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Motivation: Electroweak symmetry breaking

LHC experiments have collected
∼ 4 fb−1 of data at

√
s = 13 TeV

Soon we will see new constraints on
physics beyond the standard model
. . . and possibly new discoveries!

One compelling possibility is new strong dynamics
that produces a composite Higgs boson

Protects the electroweak scale from sensitivity to quantum effects
(solving the hierarchy / fine-tuning problem)

Lattice gauge theory has a crucial role to play
in exploring and understanding new strong dynamics
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Motivation: Composite Higgs vs. QCD

Electroweak symmetry breaking through new strong dynamics
remains viable but must satisfy stringent experimental constraints

The composite Higgs boson must have a mass of 125 GeV
and standard-model-like properties

Electroweak precision observables (e.g., S parameter)
must be consistent with the standard model

If the new strong dynamics resembled QCD
these conditions would not be satisfied

New strong dynamics different from QCD
can be studied non-perturbatively by lattice calculations
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Strategy for lattice studies of new strong dynamics
Systematically depart from familiar ground of lattice QCD

(N = 3 with NF = 2 light flavors in fundamental rep)

Identify generic features of non-QCD-like strong dynamics

Focus on near-conformal dynamics

Quick orientation:
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Strategy for lattice studies of new strong dynamics
Systematically depart from familiar ground of lattice QCD

(N = 3 with NF = 2 light flavors in fundamental rep)

Identify generic features of non-QCD-like strong dynamics

Focus on near-conformal dynamics

—Add more light flavors
−→ NF = 8 fundamental

—Enlarge fermion rep
−→ NF = 2 two-index symmetric

—Explore N = 2 and 4
−→ (pseudo)real reps for cosets
SU(n)/Sp(n) and SU(n)/SO(n)
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Lattice Strong Dynamics Collaboration

Argonne Xiao-Yong Jin, James Osborn
Boston Rich Brower, Claudio Rebbi, Evan Weinberg

Brookhaven Meifeng Lin
Colorado Anna Hasenfratz, Ethan Neil

Edinburgh Oliver Witzel
Livermore Evan Berkowitz, Enrico Rinaldi, Pavlos Vranas

RBRC Ethan Neil, Sergey Syritsyn
Syracuse DS
UC Davis Joseph Kiskis

Yale Thomas Appelquist, George Fleming, Andy Gasbarro

Exploring the range of possible phenomena
in strongly coupled gauge theories
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IBM Blue Gene/Q @Livermore USQCD cluster @Fermilab

Results to be shown are from
state-of-the-art lattice calculations

O(100M core-hours) invested overall

Many thanks to DOE, NSF
and computing centers!

Cray Blue Waters @NCSA
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Plan for this talk

1 Electroweak S parameter (arXiv:1405.4752)

(Domain wall fermions on 323×64 lattices)

2 Higgs (singlet scalar) mass (arXiv:1510.06771 & ongoing)

(nHYP-improved staggered fermions up to 643×128)

Common theme: Challenges of chiral extrapolation

3 Chiral condensate and WW scattering parameters (time permitting)

Additional studies can be reviewed by request
(NF = 8 phase diagram; discrete β function from gradient flow;

effective mass anomalous dimension γeff(λ) from Dirac eigenmodes)
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Electroweak precision observables — preliminaries
Good chiral & flavor symmetries important −→ domain wall fermions

Add fifth dimension of length Ls (expensive!)
Exact chiral symmetry at finite lattice spacing in the limit Ls →∞
At finite Ls = 16, “residual mass” mres � mf ; m = mf + mres

105mres = 2.6 [2f]; 82 [6f]; 268 [8f]

Compare more directly by approximately matching m → 0 IR scales
MV0 = 0.217(3) [2f]; 0.199(3) [6f]; 0.171(4) [8f]
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Electroweak precision observable — the S parameter
Constrain the physics of electroweak symmetry breaking

from its effects on vacuum polarizations Π(Q) of EW gauge bosons

new

S remains an important constraint
on new strong dynamics

Experiment: S = 0.03± 0.10

Scaled-up QCD: S ≈ 0.43

Can also analyze S as a low-energy constant (α1 or L10)
of electroweak chiral lagrangian Lχ
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The S parameter on the lattice

