Lattice $\mathcal{N} = 4$ Supersymmetric Yang–Mills

David Schaich (Bern)

Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography International Centre for Theoretical Sciences, Bangalore 31 January 2018

arXiv:1505.03135 arXiv:1611.06561 arXiv:1709.07025 & more to come with Simon Catterall, Raghav Jha and Toby Wiseman

David Schaich (Bern)

Overview and plan

Goals: Reproduce known results in perturbative, holographic, etc. regimes Then use lattice to access new domains

Quick lattice $\mathcal{N} = 4$ SYM recap

(I) Dimensionally reduced (2d) thermodynamics

(II) 4d static potential Coulomb coefficient

(III) Anomalous dimension of Konishi operator

Open questions and future directions

Lattice supersymmetry in a nutshell

Motivation: Non-perturbative insights from first-principles lattice calcs

Obstruction: $\left\{ Q^{I}_{\alpha}, \overline{Q}^{J}_{\dot{\alpha}} \right\} = 2\delta^{IJ}\sigma^{\mu}_{\alpha\dot{\alpha}}P_{\mu}$ broken in discrete space-time

 \implies Relevant susy-violating operators, typically too many to fine-tune

Solution: Preserve susy sub-algebra at non-zero lattice spacing

Equivalent constructions from topological twisting and deconstruction

Quick review of twisted lattice $\mathcal{N} = 4$ SYM

Fields: 5 complexified links U_a and \overline{U}_a in algebra $\mathfrak{gl}(N,\mathbb{C})$

1+5+10 fermions on lattice sites + links + plaquettes

Space-time: A₄^{*} lattice of 5 links symmetrically spanning 4d

Complexified links \longrightarrow U(N) = SU(N) \otimes U(1) gauge invariance

Must regulate both SU(N) and U(1) flat directions

David Schaich (Bern)

Two deformations in improved lattice action

SU(*N*) scalar potential
$$\propto \mu^2 \sum_a \left(\text{Tr} \left[\mathcal{U}_a \overline{\mathcal{U}}_a \right] - N \right)^2$$

Softly breaks susy $\longrightarrow \mathcal{Q}$ -violating operators vanish $\propto \mu^2 \rightarrow 0$

U(1) plaquette determinant $\sim G \sum_{a < b} (\det \mathcal{P}_{ab} - 1)$

Implemented supersymmetrically as Fayet–Iliopoulos D-term potential

Advertisement: Public code for lattice $\mathcal{N} = 4$ SYM

so that the full improved action becomes

$$S_{\text{imp}} = S'_{\text{exact}} + S_{\text{closed}} + S'_{\text{soft}} \qquad (3.10)$$

$$S'_{\text{exact}} = \frac{N}{2\lambda_{\text{lat}}} \sum_{n} \text{Tr} \left[-\overline{\mathcal{F}}_{ab}(n)\mathcal{F}_{ab}(n) - \chi_{ab}(n)\mathcal{D}_{[a}^{(+)}\psi_{b]}(n) - \eta(n)\overline{\mathcal{D}}_{a}^{(-)}\psi_{a}(n) + \frac{1}{2} \left(\overline{\mathcal{D}}_{a}^{(-)}\mathcal{U}_{a}(n) + G\sum_{a\neq b} (\det \mathcal{P}_{ab}(n) - 1)\mathbb{I}_{N}\right)^{2} \right] - S_{\text{det}}$$

$$S_{\text{det}} = \frac{N}{2\lambda_{\text{lat}}}G\sum_{n} \text{Tr} [\eta(n)] \sum_{a\neq b} [\det \mathcal{P}_{ab}(n)] \text{Tr} [\mathcal{U}_{b}^{-1}(n)\psi_{b}(n) + \mathcal{U}_{a}^{-1}(n+\hat{\mu}_{b})\psi_{a}(n+\hat{\mu}_{b})]$$

$$S_{\text{closed}} = -\frac{N}{8\lambda_{\text{lat}}}\sum_{n} \text{Tr} \left[\epsilon_{abcdc} \chi_{dc}(n+\hat{\mu}_{a}+\hat{\mu}_{b}+\hat{\mu}_{c})\overline{\mathcal{D}}_{c}^{(-)}\chi_{ab}(n)\right],$$

$$S'_{\text{soft}} = \frac{N}{2\lambda_{\text{lat}}}\mu^{2}\sum_{n}\sum_{n}\sum_{a} \left(\frac{1}{N}\text{Tr} \left[\mathcal{U}_{a}(n)\overline{\mathcal{U}}_{a}(n)\right] - 1\right)^{2}$$

 \gtrsim 100 inter-node data transfers in fermion operator — non-trivial...

