup: Hybrid Monte Carlo (HMC) algorithm

Goal: Sample field configurations U with probability $\frac{1}{Z}e^{-S[U]}$



HMC is Markov process based on Metropolis-Rosenbluth-Teller

Fermions \longrightarrow extensive action computation

⇒ Global updates using fictitious molecular dynamics

- Introduce fictitious "MD time" τ and stochastic canonical momenta for fields
- ② Inexact MD evolution along trajectory in $au \longrightarrow$ new configuration
- Accept/reject test on MD discretization error

Backup: Failure of Leibnitz rule in discrete space-time

$$\left\{Q_{lpha},\overline{Q}_{\dot{lpha}}
ight\}=2\sigma^{\mu}_{lpha\dot{lpha}}P_{\mu}=2i\sigma^{\mu}_{lpha\dot{lpha}}\partial_{\mu}\ \ ext{is problematic} \ \longrightarrow ext{try}\left\{Q_{lpha},\overline{Q}_{\dot{lpha}}
ight\}=2i\sigma^{\mu}_{lpha\dot{lpha}}
abla_{\mu}\ \ ext{for a discrete translation}$$

$$\nabla_{\mu}\phi(\mathbf{x}) = \frac{1}{a}\left[\phi(\mathbf{x} + \mathbf{a}\widehat{\mu}) - \phi(\mathbf{x})\right] = \partial_{\mu}\phi(\mathbf{x}) + \frac{a}{2}\partial_{\mu}^{2}\phi(\mathbf{x}) + \mathcal{O}(\mathbf{a}^{2})$$

Essential difference between ∂_{μ} and ∇_{μ} on the lattice, a>0

$$\nabla_{\mu} \left[\phi(\mathbf{x}) \eta(\mathbf{x}) \right] = \mathbf{a}^{-1} \left[\phi(\mathbf{x} + \mathbf{a}\widehat{\mu}) \eta(\mathbf{x} + \mathbf{a}\widehat{\mu}) - \phi(\mathbf{x}) \eta(\mathbf{x}) \right]$$
$$= \left[\nabla_{\mu} \phi(\mathbf{x}) \right] \eta(\mathbf{x}) + \phi(\mathbf{x}) \nabla_{\mu} \eta(\mathbf{x}) + \mathbf{a} \left[\nabla_{\mu} \phi(\mathbf{x}) \right] \nabla_{\mu} \eta(\mathbf{x})$$

Only recover Leibnitz rule $\partial_{\mu}(fg)=(\partial_{\mu}f)g+f\partial_{\mu}g$ when $a\to 0$

⇒ "Discrete supersymmetry" breaks down on the lattice

(Dondi & Nicolai, "Lattice Supersymmetry", 1977)

Backup: Twisting ←→ Kähler–Dirac fermions

Kähler–Dirac representation related to spinor $Q^{\rm I}_{lpha},\ \overline{Q}^{\rm I}_{\dotlpha}$ by

$$\begin{pmatrix} Q_{\alpha}^{1} & Q_{\alpha}^{2} & Q_{\alpha}^{3} & Q_{\alpha}^{4} \\ \overline{Q}_{\dot{\alpha}}^{1} & \overline{Q}_{\dot{\alpha}}^{2} & \overline{Q}_{\dot{\alpha}}^{3} & \overline{Q}_{\dot{\alpha}}^{4} \end{pmatrix} = \mathcal{Q} + \mathcal{Q}_{\mu}\gamma_{\mu} + \mathcal{Q}_{\mu\nu}\gamma_{\mu}\gamma_{\nu} + \overline{\mathcal{Q}}_{\mu}\gamma_{\mu}\gamma_{5} + \overline{\mathcal{Q}}\gamma_{5} \\ \longrightarrow \mathcal{Q} + \mathcal{Q}_{a}\gamma_{a} + \mathcal{Q}_{ab}\gamma_{a}\gamma_{b} \\ \text{with } a, b = 1, \cdots, 5$$