Lχ ⊃
α1

2
g1g2BµνTr

[
Uτ3U†W µν

]
−→ new

S = −16π2α1 = 4πND lim
Q2→0

d
dQ2 ΠV−A(Q2)−∆SSM(MH)

ND ≥ 1 is the number of doublets with chiral electroweak couplings

∆SSM(MH) subtracted so that S = 0 in the standard model
Removes three eaten Goldstones, depends on Higgs mass

ΠV−A(Q2) is transverse component of vacuum polarization tensor

Πµν
V−A(Q) = Z

∑
x

eiQ·(x+bµ/2)Tr
[〈
Vµa(x)V νb(0)

〉
−
〈
Aµa(x)Aνb(0)

〉]
David Schaich (Syracuse) Lattice Strong Dynamics Humboldt, 23 November 2015 10 / 36



The S parameter on the lattice

Lχ ⊃
α1

2
g1g2BµνTr

[
Uτ3U†W µν

]
−→ new

S = −16π2α1 = 4πND lim
Q2→0

d
dQ2 ΠV−A(Q2)−∆SSM(MH)

ΠV−A(Q2) is transverse component of vacuum polarization tensor

Πµν
V−A(Q) = Z

∑
x

eiQ·(x+bµ/2)Tr
[〈
Vµa(x)V νb(0)

〉
−
〈
Aµa(x)Aνb(0)

〉]
Renormalization constant Z evaluated non-perturbatively
Chiral symmetry of domain wall fermions =⇒ Z = ZA = ZV

Z = 0.85 [2f]; 0.73 [6f]; 0.70 [8f]

Conserved currents V and A ensure that lattice artifacts cancel,
combined with local currents V and A to reduce costs
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Representative polarization function data, ΠV−A(Q2)

S = 4πND lim
Q2→0

d
dQ2 ΠV−A(Q2)−∆SSM(MH)

Q2 → 0 extrapolation
via rational function

ΠV−A(Q2) =
a0 + a1Q2

1 + b1Q2 + b2Q4

Motivated by single-pole dominance
and sum rules
(cf. Aubin et al.)

Can already see contrast between NF = 2 and NF = 6
(may be non-negligible finite-volume effects for lightest NF = 6 point)
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Results for polarization function slopes Π′V−A(0)

Vertical axis: 4πΠ′
V−A(0)

where

Π′(0) = lim
Q2→0

d
dQ2 Π(Q2)

S = 4πNDΠ′
V−A(0)−∆SSM

Horizontal axis: M2
P/M

2
V0 gives a more physical comparison than m

MV0 ≡ lim
m→0

MV approximately matched between NF = 2, 6 and 8

NF = 6 and 8 show significant reduction for MP . MV0,
and expected agreement in the quenched limit M2

P →∞
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From slopes to S for MH = 125 GeV

S = 4πND lim
Q2→0

d
dQ2 ΠV−A(Q2)−∆SSM(MH)

1 ND doublets with chiral electroweak couplings contribute to S
Scaled-up QCD often considers maximum ND = NF/2

but only ND ≥ 1 is required for electroweak symmetry breaking

2 ∆SSM =
1

12π

∫ ∞
4M2

P

ds
s

[
1−

(
1−

M2
V0

s

)3

Θ(s −M2
V0)

]
− 1

12π
log
(

M2
V0

M2
H

)
Integral diverges logarithmically as M2

P → 0
to cancel contribution of three eaten modes

First term assumes MH ∼ MV0 ∼ TeV;
second term corrects for MH = 125 GeV � TeV
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Results for the S parameter

NF = 2 result

lim
M2

P→0
S = 0.42(2)

matches scaled-up QCD

Significant reductions
as NF increases

Linear + log fits to light points (MP . MV0) guide the eye,
account for any chiral logs remaining after ∆SSM(MH)

S = A + B
M2

P

M2
V0

+
1

12π

(
NF

2
− 1
)

log

(
M2

V0

M2
P

)
for ND = 1
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Challenges of chiral extrapolation

NF = 2 result

lim
M2

P→0
S = 0.42(2)

matches scaled-up QCD

Significant reductions
as NF increases

Lattice calculation involves N2
F − 1 degenerate pseudoscalars

Only three massless Goldstones eaten by W and Z ,
N2

F − 4 PNGBs must acquire non-zero masses
For NF = 6, imagine freezing 32 PNGBs at the blue curve’s minimum,

and taking only three to zero mass
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Pushing NF = 8 towards the chiral limit

