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Overview and plan

• Presentation goal: Survey of recent work
on maximally supersymmetric Yang–Mills (SYM) theories in d < 4 dimensions

• Research goal: Reproduce known results in perturb., holographic, etc. regimes

then use lattice to access new domains

• Review lattice supersymmetry and (4d) twisted lattice N = 4 SYM

• 1d SYM bosonic action (others’ work, 2007 through arXiv:1606.04951)

• 2d N = (8, 8) SYM phase diagram and bosonic action (arXiv:1709.07025)

• Work in progress: 1d supersymmetric mass deformation; max-SYM in 3d and 4d

Quick review of 4d lattice N = 4 SYM

• 16 spinor generators (‘supercharges’) QA
α and Q

A
α̇ with A = 1, · · · ,N{

QA
α , Q

B
α̇

}
= 2δABσµαα̇Pµ −→ supersymmetry algebra broken on the lattice

• Two ways to avoid impractical fine-tuning (will use both):

1) Work in lower dimensions where theories are super-renormalizable

2) Preserve closed sub-algebra of supersymmetries via topological twisting

• Topological twisting: (introduced for curved manifolds)

QA
α , Q

B
α̇ −→ Q, Qµ, Qµν, Qµ, Q in integer-spin reps of “twisted rotation group”

SO(4)tw ≡ diag

[
SO(4)euc ⊗ SO(4)R

]
with SO(4)R ⊂ SO(6)R

• More generally, for 2 ≤ d ≤ 5 SO(d)tw ≡ diag

[
SO(d)euc ⊗ SO(d)R

]

Q ≥ 2d supercharges −→ bQ/2dc ≥ 1 closed susy subalgebras Q2 = 0

• Reducing 10-dim. N = 1 SYM to d dims. −→ SO(10− d) R symmetry

Fields: 16 fermions, d-component gauge field and 10− d scalars,

all massless and in adjoint rep

• For 2 ≤ d ≤ 4, discretize on A?
d lattice with d+ 1 basis vectors

(familiar triangular lattice for d = 2)
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“D0 brane” SYM quantum mechanics (de Wit–Hoppe–Nicolai, 1988)

• Reduced to the point that twisting both impossible and unnecessary

Only temporal component of gauge field remains, plus 9 scalars XA

S0 =
N

2λ

∫
dt Tr

[(
DtX

A
)2

+ ΨαDtΨ
α +

1

2

[
XA, XB

]2
+ iΨαγAαβ

[
Ψβ, XA

]]

with A,B = 1, · · · , 9 and α, β = 1, · · · , 16

• Finite-temperature system holographically dual to stringy black hole geometry

• Temperature and dimension-3 ’t Hooft coupling −→ dim’less T = Tdim/λ
1/3 ≡ 1/rβ

• Low T � 1 and large number of colors N −→ classical supergravity (SUGRA)

Large N suppresses string quantum (gs) corrections

Low temperatures (large λ) suppress α′ corrections (string size ∝
√
α′)

• Numerical state of the art: gauge groups SU(16)–SU(32) with L up to 32

• Investigate dual black hole internal energy ←→ SYM bosonic action

• Fits to SUGRA prediction [E/N 2 = a0T
2.8 + a1T

4.6 + a2T
5.8 + . . . , with a0 = 7.41]

reproduce a0 = 7.4(5) and predict unknown a1 = −10.0(4), a2 = 5.8(5)

• Aside: Gauge field may not matter (arXiv:1802.00428, arXiv:1802.02985)
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Two-dimensional N = (8, 8) SYM

• Naive dimensional reduction of twisted 4d N = 4 SYM

S =
N

4λ
Q
∫
d4x Tr

[
χabFab + η[Da,Da]−

1

2
ηd+ εabcdeχdeDcχab

]

a, b = 1, · · · , 5 now include ‘flavor’ and three A?
2 basis vectors

• Space-time is torus with rβ = 1/t = β
√
λ, rL = L

√
λ and aspect ratio α = rL/rβ

−→ more complicated phase diagram

• Solid expectations for phase transitions at both high and low temperatures

Same sort of transition in each limit, with different dependence on rβ vs. rL
(All phases still thermally deconfined ←→ dual stringy black holes)