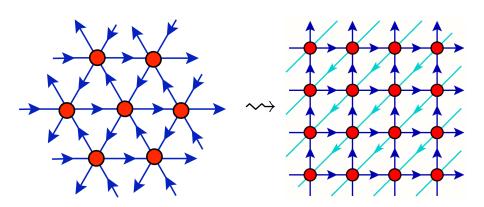
The 4×4 matrix involves R symmetry transformations along each row, (euclidean) Lorentz transformations along each column

⇒ Kähler–Dirac components transform under "twisted rotation group"

33 / 33

Backup: Hypercubic representation of A_4^* lattice

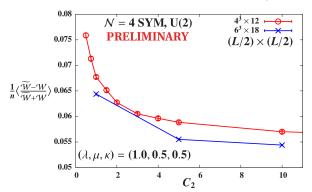
In the code it is very convenient to represent the A_4^* lattice as a hypercube plus one backwards diagonal link



Backup: Restoration of Q_a and Q_{ab} supersymmetries

 Q_a and Q_{ab} from restoration of R symmetry (motivation for A_4^* lattice) Modified Wilson loops test R symmetries at non-zero lattice spacing Parameter c_2 may need logarithmic tuning in continuum limit

Results from arXiv:1411.0166 to be revisited with improved action



Backup: More on flat directions

Complexified links \longrightarrow U(N) = SU(N) \otimes U(1) gauge invariance

Supersymmetry transformation $\mathcal{Q} \ \mathcal{U}_{a} = \psi_{a}$

 \Longrightarrow links must be in algebra with continuum limit $\,\mathcal{U}_a = \mathbb{I}_{\textit{N}} + \mathcal{A}_a\,$

Flat directions in SU(N) sector are physical, those in U(1) sector decouple only in continuum limit

Both must be regulated in calculations \longrightarrow two deformations

Scalar potential $\propto \mu^2 \sum_a \left(\text{Tr} \left[\mathcal{U}_a \overline{\mathcal{U}}_a \right] - N \right)^2$ for SU(*N*) sector

Plaquette determinant $\sim G \sum_{a < b} (\det \mathcal{P}_{ab} - 1)$ for U(1) sector

Scalar potential **softly** breaks $\mathcal Q$ supersymmetry susy-violating operators vanish as $\mu^2 \to 0$

Plaquette determinant can be made Q-invariant \longrightarrow improved action

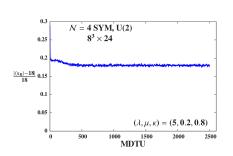
Backup: Problem with SU(*N*) flat directions

 $\mu^2/\lambda_{\text{lat}}$ too small $\longrightarrow \mathcal{U}_a$ can move far from continuum form $\mathbb{I}_{\textit{N}} + \mathcal{A}_a$

Example: $\mu = 0.2$ and $\lambda_{lat} = 5$ on $8^3 \times 24$ volume

Left: Bosonic action stable \sim 18% off its supersymmetric value

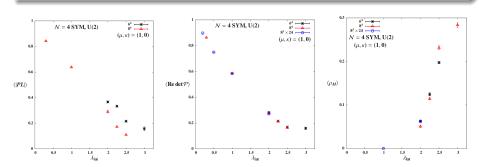
Right: Complexified Polyakov ('Maldacena') loop wanders off to $\sim 10^9$





Backup: Problem with U(1) flat directions

Monopole condensation $\,\longrightarrow\,$ confined lattice phase not present in continuum $\,\mathcal{N}=4$ SYM



Around the same $\lambda_{lat} \approx 2...$

Left: Polyakov loop falls towards zero

Center: Plaquette determinant falls towards zero

Right: Density of U(1) monopole world lines becomes non-zero

Backup: More on soft supersymmetry breaking

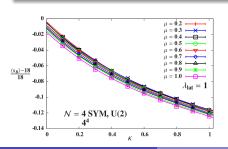
Until 2015 (det P-1) was another soft susy-breaking term

