Lattice $\mathcal{N}=4$ Supersymmetric Yang-Mills

David Schaich (Bern)

Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography International Centre for Theoretical Sciences, Bangalore 31 January 2018
arXiv:1505.03135 arXiv:1611.06561 arXiv:1709.07025
\& more to come with Simon Catterall, Raghav Jha and Toby Wiseman

Overview and plan

Goals: Reproduce known results in perturbative, holographic, etc. regimes

Then use lattice to access new domains

Quick lattice $\mathcal{N}=4$ SYM recap

(I) Dimensionally reduced (2d) thermodynamics
(II) 4d static potential Coulomb coefficient
(III) Anomalous dimension of Konishi operator

Open questions and future directions

Lattice supersymmetry in a nutshell

Motivation: Non-perturbative insights from first-principles lattice calcs
Obstruction: $\left\{Q_{\alpha}^{\mathrm{I}}, \bar{Q}_{\dot{\alpha}}^{\mathrm{J}}\right\}=2 \delta^{\mathrm{IJ}} \sigma_{\alpha \dot{\alpha}}^{\mu} P_{\mu} \quad$ broken in discrete space-time
\Longrightarrow Relevant susy-violating operators, typically too many to fine-tune

Solution: Preserve susy sub-algebra at non-zero lattice spacing
Equivalent constructions from topological twisting and deconstruction

Review: arXiv:0903.4881

Quick review of twisted lattice $\mathcal{N}=4$ SYM

Fields: 5 complexified links \mathcal{U}_{a} and $\overline{\mathcal{U}}_{a}$ in algebra $\mathfrak{g l}(N, \mathbb{C})$ $1+5+10$ fermions on lattice sites + links + plaquettes

Space-time: A_{4}^{*} lattice of 5 links symmetrically spanning 4d

Complexified links $\longrightarrow \mathrm{U}(N)=\mathrm{SU}(N) \otimes \mathrm{U}(1)$ gauge invariance Must regulate both $\mathrm{SU}(\mathrm{N})$ and $\mathrm{U}(1)$ flat directions

Two deformations in improved lattice action

 $\operatorname{SU}(N)$ scalar potential $\propto \mu^{2} \sum_{a}\left(\operatorname{Tr}\left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right]-N\right)^{2}$ Softly breaks susy $\longrightarrow \mathcal{Q}$-violating operators vanish $\propto \mu^{2} \rightarrow 0$$\mathrm{U}(1)$ plaquette determinant $\sim G \sum_{a<b}\left(\operatorname{det} \mathcal{P}_{a b}-1\right)$ Implemented supersymmetrically as Fayet-lliopoulos D-term potential

Test via Ward identity violations: $\mathcal{Q}\left[\eta \mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right] \neq 0$

Advertisement: Public code for lattice $\mathcal{N}=4$ SYM

so that the full improved action becomes

$$
\begin{align*}
S_{\text {imp }}= & S_{\text {exact }}^{\prime}+S_{\text {closed }}+S_{\text {soft }}^{\prime} \tag{3.10}\\
S_{\text {exact }}^{\prime}= & \frac{N}{2 \lambda_{\text {lat }}} \sum_{n} \operatorname{Tr}\left[-\overline{\mathcal{F}}_{a b}(n) \mathcal{F}_{a b}(n)-\chi_{a b}(n) \mathcal{D}_{[a}^{(+)} \psi_{b]}(n)-\eta(n) \overline{\mathcal{D}}_{a}^{(-)} \psi_{a}(n)\right. \\
& \left.\quad+\frac{1}{2}\left(\overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}(n)+G \sum_{a \neq b}\left(\operatorname{det} \mathcal{P}_{a b}(n)-1\right) \mathbb{I}_{N}\right)^{2}\right]-S_{\text {det }} \\
S_{\text {det }}= & \frac{N}{2 \lambda_{\text {lat }}} G \sum_{n} \operatorname{Tr}[\eta(n)] \sum_{a \neq b}\left[\operatorname{det} \mathcal{P}_{a b}(n)\right] \operatorname{Tr}\left[\mathcal{U}_{b}^{-1}(n) \psi_{b}(n)+\mathcal{U}_{a}^{-1}\left(n+\widehat{\mu}_{b}\right) \psi_{a}\left(n+\widehat{\mu}_{b}\right)\right] \\
S_{\text {closed }}= & -\frac{N}{8 \lambda_{\text {lat }}} \sum_{n} \operatorname{Tr}\left[\epsilon_{a b c d e} \chi_{\text {de }}\left(n+\widehat{\mu}_{a}+\widehat{\mu}_{b}+\widehat{\mu}_{c}\right) \overline{\mathcal{D}}_{c}^{(-)} \chi_{a b}(n)\right], \\
S_{\text {soft }}^{\prime}= & \frac{N}{2 \lambda_{\text {lat }}} \mu^{2} \sum_{n} \sum_{a}\left(\frac{1}{N} \operatorname{Tr}\left[\mathcal{U}_{a}(n) \overline{\mathcal{U}}_{a}(n)\right]-1\right)^{2}
\end{align*}
$$

$\gtrsim 100$ inter-node data transfers in fermion operator - non-trivial. . .