To reduce barriers to entry our parallel code is publicly developed at github.com/daschaich/susy

Evolved from MILC lattice QCD code, presented in arXiv:1410.6971

David Schaich (Bern)

(I) Thermodynamics on a 2-torus

arXiv:1709.07025

Naive dimensional reduction $\longrightarrow 2d \mathcal{N} = (8, 8) \text{ SYM}$ with four nilpotent twisted-scalar $\mathcal{Q}^2 = 0$

Study low temperatures $t = 1/r_{\beta} \iff$ black holes in dual supergravity

$\mathcal{N} = (8, 8)$ SYM lattice phase diagram results

Lower-temperature transitions at smaller $\alpha < 1 \longrightarrow$ larger errors

Results consistent with holography and high-temp. bosonic QM

Dual black hole thermodynamics

Holography predicts bosonic action corresponding to dual black holes $s_{\rm Bos} \propto t^3$ for large- r_L D1 phase $s_{\rm Bos} \propto t^{3.2}$ for small- r_L D0 phase

Lattice results consistent with holography for sufficiently low $t \leq 0.4$

Need larger N > 16 to avoid instabilities at lower temperatures

David Schaich (Bern)

(II) Static potential V(r)

Coulomb gauge trick reduces A_4^* lattice complications

Static potential is Coulombic at all λ

Fits to confining $V(r) = A - C/r + \sigma r \longrightarrow$ vanishing string tension σ

 \implies Fit to just V(r) = A - C/r to extract Coulomb coefficient $C(\lambda)$

Recent progress: Incorporating tree-level improvement into analysis

David Schaich (Bern)

Coupling dependence of Coulomb coefficient

Continuum perturbation theory predicts $C(\lambda) = \lambda/(4\pi) + O(\lambda^2)$

Holography predicts $C(\lambda) \propto \sqrt{\lambda}$ for $N \to \infty$ and $\lambda \to \infty$ with $\lambda \ll N$

Surprisingly good agreement with perturbation theory for $\lambda_{\text{lat}} \leq 4$

David Schaich (Bern)

(III) Konishi operator scaling dimension

 $\mathcal{O}_{\mathcal{K}}(x) = \sum_{I} \text{Tr} \left[\Phi^{I}(x) \Phi^{I}(x) \right]$ is simplest conformal primary operator

Scaling dimension $\Delta_{\mathcal{K}}(\lambda) = 2 + \gamma_{\mathcal{K}}(\lambda)$ investigated through perturbation theory (& S duality), holography, conformal bootstrap

Lattice scalars $\varphi(n)$ from polar decomposition of complexified links

$$\mathcal{U}_a(n) \longrightarrow e^{\varphi_a(n)} \mathcal{U}_a(n)$$
 $\mathcal{O}_K^{\text{lat}}(n) = \sum_a \text{Tr} \left[\varphi_a(n) \varphi_a(n) \right] - \text{vev}$

Scaling dimensions from MCRG stability matrix

System as (infinite) sum of operators $H = \sum_i c_i \mathcal{O}_i$ Couplings c_i flow under **symmetry-preserving** RG blocking R_b

n-times-blocked system
$$H^{(n)} = R_b H^{(n-1)} = \sum_i c_i^{(n)} \mathcal{O}_i^{(n)}$$

Fixed point defined by $H^* = R_b H^*$ with couplings c_i^*

Linear expansion around fixed point defines stability matrix T_{ii}^{\star}

$$\left.oldsymbol{c}_{i}^{(n)}-oldsymbol{c}_{i}^{\star}=\sum_{k}\left.rac{\partialoldsymbol{c}_{i}^{(n)}}{\partialoldsymbol{c}_{k}^{(n-1)}}
ight|_{H^{\star}}\left(oldsymbol{c}_{k}^{(n-1)}-oldsymbol{c}_{k}^{\star}
ight)\equiv\sum_{j}oldsymbol{\mathcal{T}}_{ik}^{\star}\left(oldsymbol{c}_{k}^{(n-1)}-oldsymbol{c}_{k}^{\star}
ight)$$

Correlators of $\mathcal{O}_i, \mathcal{O}_k \longrightarrow$ elements of stability matrix [Swendsen, 1979] Eigenvalues of $T^*_{ik} \longrightarrow$ scaling dimensions of corresponding operators

David Schaich (Bern)

Preliminary $\Delta_{\mathcal{K}}$ results from Monte Carlo RG

MCRG stability matrix includes both $\mathcal{O}_{\mathcal{K}}^{\text{lat}}$ and $\mathcal{O}_{\mathcal{S}}^{\text{lat}}$