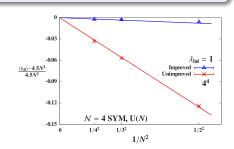
$$S_{\text{soft}} = \frac{N}{4\lambda_{\text{lat}}} \mu^2 \sum_{a} \left(\frac{1}{N} \text{Tr} \left[\mathcal{U}_a \overline{\mathcal{U}}_a \right] - 1 \right)^2 + \kappa \sum_{a < b} \left| \det \mathcal{P}_{ab} - 1 \right|^2$$

Much larger Q-breaking effects than scalar potential

Left: Q Ward identity from bosonic action $\langle s_B \rangle = 9N^2/2$

Right: Soft susy breaking suppressed $\propto 1/N^2$





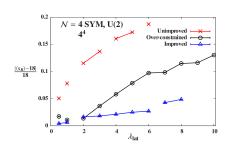
Backup: Supersymmetric moduli space modification

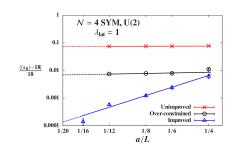
arXiv:1505.03135 introduces method to impose Q-invariant constraints

Modify auxiliary field equations of motion $\,\longrightarrow\,$ moduli space

$$d(n) = \overline{\mathcal{D}}_a^{(-)} \mathcal{U}_a(n) \qquad \longrightarrow \qquad d(n) = \overline{\mathcal{D}}_a^{(-)} \mathcal{U}_a(n) + G\mathcal{O}(n) \mathbb{I}_N$$

Including both plaquette determinant and scalar potential in $\mathcal{O}(n)$ over-constrains system \longrightarrow sub-optimal Ward identity violations



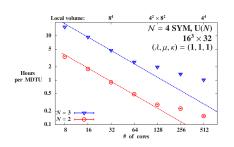


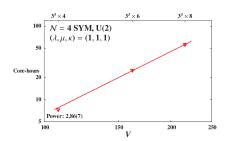
Backup: Code performance—weak and strong scaling

Results from arXiv:1410.6971 to be revisited with improved action

Left: Strong scaling for U(2) and U(3) $16^3 \times 32$ RHMC

Right: Weak scaling for $\mathcal{O}(n^3)$ pfaffian calculation (fixed local volume) $n \equiv 16N^2V$ is number of fermion degrees of freedom





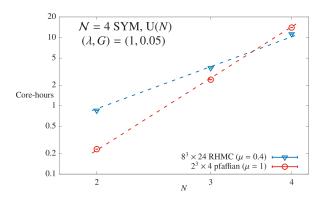
Dashed lines are optimal scaling

Solid line is power-law fit

Backup: Numerical costs for N = 2, 3 and 4 colors

Red: Original RHMC cost scaling $\sim N^5$ now improved to $\sim N^{3.5}$ Plot from arXiv:1410.6971 to be updated

Blue: Pfaffian cost scaling consistent with expected N^6



Backup: Dimensional reduction to $\mathcal{N}=(8,8)$ SYM

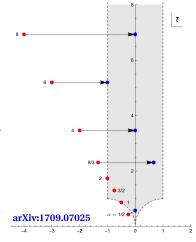
Naive for now: 4d $\mathcal{N}=4$ SYM code with $N_x=N_y=1$

 A_4^* lattice $\longrightarrow A_2^*$ (triangular) lattice

 \Longrightarrow Torus ${\bf skewed}$ depending on α

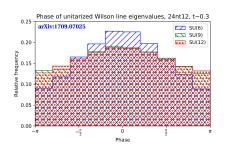
Modular trans. into fund. domain can make skewed torus rectangular

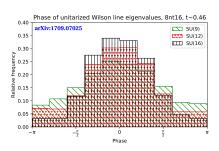
Also need to stabilize compactified links to ensure broken center symmetries



Backup: $\mathcal{N} = (8,8)$ SYM Wilson line eigenvalues

Check 'spatial deconfinement' through histograms of Wilson line eigenvalue phases