To reduce barriers to entry our parallel code is publicly developed at github.com/daschaich/susy

Evolved from MILC lattice QCD code, presented in arXiv:1410.6971

(I) Thermodynamics on a 2-torus

Naive dimensional reduction $\longrightarrow 2 \mathrm{~d} \mathcal{N}=(8,8) \mathrm{SYM}$
with four nilpotent twisted-scalar $\mathcal{Q}^{2}=0$
Study low temperatures $t=1 / r_{\beta} \longleftrightarrow$ black holes in dual supergravity

For decreasing r_{L} at large \boldsymbol{N}
homogeneous black string (D1)
\longrightarrow localized black hole (D0)

"spatial deconfinement" signalled by Wilson line P_{L}

$\mathcal{N}=(8,8)$ SYM lattice phase diagram results

Fix aspect ratio $\alpha=r_{L} / r_{\beta}$,
scan in $r_{\beta}=r_{L} / \alpha=\beta \sqrt{\lambda}$
Inset shows susceptibility χ of Wilson line

Lower-temperature transitions at smaller $\alpha<1 \longrightarrow$ larger errors

Results consistent with holography and high-temp. bosonic QM

Dual black hole thermodynamics

Holography predicts bosonic action corresponding to dual black holes $s_{\text {Bos }} \propto t^{3}$ for large- r_{L} D1 phase $\quad s_{\text {Bos }} \propto t^{3.2}$ for small- r_{L} D0 phase

Lattice results consistent with holography for sufficiently low $t \lesssim 0.4$

Need larger $N>16$ to avoid instabilities at lower temperatures

(II) Static potential $V(r)$

Static probes $\longrightarrow \quad r \times T$ Wilson loops $\quad W(r, T) \propto e^{-V(r) T}$

Coulomb gauge trick reduces A_{4}^{*} lattice complications

Static potential is Coulombic at all λ

Fits to confining $V(r)=A-C / r+\sigma r \longrightarrow$ vanishing string tension σ
\Longrightarrow Fit to just $V(r)=A-C / r$ to extract Coulomb coefficient $C(\lambda)$

Recent progress: Incorporating tree-level improvement into analysis

Coupling dependence of Coulomb coefficient

Continuum perturbation theory predicts $C(\lambda)=\lambda /(4 \pi)+\mathcal{O}\left(\lambda^{2}\right)$ Holography predicts $C(\lambda) \propto \sqrt{\lambda}$ for $N \rightarrow \infty$ and $\lambda \rightarrow \infty$ with $\lambda \ll N$

Surprisingly good agreement with perturbation theory for $\lambda_{\text {lat }} \leq 4$

(III) Konishi operator scaling dimension

$\mathcal{O}_{K}(x)=\sum_{\mathrm{I}} \operatorname{Tr}\left[\phi^{\mathrm{I}}(x) \Phi^{\mathrm{I}}(x)\right]$ is simplest conformal primary operator Scaling dimension $\Delta_{K}(\lambda)=2+\gamma_{K}(\lambda)$ investigated through perturbation theory (\& S duality), holography, conformal bootstrap

Lattice scalars $\varphi(n)$ from polar decomposition of complexified links

$$
\mathcal{U}_{a}(n) \longrightarrow e^{\varphi_{a}(n)} U_{a}(n) \quad \mathcal{O}_{K}^{\text {lat }}(n)=\sum_{a} \operatorname{Tr}\left[\varphi_{a}(n) \varphi_{a}(n)\right]-\operatorname{vev}
$$

$C_{K}(r) \equiv \mathcal{O}_{K}(x+r) \mathcal{O}_{K}(x) \propto r^{-2 \Delta_{K}}$ 'SUGRA' is $20^{\prime} \mathcal{O}_{S} \sim \varphi_{\left\{a \varphi_{b}\right\}}$ with protected $\Delta_{s}=2$

To handle systemics, comparing
Direct power-law decay
Finite-size scaling
Monte Carlo RG

Scaling dimensions from MCRG stability matrix

System as (infinite) sum of operators $H=\sum_{i} c_{i} \mathcal{O}_{i}$
Couplings c_{i} flow under symmetry-preserving RG blocking R_{b}
n-times-blocked system $\quad H^{(n)}=R_{b} H^{(n-1)}=\sum_{i} c_{i}^{(n)} \mathcal{O}_{i}^{(n)}$
Fixed point defined by $H^{\star}=R_{b} H^{\star}$ with couplings c_{i}^{\star}

Linear expansion around fixed point defines stability matrix $T_{i j}^{\star}$

$$
c_{i}^{(n)}-c_{i}^{\star}=\left.\sum_{k} \frac{\partial c_{i}^{(n)}}{\partial c_{k}^{(n-1)}}\right|_{H^{\star}}\left(c_{k}^{(n-1)}-c_{k}^{\star}\right) \equiv \sum_{j} T_{i k}^{\star}\left(c_{k}^{(n-1)}-c_{k}^{\star}\right)
$$