Impose protected $\Delta_S = 2$

Systematic uncertainties from different amounts of smearing

Complication: Twisted SO(4)_{*tw*} involves only SO(4)_{*R*} \subset SO(6)_{*R*}

 \implies Lattice Konishi operator mixes with SO(4)_R-singlet part of the SO(6)_R-nonsinglet SUGRA operator

Current work: Variational analyses to disentangle operators

David Schaich (Bern)

Recapitulation and outlook

- Lattice promises non-perturbative insights from first principles
- Lattice $\mathcal{N} = 4$ SYM is practical thanks to exact \mathcal{Q} susy
- Public code to reduce barriers to entry

Significant progress toward goals of lattice investigations

- 2d $\mathcal{N} = (8,8)$ SYM thermodynamics consistent with holography
- 4d static potential Coulomb coefficient $C(\lambda)$ at weak coupling
- Preliminary conformal scaling dimension of Konishi operator

Many more directions are being — or can be — pursued

- Understanding the (absence of a) sign problem
- Systems with less supersymmetry, in lower dimensions, including matter fields, exhibiting spontaneous susy breaking, ...

Upcoming Workshops

Numerical approaches to holography, quantum gravity and cosmology

21-24 May 2018

Higgs Centre for Theoretical Physics, Edinburgh

Interdisciplinary approach to QCD-like composite dark matter

1-5 October 2018

ECT* Trento

David Schaich (Bern)

Thank you!

Collaborators Simon Catterall, Raghav Jha, Toby Wiseman also Georg Bergner, Poul Damgaard, Joel Giedt, Anosh Joseph

Funding and computing resources

Supplement: Potential sign problem

Observables:
$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int [d\mathcal{U}] [d\overline{\mathcal{U}}] \mathcal{O} e^{-S_{\mathcal{B}}[\mathcal{U},\overline{\mathcal{U}}]} \text{ pf } \mathcal{D}[\mathcal{U},\overline{\mathcal{U}}]$$

Pfaffian can be complex for lattice $\mathcal{N} = 4$ SYM, pf $\mathcal{D} = |\text{pf }\mathcal{D}|e^{i\alpha}$

Complicates interpretation of $\{e^{-S_B} \text{ pf } D\}$ as Boltzmann weight

RHMC uses phase quenching, $pf \mathcal{D} \longrightarrow |pf \mathcal{D}|$, needs reweighting

$$\langle \mathcal{O} \rangle = \frac{\left\langle \mathcal{O} e^{i\alpha} \right\rangle_{pq}}{\left\langle e^{i\alpha} \right\rangle_{pq}} \quad \text{with } \left\langle \mathcal{O} e^{i\alpha} \right\rangle_{pq} = \frac{1}{\mathcal{Z}_{pq}} \int [d\mathcal{U}] [d\overline{\mathcal{U}}] \mathcal{O} e^{i\alpha} e^{-S_B} |\text{pf } \mathcal{D}|$$

 \implies Monitor $\langle e^{i\alpha} \rangle_{pq}$ as function of volume, coupling, N

David Schaich (Bern)

Pfaffian phase dependence on volume and coupling

Left: $1 - \langle \cos(\alpha) \rangle_{pq} \ll 1$ independent of volume and N at $\lambda_{lat} = 1$

Right: Larger $\lambda_{\text{lat}} \ge 4 \longrightarrow$ much larger phase fluctuations

To do: Analyze more volumes and N with improved action

Extremely expensive $\mathcal{O}(n^3)$ computation

 ${\sim}50$ hours ${\times}$ 16 cores for single U(2) 4^4 measurement

David Schaich (Bern)

Two puzzles posed by the sign problem

Periodic temporal boundary conditions for the fermions \longrightarrow obvious sign problem, $\langle e^{i\alpha} \rangle_{pq}$

Anti-periodic BCs $\longrightarrow e^{i\alpha} \approx 1$, phase reweighting negligible

David Schaich (Bern)

Backup: Essence of numerical lattice calculations

Evaluate observables from functional integral via importance sampling Monte Carlo

$$\langle \mathcal{O}
angle = rac{1}{\mathcal{Z}} \int \mathcal{D}U \ \mathcal{O}(U) \ e^{-\mathcal{S}[U]}$$

 $\longrightarrow rac{1}{N} \sum_{i=1}^{N} \mathcal{O}(U_i) \text{ with uncert. } \propto \sqrt{rac{1}{N}}$

U are field configurations in discretized euclidean space-time, sampled with probability $\propto e^{-S}$

S[U] is lattice action, ideally real and positive $\longrightarrow \frac{1}{2}e^{-S}$ as probability distribution

Backup: More features of lattice calculations

Spacing "a" between lattice sites \longrightarrow UV cutoff scale 1/a

Removing cutoff: $a \rightarrow 0$ (with $L/a \rightarrow \infty$)