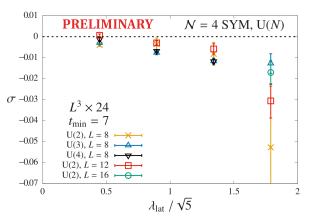


Left: $\alpha=2$ distributions more extended as N increases \longrightarrow dual gravity describes homogeneous black string (D1 phase)

Right: $\alpha = 1/2$ distributions more compact as *N* increases — dual gravity describes localized black hole (D0 phase)

Backup: Static potential is Coulombic at all λ

String tension σ from fits to confining form $V(r) = A - C/r + \sigma r$



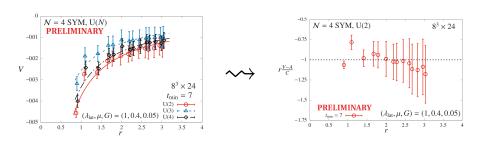
Slightly negative values flatten $V(r_l)$ for $r_l \lesssim L/2$

 $\sigma \to 0$ as accessible range of r_l increases on larger volumes

Backup: Discretization artifacts in static potential

Discretization artifacts visible at short distances where Coulomb term in V(r) = A - C/r is most significant

Right: Highlight artifacts by extracting fluctuations around Coulomb fit



Danger of potential contamination in results for Coulomb coefficient *C*

Backup: Tree-level improvement

Classic trick to reduce discretization artifacts in static potential (Lang & Rebbi '82; Sommer '93; Necco '03)

Associate V(r) data with $\ r$ from Fourier transform of gluon propagator

Recall
$$\frac{1}{4\pi^2 r^2} = \int_{-\pi}^{\pi} \frac{d^4k}{(2\pi)^4} \frac{e^{ir \cdot k}}{k^2}$$
 where $\frac{1}{k^2} = G(k)$ in continuum

On
$$A_4^*$$
 lattice $\longrightarrow \frac{1}{r_I^2} \equiv 4\pi^2 \int_{-\pi}^{\pi} \frac{d^4 \hat{k}}{(2\pi)^4} \frac{\cos\left(ir_I \cdot \hat{k}\right)}{4\sum_{\mu=1}^4 \sin^2\left(\hat{k} \cdot \hat{e}_{\mu} / 2\right)}$

Tree-level perturbative lattice propagator from arXiv:1102.1725

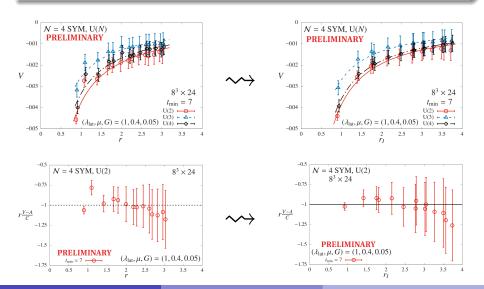
 \widehat{e}_{μ} are \emph{A}_{4}^{*} lattice basis vectors

while momenta $\hat{k}=rac{2\pi}{L}\sum_{\mu=1}^4 n_\mu \hat{g}_\mu$ depend on dual basis vectors

33 / 33

Backup: Tree-level-improved static potential

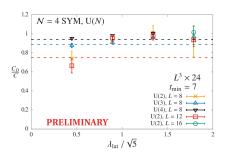
Tree-level improvement significantly reduces discretization artifacts

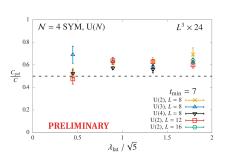


Backup: More $\mathcal{N} = 4$ SYM static potential tests

Left: Projecting Wilson loops from $U(N) \longrightarrow SU(N) \Longrightarrow$ factor of $\frac{N^2-1}{N^2}$

Right: Unitarizing links removes scalars \Longrightarrow factor of 1/2





Several ratios end up above expected values

Cause not clear — seems insensitive to lattice volume and μ

Backup: Smearing for Konishi analyses

As for glueballs, smear to enlarge operator basis

staples built from unitary parts of links but no final unitarization (unitarized smearing — e.g. stout — doesn't affect Konishi)

Average plaquette stable upon smearing (**right**) while minimum plaquette steadily increases (**left**)