Correlators of $\mathcal{O}_{i}, \mathcal{O}_{k} \longrightarrow$ elements of stability matrix [Swendsen, 1979]
Eigenvalues of $T_{i k}^{\star} \longrightarrow$ scaling dimensions of corresponding operators

Preliminary Δ_{K} results from Monte Carlo RG

MCRG stability matrix includes both $\mathcal{O}_{K}^{\text {lat }}$ and $\mathcal{O}_{S}^{\text {lat }}$ Impose protected $\Delta_{S}=2$

Systematic uncertainties from different amounts of smearing

Complication: Twisted $\mathrm{SO}(4)_{t w}$ involves only $\mathrm{SO}(4)_{R} \subset \mathrm{SO}(6)_{R}$
\Longrightarrow Lattice Konishi operator mixes with $\mathrm{SO}(4)_{R}$-singlet part of the $\operatorname{SO}(6)_{R}$-nonsinglet SUGRA operator

Current work: Variational analyses to disentangle operators

Recapitulation and outlook

- Lattice promises non-perturbative insights from first principles
- Lattice $\mathcal{N}=4$ SYM is practical thanks to exact \mathcal{Q} susy
- Public code to reduce barriers to entry

Significant progress toward goals of lattice investigations

- $2 \mathrm{~d} \mathcal{N}=(8,8)$ SYM thermodynamics consistent with holography
- 4d static potential Coulomb coefficient $C(\lambda)$ at weak coupling
- Preliminary conformal scaling dimension of Konishi operator

Many more directions are being - or can be - pursued

- Understanding the (absence of a) sign problem
- Systems with less supersymmetry, in lower dimensions, including matter fields, exhibiting spontaneous susy breaking, ...

Upcoming Workshops

Numerical approaches to holography, quantum gravity and cosmology

$$
\text { 21-24 May } 2018
$$

Higgs Centre for Theoretical Physics, Edinburgh

Interdisciplinary approach to QCD-like composite dark matter

1-5 October 2018 ECT* Trento

Thank you!

Collaborators

Simon Catterall, Raghav Jha, Toby Wiseman also Georg Bergner, Poul Damgaard, Joel Giedt, Anosh Joseph

Funding and computing resources

USQCD

Supplement: Potential sign problem

Observables: $\quad\langle\mathcal{O}\rangle=\frac{1}{\mathcal{Z}} \int[d \mathcal{U}][d \overline{\mathcal{U}}] \mathcal{O} e^{-S_{B}[\mathcal{U}, \overline{\mathcal{U}}]} \operatorname{pf} \mathcal{D}[\mathcal{U}, \overline{\mathcal{U}}]$
Pfaffian can be complex for lattice $\mathcal{N}=4 \mathrm{SYM}, \operatorname{pf} \mathcal{D}=|\operatorname{pf} \mathcal{D}| e^{i \alpha}$
Complicates interpretation of $\left\{e^{-S_{B}} \operatorname{pf} \mathcal{D}\right\}$ as Boltzmann weight

RHMC uses phase quenching, $\operatorname{pf} \mathcal{D} \longrightarrow|\operatorname{pf} \mathcal{D}|$, needs reweighting
$\langle\mathcal{O}\rangle=\frac{\left\langle\mathcal{O} e^{i \alpha}\right\rangle_{p q}}{\left\langle e^{i \alpha}\right\rangle_{p q}} \quad$ with $\left\langle\mathcal{O} e^{i \alpha}\right\rangle_{p q}=\frac{1}{\mathcal{Z}_{p q}} \int[d \mathcal{U}][d \bar{U}] \mathcal{O} e^{i \alpha} e^{-S_{B}}|p f \mathcal{D}|$
\Longrightarrow Monitor $\left\langle e^{i \alpha}\right\rangle_{p q}$ as function of volume, coupling, N

Pfaffian phase dependence on volume and coupling

Left: $1-\langle\cos (\alpha)\rangle_{p q} \ll 1$ independent of volume and N at $\lambda_{\text {lat }}=1$
Right: Larger $\lambda_{\text {lat }} \geq 4 \longrightarrow$ much larger phase fluctuations

To do: Analyze more volumes and N with improved action
Extremely expensive $\mathcal{O}\left(n^{3}\right)$ computation
~ 50 hours $\times 16$ cores for single $U(2) 4^{4}$ measurement

Two puzzles posed by the sign problem

Periodic temporal boundary conditions for the fermions
\longrightarrow obvious sign problem, $\left\langle e^{i \alpha}\right\rangle_{p q} \approx 0$
Anti-periodic BCs $\longrightarrow e^{i \alpha} \approx 1$, phase reweighting negligible

Why such sensitivity to the BCs?

Other $\langle\mathcal{O}\rangle_{p q}$ are nearly identical for these two ensembles

Why doesn't sign problem affect other observables?