Lattice cutoff preserves hypercubic subgroup \longrightarrow restore Poincaré in continuum limit

Lattice action S defined by bare lagrangian at UV cutoff 1/a

After generating and saving ensembles $\{U_n\}$ distributed $\propto e^{-S}$ often quick and easy to measure many observables $\langle O \rangle$

Changing action generally requires generating new ensembles

Backup: Hybrid Monte Carlo (HMC) algorithm

Goal: Sample field configurations U with probability $\frac{1}{Z}e^{-S[U]}$

HMC is Markov process based on Metropolis–Rosenbluth–Teller

Fermions \longrightarrow extensive action computation

⇒ Global updates using fictitious molecular dynamics

- 2 Inexact MD evolution along trajectory in $\tau \longrightarrow$ new configuration
- Accept/reject test on MD discretization error

David Schaich (Bern)

Backup: Discrete space-time breaks Leibnitz rule

$$\begin{cases} Q_{\alpha}, \overline{Q}_{\dot{\alpha}} \\ \end{cases} = 2\sigma^{\mu}_{\alpha\dot{\alpha}} P_{\mu} = 2i\sigma^{\mu}_{\alpha\dot{\alpha}}\partial_{\mu} \text{ is problematic} \\ \longrightarrow \text{try } \left\{ Q_{\alpha}, \overline{Q}_{\dot{\alpha}} \\ \end{cases} = 2i\sigma^{\mu}_{\alpha\dot{\alpha}}\nabla_{\mu} \text{ for a discrete translation} \end{cases}$$

$$\nabla_{\mu}\phi(\mathbf{x}) = \frac{1}{a} \left[\phi(\mathbf{x} + a\widehat{\mu}) - \phi(\mathbf{x})\right] = \partial_{\mu}\phi(\mathbf{x}) + \frac{a}{2}\partial_{\mu}^{2}\phi(\mathbf{x}) + \mathcal{O}(a^{2})$$

Essential difference between ∂_{μ} and lattice ∇_{μ} with a > 0 $\nabla_{\mu} [\phi(x)\eta(x)] = a^{-1} [\phi(x + a\hat{\mu})\eta(x + a\hat{\mu}) - \phi(x)\eta(x)]$ $= [\nabla_{\mu}\phi(x)]\eta(x) + \phi(x)\nabla_{\mu}\eta(x) + a[\nabla_{\mu}\phi(x)]\nabla_{\mu}\eta(x)$

Only recover Leibnitz rule $\partial_{\mu}(fg) = (\partial_{\mu}f)g + f\partial_{\mu}g$ when $a \to 0$

⇒ "Discrete supersymmetry" breaks down on the lattice (Dondi & Nicolai, "Lattice Supersymmetry", 1977)

Backup: Basic features of $\mathcal{N} = 4$ SYM

Widely used to develop continuum QFT tools & techniques, from scattering amplitudes to holography

Arguably simplest non-trivial 4d field theory

SU(*N*) gauge theory with four fermions Ψ^{I} and six scalars Φ^{IJ} , all massless and in adjoint rep.

Action consists of kinetic, Yukawa and four-scalar terms with coefficients related by symmetries \longrightarrow single coupling $\lambda = g^2 N$

Maximal 16 supersymmetries Q^{I}_{α} and $\overline{Q}^{I}_{\dot{\alpha}}$ (I = 1, · · · , 4) transforming under global SU(4) ~ SO(6) R symmetry

Conformal: β function is zero for any λ

Backup: Topological twisting for $\mathcal{N} = 4$ SYM Intuitive picture — expand 4×4 matrix of supersymmetries $\begin{pmatrix} Q_{\alpha}^{1} & Q_{\alpha}^{2} & Q_{\alpha}^{3} & Q_{\alpha}^{4} \\ \overline{Q}_{\dot{\alpha}}^{1} & \overline{Q}_{\dot{\alpha}}^{2} & \overline{Q}_{\dot{\alpha}}^{3} & \overline{Q}_{\dot{\alpha}}^{4} \end{pmatrix} = \mathcal{Q} + \mathcal{Q}_{\mu}\gamma_{\mu} + \mathcal{Q}_{\mu\nu}\gamma_{\mu}\gamma_{\nu} + \overline{\mathcal{Q}}_{\mu}\gamma_{\mu}\gamma_{5} + \overline{\mathcal{Q}}\gamma_{5} \\ \longrightarrow \mathcal{Q} + \mathcal{Q}_{a}\gamma_{a} + \mathcal{Q}_{ab}\gamma_{a}\gamma_{b} \\ \text{with } a, b = 1, \cdots, 5 \end{cases}$