• High temperatures: Bosonic quantum mechanics transition

Wilson line order parameter WL = 1
N

〈
|Tr
[
Pei

∮
L
A
]
|
〉

around spatial circle

WL = 0 at large rL (‘spatial confinement’) −→ WL 6= 0 (‘deconf.’) at small rL
(Order of transition debated:

first-order vs. strong second-order plus nearby Gross–Witten–Wadia)

• Low temperatures: Large-N classical SUGRA transition

Large-rL homogeneous D1 ‘black strings’ with horizon R× S7

−→ small-rL D0 black holes with horizon S8 localized on spatial circle

(Radial direction U and time fill out 10 dimensions in total)

Type IIB SUGRA has winding mode instability at small rL . cGLr
2
β,

related to Type IIA classical Gregory–Laflamme transition by T duality

• Non-orthogonal basis vectors of triangular lattice

−→ skewed tori, “generalized” thermal ensemble

• Restricted SL(2,Z) modular transformations describe same torus geometry

despite sometimes changing skewed −→ rectangular(
~L′

~β′

)
= M ·

(
~L
~β

)
M =

(
a 2n
c 2m− 1

)
∈ SL(2,Z)

with n,m, c ∈ Z −→ a ∈ 2Z− 1

• Numerical results: Horizon ←→ distribution of Wilson line eigenvalue phases

In D0 / spatially deconfined phase, distribution more localized as N increases,

E/(N 2λ) ∝ t3.2 from leading-order SUGRA

In D1 / spatially confined phase, distribution more uniform as N increases,

E/(N 2λ) ∝ t3 from leading-order SUGRA

• Large-N continuum extrapolations remain to be done in this case
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Deformed quantum mechanics (Berenstein–Maldacena–Nastase, ’02)

• Dim’l reduction of 10d plane-wave background preserving all 16 supersymmetries

S = S0 − δS

δS =
N

2λ

∫
dt Tr

[
µ2

3
(X i)2 +

µ2

6
(Xa)2 +

µ

24
Ψαεijk

(
γiγjγk

)
αβ

Ψβ + i
2µ

3
εijkX

iXjXk

]

with i, j, k = 1, 2, 3 and a = 4, · · · , 9
−→ dim’ful µ 6= 0 breaks SO(9) R symmetry to SO(3)×SO(6)

• Deformation lifts moduli space −→ discrete set of vacua

Can also regulate low-t instability, though this may need small µ ∼ 1/N

• Now have non-trivial phase diagram in plane of T/µ vs. dim’less g = λ/µ3

Can consider strong coupling at both large and small T/µ

• Phase diagram / transition “qualitatively similar” to 2d N = (8, 8), [arXiv:1411.5541]

although lose thermal deconfinement −→ energy scales ∝ N 0 rather than N 2

(no dual black holes?)

• First-order Hagedorn transition at g = 0
Hawking–Page-like transition as g →∞

Higher dimensions, d = 3 and 4

• Empirically, larger d allow low-temperature stability with smaller N

Compare 16 ≤ N for quantum mechanics vs. 6 ≤ N ≤ 16 for 2d N = (8, 8) SYM

Also expect small corrections ∝ 1/N2 for adjoint fermions in 4d gauge theories

• Interpret as trading d.o.f. between space-time volume and internal large N?

• Work in progress: 3d 16-supercharge SYM in uniform D2 phase, 4 ≤ N ≤ 6

Preliminary consistency with leading SUGRA prediction E/(N 2λ3) ∝ t10/3

• For the future:“3/4 problem” in four-dimensional N = 4 (16-supercharge) SYM

Perturbative energy 1× cN 2T 4 for small λ→ 0

Holographic energy 3
4 × cN 2T 4 for large 1� λ� N
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Figure 1: Lattice results for the dual black hole internal energy of D0 brane quantum mechanics, from
arXiv:1606.04951. This work considers gauge groups SU(N) with 16 ≤ N ≤ 32 on lattices with up to
L = 32 sites. These two plots fix the dimensionless temperature T = Tdim/λ

1/3 = 0.5 and show both
individual and combined extrapolations to the limits N2 →∞ and L→∞. The latter is the continuum
limit in which the lattice UV cutoff is removed while the large-N limit suppresses string quantum (gs)
corrections in the dual gravitational calculation.