Backup: Essence of numerical lattice calculations

Evaluate observables from functional integral via importance sampling Monte Carlo

$$
\begin{aligned}
\langle\mathcal{O}\rangle & =\frac{1}{\mathcal{Z}} \int \mathcal{D} \cup \mathcal{O}(U) e^{-S[U]} \\
& \longrightarrow \frac{1}{N} \sum_{i=1}^{N} \mathcal{O}\left(U_{i}\right) \text { with uncert. } \propto \sqrt{\frac{1}{N}}
\end{aligned}
$$

U are field configurations in discretized euclidean space-time, sampled with probability $\propto e^{-S}$
$S[U]$ is lattice action, ideally real and positive $\longrightarrow \frac{1}{\mathcal{Z}} e^{-S}$ as probability distribution

Backup: More features of lattice calculations

Spacing "a" between lattice sites
\longrightarrow UV cutoff scale $1 / a$
Removing cutoff: $a \rightarrow 0$ (with $L / a \rightarrow \infty$)
Lattice cutoff preserves hypercubic subgroup \longrightarrow restore Poincaré in continuum limit

Lattice action S defined by bare lagrangian at UV cutoff $1 / a$

After generating and saving ensembles $\left\{U_{n}\right\}$ distributed $\propto e^{-S}$ often quick and easy to measure many observables $\langle\mathcal{O}\rangle$

Changing action generally requires generating new ensembles

Backup: Hybrid Monte Carlo (HMC) algorithm

Goal: Sample field configurations U with probability $\frac{1}{z} e^{-S[U]}$

HMC is Markov process based on Metropolis-Rosenbluth-Teller

Fermions \longrightarrow extensive action computation
\Longrightarrow Global updates
using fictitious molecular dynamics
(1) Introduce fictitious "MD time" τ and stochastic canonical momenta for fields
(2) Inexact MD evolution along trajectory in $\tau \longrightarrow$ new configuration
(3) Accept/reject test on MD discretization error

Backup: Discrete space-time breaks Leibnitz rule

$\left\{Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\right\}=2 \sigma_{\alpha \dot{\alpha}}^{\mu} P_{\mu}=2 i \sigma_{\alpha \dot{\alpha}}^{\mu} \partial_{\mu}$ is problematic
$\longrightarrow \operatorname{try}\left\{Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\right\}=2 i \sigma_{\alpha \dot{\alpha}}^{\mu} \nabla_{\mu}$ for a discrete translation
$\nabla_{\mu} \phi(x)=\frac{1}{a}[\phi(x+a \widehat{\mu})-\phi(x)]=\partial_{\mu} \phi(x)+\frac{a}{2} \partial_{\mu}^{2} \phi(x)+\mathcal{O}\left(a^{2}\right)$

Essential difference between ∂_{μ} and lattice ∇_{μ} with $a>0$

$$
\begin{aligned}
\nabla_{\mu}[\phi(x) \eta(x)] & =a^{-1}[\phi(x+a \widehat{\mu}) \eta(x+a \widehat{\mu})-\phi(x) \eta(x)] \\
& =\left[\nabla_{\mu} \phi(x)\right] \eta(x)+\phi(x) \nabla_{\mu} \eta(x)+a\left[\nabla_{\mu} \phi(x)\right] \nabla_{\mu} \eta(x)
\end{aligned}
$$

Only recover Leibnitz rule $\partial_{\mu}(f g)=\left(\partial_{\mu} f\right) g+f \partial_{\mu} g$ when $a \rightarrow 0$ \Longrightarrow "Discrete supersymmetry" breaks down on the lattice
(Dondi \& Nicolai, "Lattice Supersymmetry", 1977)

Backup: Basic features of $\mathcal{N}=4$ SYM

Widely used to develop continuum QFT tools \& techniques, from scattering amplitudes to holography

Arguably simplest non-trivial 4d field theory
$\operatorname{SU}(N)$ gauge theory with four fermions ψ^{I} and six scalars ϕ^{IJ}, all massless and in adjoint rep.

Action consists of kinetic, Yukawa and four-scalar terms with coefficients related by symmetries \longrightarrow single coupling $\lambda=g^{2} N$

Maximal 16 supersymmetries Q_{α}^{I} and $\bar{Q}_{\dot{\alpha}}^{\mathrm{I}} \quad(\mathrm{I}=1, \cdots, 4)$
transforming under global $\mathrm{SU}(4) \sim \mathrm{SO}(6) \mathrm{R}$ symmetry
Conformal: β function is zero for any λ

Backup: Topological twisting for $\mathcal{N}=4$ SYM

Intuitive picture - expand 4×4 matrix of supersymmetries

$$
\left(\begin{array}{rrrr}
Q_{\alpha}^{1} & Q_{\alpha}^{2} & Q_{\alpha}^{3} & Q_{\alpha}^{4} \\
\bar{Q}_{\dot{\alpha}}^{1} & \bar{Q}_{\dot{\alpha}}^{2} & \bar{Q}_{\dot{\alpha}}^{3} & \bar{Q}_{\dot{\alpha}}^{4}
\end{array}\right)=\begin{aligned}
& \quad \mathcal{Q}+\mathcal{Q}_{\mu} \gamma_{\mu}+\mathcal{Q}_{\mu \nu} \gamma_{\mu} \gamma_{\nu}+\overline{\mathcal{Q}}_{\mu} \gamma_{\mu} \gamma_{5}+\overline{\mathcal{Q}} \gamma_{5} \\
& \longrightarrow \mathcal{Q}+\mathcal{Q}_{a} \gamma_{a}+\mathcal{Q}_{a b} \gamma_{a} \gamma_{b} \\
& \text { with } a, b=1, \cdots, 5
\end{aligned}
$$