Kähler–Dirac muliplet of 'twisted' supersymmetries Qtransform with integer spin under 'twisted rotation group'

$$\mathrm{SO}(4)_{tw} \equiv \mathrm{diag} \left[\mathrm{SO}(4)_{\mathrm{euc}} \otimes \mathrm{SO}(4)_R \right] \qquad \qquad \mathrm{SO}(4)_R \subset \mathrm{SO}(6)_R$$

 $\label{eq:change} \begin{array}{l} \mbox{Change of variables} \longrightarrow \mbox{closed subalgebra } \{\mathcal{Q}, \mathcal{Q}\} = 2\mathcal{Q}^2 = 0 \\ \\ \mbox{that can be exactly preserved on the lattice} \end{array}$

David Schaich (Bern)

Backup: Susy subalgebra from twisted $\mathcal{N} = 4$ SYM

Fields & Qs transform with integer spin under SO(4)_{tw} — no spinors

$$\mathcal{Q}_{\alpha} \text{ and } \overline{\mathcal{Q}}_{\dot{\alpha}} \longrightarrow \mathcal{Q}, \ \mathcal{Q}_{a} \text{ and } \mathcal{Q}_{ab}$$
 $\Psi \text{ and } \overline{\Psi} \longrightarrow \eta, \ \psi_{a} \text{ and } \chi_{ab}$
 $\mathcal{A}_{\mu} \text{ and } \Phi^{\mathrm{I}} \longrightarrow \text{ complexified gauge field } \mathcal{A}_{a} \text{ and } \overline{\mathcal{A}}_{a}$
 $(\longrightarrow U(N) = SU(N) \otimes U(1) \text{ gauge theory})$

Schematically, under $SO(d)_{tw} = diag[SO(d)_{euc} \otimes SO(d)_R]$

$$A_{\mu} \sim ext{vector} \otimes ext{scalar} \longrightarrow ext{vector}$$

 $\Phi^{I} \sim \text{ scalar} \otimes \text{vector } \longrightarrow \text{ vector}$

Easiest to see by dimensionally reducing from 5d

$$\mathcal{A}_{a} = \mathcal{A}_{a} + i\Phi_{a} \longrightarrow (\mathcal{A}_{\mu}, \phi) + i(\Phi_{\mu}, \overline{\phi})$$

Backup: Susy subalgebra from twisted $\mathcal{N} = 4$ SYM

Fields & Qs transform with integer spin under SO(4)_{tw} — no spinors

$$\mathcal{Q}_{\alpha} \text{ and } \overline{\mathcal{Q}}_{\dot{\alpha}} \longrightarrow \mathcal{Q}, \ \mathcal{Q}_{a} \text{ and } \mathcal{Q}_{ab}$$

 $\Psi \text{ and } \overline{\Psi} \longrightarrow \eta, \ \psi_{a} \text{ and } \chi_{ab}$
 $\mathcal{A}_{\mu} \text{ and } \Phi^{\mathrm{I}} \longrightarrow \text{ complexified gauge field } \mathcal{A}_{a} \text{ and } \overline{\mathcal{A}}_{a}$
 $(\longrightarrow U(N) = \mathrm{SU}(N) \otimes \mathrm{U}(1) \text{ gauge theory})$

Twisted-scalar supersymmetry \mathcal{Q} correctly interchanges bosonic \longleftrightarrow fermionic d.o.f. with $\mathcal{Q}^2 = 0$

 $\begin{array}{lll} \mathcal{Q} \ \mathcal{A}_{a} = \psi_{a} & \mathcal{Q} \ \psi_{a} = 0 \\ \mathcal{Q} \ \chi_{ab} = -\overline{\mathcal{F}}_{ab} & \mathcal{Q} \ \overline{\mathcal{A}}_{a} = 0 \\ \mathcal{Q} \ \eta = d & \mathcal{Q} \ d = 0 \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

Backup: Details of twisted lattice $\mathcal{N} = 4$ SYM

Lattice theory looks nearly the same despite breaking Q_a and Q_{ab}

Covariant derivatives \longrightarrow finite difference operators

Complexified gauge fields $\mathcal{A}_a \longrightarrow$ gauge links $\mathcal{U}_a \in \mathfrak{gl}(N, \mathbb{C})$

$$\begin{array}{l} \mathcal{Q} \ \mathcal{A}_{a} \longrightarrow \mathcal{Q} \ \mathcal{U}_{a} = \psi_{a} & \mathcal{Q} \ \psi_{a} = 0 \\ \mathcal{Q} \ \chi_{ab} = -\overline{\mathcal{F}}_{ab} & \mathcal{Q} \ \overline{\mathcal{A}}_{a} \longrightarrow \mathcal{Q} \ \overline{\mathcal{U}}_{a} = 0 \\ \mathcal{Q} \ \eta = d & \mathcal{Q} \ d = 0 \end{array}$$

(geometrically η on sites, ψ_a on links, etc.)