Wish list after domain wall studies
Want larger physical volumes to avoid finite-volume effects

Want smaller masses to connect to chiral perturbation theory

Want more statistics to analyze Higgs (singlet scalar)

Solution: Staggered fermions using nHYP-improved action
m = 0.00889 on 243×48 with ∼24 700 thermalized MDTU
m = 0.00750 on 323×64 with ∼24 600 thermalized MDTU
m = 0.00500 on 323×64 with ∼46 600 thermalized MDTU
m = 0.00220 on 483×96 with ∼19 600 thermalized MDTU
m = 0.00125 on 643×128 with ∼2 000 thermalized MDTU

(no 643×128 disconnected analyses)
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Pushing NF = 8 towards the chiral limit
nHYP improvement reduces discretization artifacts,

allows larger lattice spacing −→ larger physical volumes

Enables exploration of smaller masses (larger MV/MP)

Horizontal axes use mass-dependent gradient flow scale
√

8t0

Spontaneous chiral symmetry breaking
=⇒ MV/MP on vertical axes diverges in chiral limit
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Higgs mass analysis — measurements and correlators

The Higgs is a scalar singlet (0++) =⇒ disconnected diagrams

(Evan Weinberg)

For each disconnected measurement: 6 stochastic-U(1) sources
diluted in time, color, and even/odd spatial sites

Full scalar correlator is S(t) = 2D(t)− C(t), combining
connected and (vacuum-subtracted) disconnected correlators

However, Higgs appears both in S(t) and in D(t) on its own
=⇒ Fit each and include differences in systematic uncertainties

[better plateaus in D(t); more excited-state effects in S(t)]
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Higgs mass analysis — representative fits
For each of D(t) and S(t), carry out correlated fits to

AH cosh [MH (t − NT/2)] + (−1)t A1 cosh [M1 (t − NT/2)]

+ v + excited states

Start with usual staggered state and parity partner
Add free parameter v to control noise in vacuum subtraction

[equivalent to fitting D(t + 1)− D(t) or S(t + 1)− S(t)]
Up to two excited states included in fits for S(t)
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NF = 8 spectrum results
Preliminary results

still in lattice units

Scale setting suggests
resonance masses ∼2–3 TeV

Large separation between
Higgs and resonances

Higgs degenerate with pseudo-Goldstones in accessible regime
Dramatically different from QCD-like dynamics,

where MH ≈ 2MP in this regime (dominated by two-pion scattering)

Typical chiral extrapolation integrates out everything except pions,
can’t reliably be applied to these data
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Challenges of chiral extrapolation

Without reliable chiral extrapolation we can only estimate
MH ∼ few hundred GeV, with large error bars

Much lighter than scaled-up QCD, still somewhat far from 125 GeV

Of course, we shouldn’t get exactly 125 GeV
since we haven’t yet incorporated electroweak & top corrections

These reduce MH ,
but not yet consensus

on size of effect. . .
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Emerging picture of near-conformal spectrum
Light scalar likely related to near-conformal dynamics

(unconfirmed interpretation as PNGB of approx. scale symmetry)
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Scale setting & electroweak effective theory

Let’s review the standard approach impeded by the light Higgs

Integrating out resonances around 4πv scale gives chiral lagrangian

Dynamical d.o.f. are Goldstones πa to be eaten by W and Z,
which appear through matrix field U ≡ exp [ 2iT aπa/F ]

LLO =
F 2

4
Tr
[
DµU†DµU

]
+

F 2B
2

Tr
[
m
(

U + U†
)]

Decay constant F sets electroweak scale, W & Z masses
F = v = 246 GeV in simplest case (one electroweak doublet)

Chiral condensate
〈
ψψ
〉
∝ F 2B related to fermion mass generation

−→ large
〈
ψψ
〉
/F 3 ∝ B/F helps to satisfy FCNC constraints
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Chiral condensate enhancement
Three dimensionless ratios all approach

〈
ψψ
〉
/F 3 in the chiral limit

X (FM) =
M2

P
2mFP

X (CM) =

(
M2

P/2m
)3/2〈

ψψ
〉1/2 X (FM) =

〈
ψψ
〉

F 3
P

Condensate enhancement relative to Nf = 2 through “ratios of ratios”