Kähler-Dirac muliplet of 'twisted' supersymmetries \mathcal{Q} transform with integer spin under 'twisted rotation group'

$$
\mathrm{SO}(4)_{t w} \equiv \operatorname{diag}\left[\mathrm{SO}(4)_{\mathrm{euc}} \otimes \mathrm{SO}(4)_{R}\right] \quad \mathrm{SO}(4)_{R} \subset \mathrm{SO}(6)_{R}
$$

Change of variables \longrightarrow closed subalgebra $\{\mathcal{Q}, \mathcal{Q}\}=2 \mathcal{Q}^{2}=0$ that can be exactly preserved on the lattice

Backup: Susy subalgebra from twisted $\mathcal{N}=4$ SYM

Fields \& Qs transform with integer spin under $\mathrm{SO}(4)_{t w}$ - no spinors
Q_{α} and $\bar{Q}_{\dot{\alpha}} \longrightarrow \mathcal{Q}, \mathcal{Q}_{a}$ and $\mathcal{Q}_{a b}$ ψ and $\bar{\psi} \longrightarrow \eta, \psi_{a}$ and $\chi_{a b}$
A_{μ} and $\Phi^{I} \longrightarrow$ complexified gauge field \mathcal{A}_{a} and $\overline{\mathcal{A}}_{a}$ $(\longrightarrow \mathrm{U}(N)=\mathrm{SU}(N) \otimes \mathrm{U}(1)$ gauge theory $)$

Schematically, under SO(d) $)_{t w}=\operatorname{diag}\left[\mathrm{SO}(d)_{\text {euc }} \otimes \mathrm{SO}(d)_{R}\right]$

$$
\begin{aligned}
A_{\mu} & \sim \text { vector } \otimes \text { scalar } \longrightarrow \text { vector } \\
\Phi^{I} & \sim \text { scalar } \otimes \text { vector } \longrightarrow \text { vector }
\end{aligned}
$$

Easiest to see by dimensionally reducing from 5 d

$$
\mathcal{A}_{a}=A_{a}+i \Phi_{a} \longrightarrow\left(A_{\mu}, \phi\right)+i\left(\Phi_{\mu}, \bar{\phi}\right)
$$

Backup: Susy subalgebra from twisted $\mathcal{N}=4$ SYM

Fields \& Qs transform with integer spin under $\mathrm{SO}(4)_{t w}$ - no spinors
Q_{α} and $\bar{Q}_{\dot{\alpha}} \longrightarrow \mathcal{Q}, \mathcal{Q}_{a}$ and $\mathcal{Q}_{a b}$ ψ and $\bar{\psi} \longrightarrow \eta, \psi_{a}$ and $\chi_{a b}$
A_{μ} and $\Phi^{1} \longrightarrow$ complexified gauge field \mathcal{A}_{a} and $\overline{\mathcal{A}}_{a}$ $(\longrightarrow \mathrm{U}(N)=\mathrm{SU}(N) \otimes \mathrm{U}(1)$ gauge theory $)$

Twisted-scalar supersymmetry \mathcal{Q}
correctly interchanges bosonic \longleftrightarrow fermionic d.o.f. with $\mathcal{Q}^{2}=0$
$\mathcal{Q} \mathcal{A}_{a}=\psi_{a}$
$\mathcal{Q} \psi_{a}=0$
$\mathcal{Q} \chi_{a b}=-\overline{\mathcal{F}}_{a b}$
$\mathcal{Q} \overline{\mathcal{A}}_{a}=0$
$\mathcal{Q} \eta=d$
$\mathcal{Q} d=0$
bosonic auxiliary field with e.o.m. $d=\overline{\mathcal{D}}_{a} \mathcal{A}_{a}$

Backup: Details of twisted lattice $\mathcal{N}=4$ SYM

Lattice theory looks nearly the same despite breaking \mathcal{Q}_{a} and $\mathcal{Q}_{a b}$
Covariant derivatives \longrightarrow finite difference operators

Complexified gauge fields $\mathcal{A}_{a} \longrightarrow$ gauge links $\mathcal{U}_{a} \in \mathfrak{g l}(N, \mathbb{C})$

$$
\begin{array}{cr}
\mathcal{Q} \mathcal{A}_{a} \longrightarrow \mathcal{Q} \mathcal{U}_{a}=\psi_{a} & \mathcal{Q} \psi_{a}=0 \\
\mathcal{Q} \chi_{a b}=-\overline{\mathcal{F}}_{a b} & \mathcal{Q} \overline{\mathcal{A}}_{a} \longrightarrow \mathcal{Q} \overline{\mathcal{U}}_{a}=0 \\
\mathcal{Q} \eta=d & \mathcal{Q} d=0
\end{array}
$$