Susy lattice action (QS = 0) from $Q^2 \cdot = 0$ and Bianchi identity

$$S = \frac{N}{4\lambda_{\text{lat}}} \text{Tr} \left[\mathcal{Q} \left(\chi_{ab} \mathcal{F}_{ab} + \eta \overline{\mathcal{D}}_{a} \mathcal{U}_{a} - \frac{1}{2} \eta d \right) - \frac{1}{4} \epsilon_{abcde} \chi_{ab} \overline{\mathcal{D}}_{c} \chi_{de} \right]$$

Backup: A_4^* lattice from dimensional reduction

Again easiest to dimensionally reduce from 5d, treating all five gauge links U_a symmetrically

Start with hypercubic lattice in 5d momentum space

Symmetric constraint $\sum_{a} \partial_{a} = 0$ projects to 4d momentum space

Result is A_4 lattice \longrightarrow dual A_4^* lattice in real space

Backup: Twisted SO(4) symmetry on the A_4^* lattice

 $A_4^* \sim 4$ d analog of 2d triangular lattice

Basis vectors linearly dependent and non-orthogonal $\longrightarrow \lambda = \lambda_{\text{lat}} / \sqrt{5}$

Preserves S₅ point group symmetry

 S_5 irreps match onto irreps of twisted SO(4)_{tw}

$$5 = \mathbf{4} \oplus \mathbf{1} : \quad \psi_{\mathbf{a}} \longrightarrow \psi_{\mu}, \quad \overline{\eta}$$
$$\mathbf{10} = \mathbf{6} \oplus \mathbf{4} : \quad \chi_{\mathbf{ab}} \longrightarrow \chi_{\mu\nu}, \quad \overline{\psi}_{\mu}$$

 $S_5 \longrightarrow SO(4)_{tw}$ in continuum limit restores Q_a and Q_{ab}

Backup: Hypercubic representation of A_4^* lattice

In the code it is very convenient to represent the A_4^* lattice as a hypercube plus one backwards diagonal link

Backup: Analytic results for lattice $\mathcal{N} = 4$ SYM

U(N) gauge invariance + Q + S_5 lattice symmetries \longrightarrow several significant analytic results

Moduli space preserved to all orders of lattice perturbation theory \longrightarrow no scalar potential induced by radiative corrections

 β function vanishes at one loop in lattice perturbation theory

Only one logarithmic tuning to recover continuum Q_a and Q_{ab}

Backup: Problem with SU(N) flat directions

 $\mu^2/\lambda_{\text{lat}}$ too small $\longrightarrow \mathcal{U}_a$ can move far from continuum form $\mathbb{I}_N + \mathcal{A}_a$

Example: $\mu = 0.2$ and $\lambda_{\text{lat}} = 5$ on $8^3 \times 24$ volume

Left: Bosonic action stable ~18% off its supersymmetric value

Right: Complexified Polyakov ('Maldacena') loop wanders off to $\sim 10^9$

Backup: Details of SU(N) scalar potential

$$\boldsymbol{S} = \frac{N}{4\lambda_{\text{lat}}} \left[\mathcal{Q} \left(\chi_{ab} \mathcal{F}_{ab} + \eta \overline{\mathcal{D}}_{a} \mathcal{U}_{a} - \frac{1}{2} \eta d \right) - \frac{1}{4} \epsilon_{abcde} \, \chi_{ab} \overline{\mathcal{D}}_{c} \, \chi_{de} + \mu^{2} \boldsymbol{V} \right]$$

Scalar potential $V = \sum_{a} \left(\frac{1}{N} \text{Tr} \left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right] - 1\right)^{2}$ lifts SU(*N*) flat directions

and ensures $U_a = \mathbb{I}_N + A_a$ in continuum limit

Softly breaks \mathcal{Q} — all susy violations $\propto \mu^2
ightarrow 0$ in continuum limit

Ward identity violations, $\langle QO \rangle \neq 0$, show Q breaking and restoration

Here considering

$$\mathcal{Q}\left[\eta \mathcal{U}_{\mathbf{a}} \overline{\mathcal{U}}_{\mathbf{a}}\right] = \mathbf{d} \mathcal{U}_{\mathbf{a}} \overline{\mathcal{U}}_{\mathbf{a}} - \eta \psi_{\mathbf{a}} \overline{\mathcal{U}}_{\mathbf{a}}$$

Backup: Problem with U(1) flat directions

Monopole condensation \longrightarrow confined lattice phase

not present in continuum $\mathcal{N} = 4$ SYM

Around the same $\lambda_{\text{lat}} \approx 2...$

Left: Polyakov loop falls toward zero

Center: Plaquette determinant falls toward zero

Right: Density of U(1) monopole world lines becomes non-zero

David Schaich (Bern)