Renormalized RMS ≈ 1.6 in chiral limit for both NF = 6 and NF = 8
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Electroweak chiral lagrangian NLO terms
With X ≡ Uτ3U† and Vµ ≡ (DµU) U†, next-to-leading order includes
oblique corrections S ∝ α1, T ∝ β1, U ∝ α8

triple gauge vertices and dominant contributions to WW scattering

L1 =
α1

2
g1g2BµνTr (XW µν) L2 =

iα2

2
g1BµνTr (X [V µ,V ν ])

L3 = iα3g2Tr (Wµν [V µ,V ν ]) L4 = α4 {Tr (VµVν)}2

L5 = α5 {Tr (VµV µ)}2 L6 = α6Tr (VµVν) Tr (XV µ) Tr (XV ν)

L7 = α7Tr (VµV µ) Tr (XVµ) Tr (XV ν) L8 =
α8

4
g2

2 {Tr (XWµν)}2

L9 =
iα9

2
g2Tr (XWµν) Tr (X [V µ,V ν ]) L10 =

α10

2
{Tr (XVµ) Tr (XVν)}2

L11 = α11g2ε
µνρλTr (XVµ) Tr (VνWρλ) L′1 =

β1

4
g2

2F 2 {Tr (XVµ)}2

Simplest analysis is for WW scattering parameters α4 and α5
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WW scattering from the lattice — The Big Picture
WW scattering is the most direct probe of EWSB dynamics,

though not the easiest to study at the LHC

Lattice calculations restricted to low-energy scattering

(M. Buchoff)
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WW scattering from the lattice — EFT matching

—Hadronic chiral lagrangian has m > 0 and g = 0
—Electroweak chiral lagrangian has m = 0 and g > 0

Both reduce to same form in the limit m → 0 and g → 0

Hadronic
EFT

EW
EFT

g, g� → 0

p2 �M2
ds, M

2
ss p2 �M2

ds, M
2
ss

md → 0

f2

4
tr(∂µU†∂µU) + α5

�
tr(∂µU †∂µU)

�2
+ α4

�
tr(∂µU †∂νU)

�2
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Pseudoscalar scattering on the lattice — goal

“Maximal isospin” channel (I = 2 for NF = 2)
Focus on S-wave scattering of identical charged pseudoscalars

−→ simplest and cleanest scattering process

Other isospin channels (e.g., I = 0) involve disconnected diagrams

Other spin channels (e.g., D-wave) have smaller signals,
require higher precision

We want to extract the LECs `1 and `2 related to α4 and α5 in Lχ

These hide in the low-energy scattering length aPP
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Pseudoscalar scattering on the lattice — procedure
Recall Maiani & Testa (1990)
No asymptotically non-interacting states in euclidean spacetime

−→ usual LSZ scattering formalism inapplicable

In a finite volume, measure energy of two-pseudoscalar state EPP ,
projecting each correlator to zero momentum for S-wave scattering

Access scattering phase shift δ from energy shift ∆EPP (Lüscher, 1986)

∆EPP = EPP − 2MP = 2
√
|~k |2 + M2

P − 2MP

|~k | cot δ =
1
πL

 ΛJ∑
~ 6=0

1

|~|2 − |~k |2L2/(4π2)
− 4πΛj

 (regularized ζ func.)

Low-energy scattering length from |~k | cot δ =
1

aPP
+O

(
|~k |2

M2
P

)
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Joint chiral fit to M2
P, FP,

〈
ψψ
〉

and MPaPP

0 0.01 0.02 0.03
m

0

0.5

1

1.5

2

M
P2

/ 2
 m

N
f
=2 LO+NLO

N
f
=2

N
f
=6

0 0.01 0.02 0.03
m

0

0.01

0.02

0.03

0.04

0.05

F P

N
f
=2 LO+NLO

N
f
=2

N
f
=6

0 0.005 0.01 0.015 0.02 0.025 0.03
m

-300

-200

-100

0

M
P
/ 

m
 |

→ k
| 

c
o
t 

δ

N
f
=2 LO+NLO

N
f
=2

N
f
=6

aPP ≈ 1/|~k | cot δ〈
ψψ
〉

plot in backup slide

Only NF = 2 fit feasible

Fit restricted to solid points,
0.01 ≤ mf ≤ 0.02

χ2/dof = 83/6
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NF = 2 WW scattering parameters from NLO chiral fit