Figure 2: Extrapolated lattice results for the dual black hole internal energy of D0 brane quantum me-
chanics, from arXiv:1606.04951, using combined N2 → ∞ and L → ∞ extapolations like the one shown
in Fig. 1 for T = 0.5. The results are consistently below the leading-order SUGRA prediction (solid black
line), but can be fit to expressions including subleading corrections (three colored curves with error bands).
These fits correctly reproduce the leading a0 = 7.41 predicted by SUGRA, and provide lattice predictions
for the unknown coefficients ai for i ≥ 1. The two colored curves without error bands are results from
earlier studies with smaller N and L.

5

https://arxiv.org/abs/1606.04951
https://arxiv.org/abs/1606.04951


Figure 3: Schematic phase diagram for two-dimensional N = (8, 8) SYM on an rβ × rL torus, from
arXiv:1709.07025, showing the two limits where first-order transitions are expected. At high temperatures
(small rβ = 1/t) the system reduces to a simple one-dimensional bosonic quantum mechanics (BQM)
with a first-order deconfinement transition at small rL. A similar first-order deconfinement transition is
predicted by holography at low temperatures (in the large-N limit), with the large-rL homogeneous black
string (D1) phase becoming unstable and collapsing to a localized black hole (D0) phase as rL decreases.
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Figure 4: The complex modular parameters τ = αγ + iα
√

1− γ2 for skewed tori with skewing parameter
γ = −1/2 and different aspect ratios α given by the labels on the red points, from arXiv:1709.07025.
When τ falls outside the shaded fundamental domain, a restricted SL(2,Z) modular transformation gives
the equivalent τ ′ in the fundamental domain (blue points). This reveals a few cases (α = 1/2, 4 and 8) for
which the fundamental representation of the torus geometry is rectangular, Re(τ ′) = 0.
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Figure 5: Numerical lattice results for two-dimensional N = (8, 8) SYM, from arXiv:1709.07025. Top:
Representative signals for the ‘spatial deconfinement’ transition in the spatial Wilson line (left) and its
susceptibility (right), for fixed aspect ratio α = L/Nt = 4. In the deconfined small-rL phase at small
rβ = rL/α = 1/t, the Wilson line is large and independent of N , while it vanishes in the large-N limit at
large r, with a clear peak in the susceptibility at the transition between these two phases. Center: The
resulting predictions for phase transitions for various α, compared to the expected asymptotic behavior
from Fig. 3. There is good agreement at high temperatures, and reasonable consistency at lower temper-
atures. Bottom: The dual black hole internal energy, as in Fig. 2 but without large-N or continuum
extrapolations. The α = 1/2 data are consistent with the leading gravitational prediction E/(N2λ) ∝ t3.2

for the D0 phase (left), while those for α = 2 are consistent with E/(N2λ) ∝ t3 for the D1 phase (right).
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Figure 6: The distributions of Wilson line eigenvalue phases for two-dimensional N = (8, 8) SYM (from
arXiv:1709.07025) indicate which side of the transition we are on for a given temperature t = 1/rβ and
aspect ratio α = L/Nt. For α = 1/2 and t ≈ 0.46 (left), the distributions become more localized as N
increases, corresponding to the D0 phase (and the highest ⊗ in the central plot of Fig. 5). For α = 2 and
t ≈ 0.3, the distributions become more uniform as N increases, corresponding to the D1 phase (far beyond
the right edge of the central plot in Fig. 5).
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PRELIMINARY

Figure 7: Preliminary lattice results for the dual black hole internal energy of three-dimensional 16-
supercharge SYM in the uniform D2 phase, as in the bottom plots of Fig. 5. Despite the smaller N ≤ 6
the results are quite close to the leading gravitational prediction E/(N2λ3) ∝ t10/3.
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