(geometrically η on sites, ψ_{a} on links, etc.)
Susy lattice action $(\mathcal{Q} S=0)$ from $\mathcal{Q}^{2} \cdot=0$ and Bianchi identity

$$
S=\frac{N}{4 \lambda_{\text {lat }}} \operatorname{Tr}\left[\mathcal{Q}\left(\chi_{a b} \mathcal{F}_{a b}+\eta \overline{\mathcal{D}}_{a} \mathcal{U}_{a}-\frac{1}{2} \eta d\right)-\frac{1}{4} \epsilon_{a b c d e} \chi_{a b} \overline{\mathcal{D}}_{c} \chi_{d e}\right]
$$

Backup: A_{4}^{*} lattice from dimensional reduction

Again easiest to dimensionally reduce from 5d, treating all five gauge links \mathcal{U}_{a} symmetrically

Start with hypercubic lattice in 5d momentum space

Symmetric constraint $\sum_{a} \partial_{a}=0$ projects to 4d momentum space

Result is A_{4} lattice
\longrightarrow dual A_{4}^{*} lattice in real space

Backup: Twisted $\mathrm{SO}(4)$ symmetry on the A_{4}^{*} lattice

$A_{4}^{*} \sim 4 \mathrm{~d}$ analog of 2 d triangular lattice

Basis vectors linearly dependent and non-orthogonal $\longrightarrow \lambda=\lambda_{\text {lat }} / \sqrt{5}$

Preserves S_{5} point group symmetry

S_{5} irreps match onto irreps of twisted $\mathrm{SO}(4)_{t w}$

$$
\begin{aligned}
\mathbf{5}=\mathbf{4} \oplus \mathbf{1}: & \psi_{a} \longrightarrow \psi_{\mu}, \quad \bar{\eta} \\
\mathbf{1 0}=\mathbf{6} \oplus \mathbf{4}: & \chi_{a b} \longrightarrow \chi_{\mu \nu}, \bar{\psi}_{\mu}
\end{aligned}
$$

$S_{5} \longrightarrow \mathrm{SO}(4)_{t w}$ in continuum limit restores \mathcal{Q}_{a} and $\mathcal{Q}_{a b}$

Backup: Hypercubic representation of A_{4}^{*} lattice

 In the code it is very convenient to represent the A_{4}^{*} lattice as a hypercube plus one backwards diagonal link

Backup: Analytic results for lattice $\mathcal{N}=4$ SYM

$$
\begin{aligned}
U(N) \text { gauge invariance }+\mathcal{Q}+ & S_{5} \text { lattice symmetries } \\
& \text { several significant analytic results }
\end{aligned}
$$

Moduli space preserved to all orders of lattice perturbation theory \longrightarrow no scalar potential induced by radiative corrections
β function vanishes at one loop in lattice perturbation theory
Real-space RG blocking transformations preserving \mathcal{Q} and S_{5}
\longrightarrow no new terms in long-distance effective action
Only one logarithmic tuning to recover continuum \mathcal{Q}_{a} and $\mathcal{Q}_{a b}$

Backup: Problem with $\mathrm{SU}(\mathrm{N})$ flat directions

$\mu^{2} / \lambda_{\text {lat }}$ too small $\longrightarrow \mathcal{U}_{a}$ can move far from continuum form $\mathbb{I}_{N}+\mathcal{A}_{a}$
Example: $\mu=0.2$ and $\lambda_{\text {lat }}=5$ on $8^{3} \times 24$ volume
Left: Bosonic action stable $\sim 18 \%$ off its supersymmetric value
Right: Complexified Polyakov ('Maldacena') loop wanders off to $\sim 10^{9}$

Backup: Details of $\operatorname{SU}(N)$ scalar potential

$$
S=\frac{N}{4 \lambda_{\text {at }}}\left[\mathcal{Q}\left(\chi_{a b} \mathcal{F}_{a b}+\eta \overline{\mathcal{D}}_{a} \mathcal{U}_{a}-\frac{1}{2} \eta d\right)-\frac{1}{4} \epsilon_{a b c d e} \chi_{a b} \overline{\mathcal{D}}_{c} \chi_{d e}+\mu^{2} V\right]
$$

Scalar potential $V=\sum_{a}\left(\frac{1}{N} \operatorname{Tr}\left[U_{\alpha} \bar{U}_{\mathrm{a}}\right]-1\right)^{2}$ lifts SU(N) flat directions and ensures $\mathcal{U}_{a}=\mathbb{I}_{N}+\mathcal{A}_{a}$ in continuum limit

Softly breaks \mathcal{Q} - all susy violations $\propto \mu^{2} \rightarrow 0$ in continuum limit

Ward identity violations, $\langle\mathcal{Q O}\rangle \neq 0$, show \mathcal{Q} breaking and restoration

Backup: Problem with $\mathrm{U}(1)$ flat directions

Monopole condensation \longrightarrow confined lattice phase
not present in continuum $\mathcal{N}=4 \mathrm{SYM}$

Around the same $\lambda_{\text {lat }} \approx 2 \ldots$
Left: Polyakov loop falls toward zero
Center: Plaquette determinant falls toward zero
Right: Density of $U(1)$ monopole world lines becomes non-zero