Joint NLO chiral fit predicts sum of hadronic LECs `1 + `2

EFT matching discussed above relates this to the sum α4 + α5

(matching involves one-loop standard model calculation)

α4 + α5 =
(

3.34± 0.17+0.08
−0.71

)
× 10−3 − 1

128π2

[
log

(
M2

H
v2

)
+O(1)SM

]

(dominant systematic error from chiral fit range)

Context for our NF = 2 result
Unitarity bounds [hep-ph/0604255]:

α4 + α5 ≥ 1.14× 10−3 α4 ≥ 0.65× 10−3

Expected LHC bounds [hep-ph/0606118]: (99% CL; 100/fb; 14 TeV)
−7.7 < α4 × 103 < 15 −12 < α5 × 103 < 10
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Complications for NF > 2

As for the S parameter, only charge one chiral doublet d
Here we take the other NF − 2 to be electroweak singlets s,

leading to N2
F − 4 pseudoscalars with masses Mds and Mss

Hadronic chiral perturbation theory (χPT) now involves 9 LECs
with more complicated relations to α4 and α5

Higher-order terms in χPT
increase with NF

Leads to smaller
radius of convergence
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Strategy: Reorganize chiral expansion
Replace low energy constants 2mB and F by measured MP and FP

Expansion parameter ∝ M2
P/F

2
P , leading order is MPaPP = − M2

P
16πF 2

P

0 10 20 30 40
( M

P
 / F

P
 )

2

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

M
P
/|→ k | 

co
t δ

LO
N

f
=2

N
f
=6

—An old story in QCD (Weinberg, 1966)

—Allows direct comparison between NF = 2 and NF = 6 LECs
NF = 6 scattering length only slightly smaller, but chiral logs differ. . .
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Possible enhancement of WW scattering for NF = 6
Combined LEC b′PP must increase from NF = 2 to NF = 6,

to get similar aPP despite different chiral logs

b′PP = −256π2 [L0 + 2L1 + 2L2 + L3 − 2L4 − L5 + 2L6 + L8]

contains α4 and α5, but we aren’t able to isolate them

0 0.005 0.01 0.015 0.02 0.025 0.03
m

-10

-8

-6

-4

-2

0

b′
r PP

(µ
 =

 0
.0

22
9 

a-1
)

N
f
=2

N
f
=6

b′PP = −4.67± 0.65+1.08
−0.05 [2f]; b′PP = −7.81± 0.46+1.23

−0.56 [6f]
David Schaich (Syracuse) Lattice Strong Dynamics Humboldt, 23 November 2015 34 / 36



Recapitulation and outlook
New strong dynamics related to electroweak symmetry breaking

must behave unlike QCD
Lattice calculations crucial to explore range of possibilities
Focus on near-conformal gauge theories −→ SU(3) with NF = 8

Effects of increasing NF compared to scaled-up QCD
Evidence for dynamical reduction of electroweak S parameter
Higgs boson is dramatically lighter,

degenerate with PNGBs for currently accessible masses
Chiral condensate ratio

〈
ψψ
〉
/F 3 is significantly enhanced

WW scattering parameters possibly enhanced

Most pressing direction being pursued
is to extend chiral effective theory to include a light scalar

David Schaich (Syracuse) Lattice Strong Dynamics Humboldt, 23 November 2015 35 / 36



Thank you!
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Thank you!
Collaborators
Tom Appelquist, Evan Berkowitz, Rich Brower, George Fleming,
Andy Gasbarro, Anna Hasenfratz, Xiao-Yong Jin, Joe Kiskis,
Meifeng Lin, Ethan Neil, James Osborn, Claudio Rebbi, Enrico Rinaldi,
Sergey Syritsyn, Pavlos Vranas, Evan Weinberg, Oliver Witzel

Funding and computing resources
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Backup: Lattice gauge theory in a nutshell

Lattice gauge theory is a fully non-perturbative and gauge-invariant
regularization of quantum field theory (QFT)

Any QFT observable is formally 〈O〉 =
1
Z

∫
DΦ O(Φ) e−S[Φ]

. . . but this is an infinite-dimensional integral

Regularize the theory by formulating it
in a finite, discrete spacetime −→ the lattice

Work in Euclidean spacetime (Wick rotation)