Backup: Details of U(1) plaq. determinant regulator

$$S = \frac{N}{4\lambda_{\text{lat}}} \begin{bmatrix} \mathcal{Q}\left(\chi_{ab}\mathcal{F}_{ab} + \downarrow -\frac{1}{2}\eta d\right) - \frac{1}{4}\epsilon_{abcde} \chi_{ab}\overline{\mathcal{D}}_{c} \chi_{de} + \mu^{2}V \end{bmatrix}$$

$$\eta \Big\{ \overline{\mathcal{D}}_{a}\mathcal{U}_{a} + G \sum_{a \leq b} [\det \mathcal{P}_{ab} - 1] \mathbb{I}_{N} \Big\}$$

Modify e.o.m. for *d* to constrain plaquette determinant \longrightarrow lifts U(1) zero mode & flat directions without susy breaking

Backup: More on soft supersymmetry breaking Until 2015 the U(1) regulator was another soft susy-breaking term

$$S_{\text{soft}} = \frac{N}{4\lambda_{\text{lat}}} \mu^2 \sum_{a} \left(\frac{1}{N} \text{Tr} \left[\mathcal{U}_a \overline{\mathcal{U}}_a \right] - 1 \right)^2 + \kappa \sum_{a < b} |\text{det } \mathcal{P}_{ab} - 1|^2$$

ightarrow much larger $\mathcal Q$ -breaking effects than scalar potential

Left: Q Ward identity from bosonic action $\langle s_B \rangle = 9N^2/2$ **Right:** Soft susy breaking suppressed $\propto 1/N^2$

David Schaich (Bern)

Backup: Supersymmetric moduli space modification arXiv:1505.03135 introduces method to impose *Q*-invariant constraints

Modify auxiliary field equations of motion \longrightarrow moduli space

$$d(n) = \overline{\mathcal{D}}_a^{(-)} \mathcal{U}_a(n) \longrightarrow d(n) = \overline{\mathcal{D}}_a^{(-)} \mathcal{U}_a(n) + G\mathcal{O}(n) \mathbb{I}_N$$

Including both plaquette determinant and scalar potential in $\mathcal{O}(n)$ over-constrains system \longrightarrow sub-optimal Ward identity violations

David Schaich (Bern)

Backup: Restoration of Q_a and Q_{ab} supersymmetries

 Q_a and Q_{ab} from restoration of R symmetry (motivation for A_4^* lattice) Modified Wilson loops test R symmetries at non-zero lattice spacing Parameter c_2 may need logarithmic tuning in continuum limit

Results from arXiv:1411.0166 to be revisited using improved action

Backup: Code performance—weak and strong scaling Results from arXiv:1410.6971 to be updated using improved action

Left: Strong scaling for U(2) and U(3) $16^3 \times 32$ RHMC

Right: Weak scaling for $O(n^3)$ pfaffian calculation (fixed local volume) $n \equiv 16N^2V$ is number of fermion degrees of freedom

Dashed lines are optimal scaling

Solid line is power-law fit

David Schaich (Bern)

Backup: Numerical costs for N = 2, 3 and 4 colors

Blue: RHMC cost scaling $\sim N^{3.5}$ since condition number increases

Red: Pfaffian cost scaling $\sim N^6$ as expected

Backup: Dimensional reduction to $\mathcal{N} = (8, 8)$ SYM

 A_4^* lattice $\longrightarrow A_2^*$ (triangular) lattice

Torus **skewed** depending on $\alpha = N_x/N_t$

Modular trans. into fundamental domain can make skewed torus rectangular

Also need to stabilize compactified links to ensure broken center symmetries

Backup: $\mathcal{N} = (8, 8)$ SYM Wilson line eigenvalues

Check 'spatial deconfinement' through histograms of Wilson line eigenvalue phases

Left: $\alpha = 2$ distributions more extended as *N* increases

 \rightarrow dual gravity describes homogeneous black string (D1 phase)

Right: $\alpha = 1/2$ distributions more compact as *N* increases \longrightarrow dual gravity describes localized black hole (D0 phase)

David Schaich (Bern)

Backup: Static potential is Coulombic at all λ

String tension σ from fits to confining form $V(r) = A - C/r + \sigma r$

Slightly negative values flatten $V(r_l)$ for $r_l \leq L/2$ $\implies \sigma \rightarrow 0$ as accessible range of r_l increases on larger volumes

David Schaich (Bern)

Backup: Discretization artifacts in static potential

Discretization artifacts visible at short distances where Coulomb term in V(r) = A - C/r is most significant