Backup: Details of $\mathrm{U}(1)$ plaq. determinant regulator

$$
\begin{gathered}
S=\frac{N}{4 \lambda_{\text {lat }}}\left[\mathcal{Q}\left(\chi_{a b} \mathcal{F}_{a b}+\downarrow-\frac{1}{2} \eta d\right)-\frac{1}{4} \epsilon_{a b c d e} \chi_{a b} \overline{\mathcal{D}}_{c} \chi_{d e}+\mu^{2} V\right] \\
\eta\left\{\overline{\mathcal{D}}_{a} \mathcal{U}_{a}+G \sum_{a<b}\left[\operatorname{det} \mathcal{P}_{a b}-1\right] \mathbb{I}_{N}\right\}
\end{gathered}
$$

Modify e.o.m. for d to constrain plaquette determinant \longrightarrow lifts $\mathrm{U}(1)$ zero mode \& flat directions without susy breaking

Much better than adding another soft \mathcal{Q}-breaking term

Backup: More on soft supersymmetry breaking

Until 2015 the $\mathrm{U}(1)$ regulator was another soft susy-breaking term

$$
S_{\text {soft }}=\frac{N}{4 \lambda_{\text {lat }}} \mu^{2} \sum_{a}\left(\frac{1}{N} \operatorname{Tr}\left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right]-1\right)^{2}+\kappa \sum_{a<b}\left|\operatorname{det} \mathcal{P}_{a b}-1\right|^{2}
$$

\longrightarrow much larger \mathcal{Q}-breaking effects than scalar potential
Left: \mathcal{Q} Ward identity from bosonic action $\left\langle s_{B}\right\rangle=9 N^{2} / 2$
Right: Soft susy breaking suppressed $\propto 1 / N^{2}$

Backup: Supersymmetric moduli space modification

 arXiv:1505.03135 introduces method to impose \mathcal{Q}-invariant constraintsModify auxiliary field equations of motion \longrightarrow moduli space

$$
d(n)=\overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}(n) \quad \longrightarrow \quad d(n)=\overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}(n)+G \mathcal{O}(n) \mathbb{I}_{N}
$$

Including both plaquette determinant and scalar potential in $\mathcal{O}(n)$ over-constrains system \longrightarrow sub-optimal Ward identity violations

Backup: Restoration of \mathcal{Q}_{a} and $\mathcal{Q}_{a b}$ supersymmetries

\mathcal{Q}_{a} and $\mathcal{Q}_{a b}$ from restoration of R symmetry (motivation for A_{4}^{*} lattice)
Modified Wilson loops test R symmetries at non-zero lattice spacing
Parameter c_{2} may need logarithmic tuning in continuum limit
Results from arXiv:1411.0166 to be revisited using improved action

Backup: Code performance-weak and strong scaling

Results from arXiv:1410.6971 to be updated using improved action
Left: Strong scaling for $\mathrm{U}(2)$ and $\mathrm{U}(3) 16^{3} \times 32$ RHMC
Right: Weak scaling for $\mathcal{O}\left(n^{3}\right)$ pfaffian calculation (fixed local volume)

$$
n \equiv 16 N^{2} V \text { is number of fermion degrees of freedom }
$$

Dashed lines are optimal scaling

Solid line is power-law fit

Backup: Numerical costs for $N=2,3$ and 4 colors

Blue: RHMC cost scaling $\sim N^{3.5}$ since condition number increases
Red: Pfaffian cost scaling $\sim N^{6}$ as expected

Backup: Dimensional reduction to $\mathcal{N}=(8,8)$ SYM

Naive for now: $4 \mathrm{~d} \mathcal{N}=4 \mathrm{SYM}$ code with $N_{y}=N_{z}=1$
A_{4}^{*} lattice $\longrightarrow A_{2}^{*}$ (triangular) lattice

Torus skewed depending on $\alpha=N_{x} / N_{t}$
Modular trans. into fundamental domain can make skewed torus rectangular

Also need to stabilize compactified links to ensure broken center symmetries

Backup: $\mathcal{N}=(8,8)$ SYM Wilson line eigenvalues

Check 'spatial deconfinement' through histograms

of Wilson line eigenvalue phases

Left: $\alpha=2$ distributions more extended as N increases
\longrightarrow dual gravity describes homogeneous black string (D1 phase)
Right: $\alpha=1 / 2$ distributions more compact as N increases \longrightarrow dual gravity describes localized black hole (D0 phase)

Backup: Static potential is Coulombic at all λ

String tension σ from fits to confining form $V(r)=A-C / r+\sigma r$

Slightly negative values flatten $V\left(r_{l}\right)$ for $r_{l} \lesssim L / 2$
$\Longrightarrow \sigma \rightarrow 0$ as accessible range of r_{l} increases on larger volumes

Backup: Discretization artifacts in static potential

Discretization artifacts visible at short distances
where Coulomb term in $V(r)=A-C / r$ is most significant
Right: Highlight artifacts by extracting fluctuations around Coulomb fit