Right: Highlight artifacts by extracting fluctuations around Coulomb fit

Danger of potential contamination in results for Coulomb coefficient C

Davic	Schaich	(Bern

Backup: Tree-level improvement

Classic trick to reduce discretization artifacts in static potential (Lang & Rebbi '82; Sommer '93; Necco '03)

Associate V(r) data with r from Fourier transform of gluon propagator

Recall
$$\frac{1}{4\pi^2 r^2} = \int_{-\pi}^{\pi} \frac{d^4 k}{(2\pi)^4} \frac{e^{ir \cdot k}}{k^2}$$
 where $\frac{1}{k^2} = G(k)$ in continuum
On A_4^* lattice $\longrightarrow \frac{1}{r_l^2} \equiv 4\pi^2 \int_{-\pi}^{\pi} \frac{d^4 \hat{k}}{(2\pi)^4} \frac{\cos\left(ir_l \cdot \hat{k}\right)}{4\sum_{\mu=1}^4 \sin^2\left(\hat{k} \cdot \hat{e}_{\mu} / 2\right)}$

Tree-level perturbative lattice propagator from arXiv:1102.1725

 \hat{e}_{μ} are A_4^* lattice basis vectors while momenta $\hat{k} = \frac{2\pi}{L} \sum_{\mu=1}^4 n_{\mu} \hat{g}_{\mu}$ depend on dual basis vectors

David Schaich (Bern)

Backup: Tree-level-improved static potential

Tree-level improvement significantly reduces discretization artifacts

David Schaich (Bern)

Backup: More $\mathcal{N} = 4$ SYM static potential tests

Left: Projecting Wilson loops from $U(N) \longrightarrow SU(N) \implies$ factor of $\frac{N^2-1}{N^2}$

Right: Unitarizing links removes scalars \implies factor of 1/2

Several ratios end up above expected values

Cause not clear — seems insensitive to lattice volume and μ

David Schaich (Bern)

Backup: Real-space RG for lattice $\mathcal{N} = 4$ SYM

Must preserve \mathcal{Q} and S_5 symmetries \longleftrightarrow geometric structure

Simple transformation constructed in arXiv:1408.7067

 $\begin{aligned} \mathcal{U}'_{a}(n') &= \xi \, \mathcal{U}_{a}(n) \mathcal{U}_{a}(n + \widehat{\mu}_{a}) & \eta'(n') &= \eta(n) \\ \psi'_{a}(n') &= \xi \left[\psi_{a}(n) \mathcal{U}_{a}(n + \widehat{\mu}_{a}) + \mathcal{U}_{a}(n) \psi_{a}(n + \widehat{\mu}_{a}) \right] & \text{etc.} \end{aligned}$

Doubles lattice spacing $a \rightarrow a' = 2a$, with tunable rescaling factor ξ

Scalar fields from polar decomposition $U(n) = e^{\varphi(n)}U(n)$ are shifted, $\varphi \longrightarrow \varphi + \log \xi$, since blocked U must remain unitary

Q-preserving RG blocking needed to show only one log. tuning to recover continuum Q_a and Q_{ab}

David Schaich (Bern)

Backup: Smearing for Konishi analyses

As for glueballs, smear to enlarge operator basis

APE-like smearing: - \rightarrow $(1 - \alpha)$ - + $\frac{\alpha}{8} \sum \Box$

Staples built from unitary parts of links but no final unitarization (unitarized smearing — e.g. stout — doesn't affect Konishi)

Average plaquette stable upon smearing (**right**) while minimum plaquette steadily increases (**left**)

Backup: Lattice superQCD in 2d & 3d

Add fundamental matter multiplets without breaking $Q^2 = 0$

Proposed by Matsuura [arXiv:0805.4491] and Sugino [arXiv:0807.2683], first numerical study by Catterall & Veernala [arXiv:1505.00467]

Backup: Spontaneous supersymmetry breaking Auxiliary field e.o.m. \rightarrow Fayet–Iliopoulos *D*-term potential

$$d = \overline{\mathcal{D}}_{a} \mathcal{U}_{a} + \sum_{i=1}^{F} \phi_{i} \overline{\phi}_{i} + r \mathbb{I}_{N} \longrightarrow S_{D} \propto \sum_{i=1}^{F} \operatorname{Tr} \left[\phi_{i} \overline{\phi}_{i} + r \mathbb{I}_{N} \right]^{2}$$

 $\langle Q\eta \rangle = \langle d \rangle \neq 0 \iff \langle 0 | H | 0 \rangle > 0 \iff$ spontaneous susy breaking Have $N \times F$ degrees of freedom to satisfy $N \times N$ conditions $\langle d \rangle = 0$

David Schaich (Bern)