Danger of potential contamination in results for Coulomb coefficient C

Backup: Tree-level improvement

Classic trick to reduce discretization artifacts in static potential
(Lang \& Rebbi '82; Sommer '93; Necco '03)
Associate $V(r)$ data with r from Fourier transform of gluon propagator
Recall $\frac{1}{4 \pi^{2} r^{2}}=\int_{-\pi}^{\pi} \frac{d^{4} k}{(2 \pi)^{4}} \frac{e^{i r \cdot k}}{k^{2}}$ where $\frac{1}{k^{2}}=G(k)$ in continuum
On A_{4}^{*} lattice $\longrightarrow \frac{1}{r_{l}^{2}} \equiv 4 \pi^{2} \int_{-\pi}^{\pi} \frac{d^{4} \widehat{k}}{(2 \pi)^{4}} \frac{\cos \left(i_{I} \cdot \widehat{k}\right)}{4 \sum_{\mu=1}^{4} \sin ^{2}\left(\widehat{k} \cdot \widehat{e}_{\mu} / 2\right)}$
Tree-level perturbative lattice propagator from arXiv:1102.1725
\widehat{e}_{μ} are A_{4}^{*} lattice basis vectors
while momenta $\widehat{k}=\frac{2 \pi}{L} \sum_{\mu=1}^{4} n_{\mu} \widehat{g}_{\mu}$ depend on dual basis vectors

Backup: Tree-level-improved static potential

Tree-level improvement significantly reduces discretization artifacts

Backup: More $\mathcal{N}=4$ SYM static potential tests

Left: Projecting Wilson loops from $U(N) \longrightarrow S U(N) \Longrightarrow$ factor of $\frac{N^{2}-1}{N^{2}}$
Right: Unitarizing links removes scalars \Longrightarrow factor of $1 / 2$

Several ratios end up above expected values
Cause not clear - seems insensitive to lattice volume and μ

Backup: Real-space RG for lattice $\mathcal{N}=4$ SYM

Must preserve \mathcal{Q} and S_{5} symmetries \longleftrightarrow geometric structure

Simple transformation constructed in arXiv:1408.7067

$$
\begin{array}{lc}
\mathcal{U}_{a}^{\prime}\left(n^{\prime}\right)=\xi \mathcal{U}_{a}(n) \mathcal{U}_{a}\left(n+\widehat{\mu}_{a}\right) & \eta^{\prime}\left(n^{\prime}\right)=\eta(n) \\
\psi_{a}^{\prime}\left(n^{\prime}\right)=\xi\left[\psi_{a}(n) \mathcal{U}_{a}\left(n+\widehat{\mu}_{a}\right)+\mathcal{U}_{a}(n) \psi_{a}\left(n+\widehat{\mu}_{a}\right)\right] & \text { etc. }
\end{array}
$$

Doubles lattice spacing $a \longrightarrow a^{\prime}=2 a$, with tunable rescaling factor
Scalar fields from polar decomposition $\mathcal{U}(n)=e^{\varphi(n)} U(n)$
are shifted, $\varphi \longrightarrow \varphi+\log \xi$, since blocked U must remain unitary
\mathcal{Q}-preserving RG blocking needed
to show only one log. tuning to recover continuum \mathcal{Q}_{a} and $\mathcal{Q}_{a b}$

Backup: Smearing for Konishi analyses

As for glueballs, smear to enlarge operator basis
APE-like smearing: $\quad-\quad \longrightarrow(1-\alpha)-\quad+\frac{\alpha}{8} \sum \sqcap$
Staples built from unitary parts of links but no final unitarization
(unitarized smearing - e.g. stout - doesn't affect Konishi)
Average plaquette stable upon smearing (right)
while minimum plaquette steadily increases (left)

Backup: Lattice superQCD in 2d \& 3d

Add fundamental matter multiplets without breaking $\mathcal{Q}^{2}=0$
Proposed by Matsuura [arXiv:0805.4491] and Sugino [arXiv:0807.2683], first numerical study by Catterall \& Veernala [arXiv:1505.00467]

2-slice lattice SYM
with $\mathrm{U}(N) \times \mathrm{U}(F)$ gauge group Adj. fields on each slice Bi-fundamental in between

Set $\mathrm{U}(F)$ coupling to zero
$\longrightarrow \mathrm{U}(N)$ SQCD in $d-1$ dims. with F fund. hypermultiplets

$U\left(N_{F}\right)$ SYM Adjoint Model

Backup: Spontaneous supersymmetry breaking

Auxiliary field e.o.m. \longrightarrow Fayet-lliopoulos D-term potential

$$
d=\overline{\mathcal{D}}_{a} \mathcal{U}_{a}+\sum_{i=1}^{F} \phi_{i} \bar{\phi}_{i}+r \mathbb{I}_{N} \quad \longrightarrow \quad S_{D} \propto \sum_{i=1}^{F} \operatorname{Tr}\left[\phi_{i} \bar{\phi}_{i}+r \mathbb{I}_{N}\right]^{2}
$$

$\langle\mathcal{Q} \eta\rangle=\langle d\rangle \neq 0 \longleftrightarrow\langle 0| H|0\rangle>0 \longleftrightarrow$ spontaneous susy breaking Have $N \times F$ degrees of freedom to satisfy $N \times N$ conditions $\langle d\rangle=0$