Spacing between lattice sites (“a”)
introduces UV cutoff scale 1/a
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Backup: Lattice gauge theory in a nutshell

Any QFT observable is formally 〈O〉 =
1
Z

∫
DΦ O(Φ) e−S[Φ]

. . . but this is an infinite-dimensional integral

Regularize the theory by formulating it
in a finite, discrete spacetime −→ the lattice

Work in Euclidean spacetime (Wick rotation)

Spacing between lattice sites (“a”)
introduces UV cutoff scale 1/a

Lattice cutoff preserves hypercubic subgroup of full Lorentz symmetry

Remove cutoff by taking continuum limit a → 0 (with L/a →∞)
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Backup: Numerical lattice gauge theory calculations

〈O〉 =
1
Z

∫
DΦ O(Φ) e−S[Φ]

Finite-dimensional integral =⇒ we can compute 〈O〉 numerically

Importance sampling Monte Carlo
Approximate integral with a finite ensemble of field configurations {Φi}

Algorithms choose each configuration Φi with probability 1
Z e−S[Φi ]

to find those that make the most important contributions

Then 〈O〉 =
1
N

N∑
i=1

O(Φi) with statistical uncertainty ∝
√

1
N

Generating ensembles {Φi} often dominates computational costs

These saved data can be reused to investigate many observables
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Backup: Hybrid Monte Carlo (HMC) algorithm

Recall goal: Sample field configurations Φi with probability 1
Z e−S[Φi ]

HMC is a Markov process, based on
Metropolis–Rosenbluth–Teller (MRT)

Fermions −→ extensive action computation,
so best to update entire system at once

Use fictitious molecular dynamics evolution

1 Introduce a fictitious fifth dimension (“MD time” τ )
and stochastic canonical momenta for all field variables

2 Run inexact MD evolution along a trajectory in τ
to generate new four-dimensional field configuration

3 Apply MRT accept/reject test to MD discretization error
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Backup: Gradient flow scale setting

Gradient flow scale
√

8t0 defined by condition t2 〈E(t)〉
∣∣∣∣
t=t0

= c

For both NF = 8 domain wall (left) and staggered (right)
c . 0.3 may be affected by discretization artifacts
c & 0.3 leads to significant mass dependence
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Backup: A bit about the Wilson flow

Evolution of gauge links U(x , µ) in a “flow time” t :

d
dt

Vt(x , µ) = −g2
0

[
δ

δVt(x , µ)
SW (Vt)

]
Vt(x , µ),

where Vt=0(x , µ) = U(x , µ) and SW is the Wilson gauge action

SW (U) =
2N
g2

0

∑
{P}

ReTr [1− P(U)]

Px ,µν(U) = Ux ,µUx+bµ,νU†
x+bν,µU†

x ,ν

Solution:

Vt(x , µ) = exp
[
−tg2

0
δ

δU(x , µ)
SW (U)

]
U(x , µ)

=⇒ numerical integration of infinitesimal stout smearing steps
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Backup: Electroweak vacuum polarization functions

ΠVV = 2Π3e ΠAA = 4Π33 − 2Π3e

S = 4πND lim
Q2→0

d
dQ2

[
ΠVV (Q2)− ΠAA(Q2)

]
−∆SSM(MH)
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Backup: Scaling up QCD gives S & 0.4

NF ≥ 2 fermions in fundamental rep of SU(N) for N ≥ 3,
with 1 ≤ ND ≤ NF/2 doublets given chiral electroweak charges

S ' 0.3
NF

2
N
3

+
ND − 1

12π
log

(
M2

V

M2
P

)
+

1
12π

log

(
∼TeV2

M2
H

)
1 Resonance contribution uses QCD phenomenology to model R(s)

4π lim
Q2→0

d
dQ2 ΠV−A(Q2) =

1
3π

∫ ∞

0

ds
s

[RV (s)− RA(s)]

(essentially single-pole dominance with large-N scaling)
2 Chiral-log contribution based on leading-order chiral pert. theory
3 125 GeV Higgs contributes ∼0.1 (leading-order estimate)

There is some subtlety regarding MH (cf. arXiv:1211.1083)
for strong sector in isolation (no EW or radiative corrections)
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Backup: Conserved and local domain wall currents

Conserved currents are point-split and summed over fifth dimension:

Va
µ(x) =

Ls−1∑
s=0

jaµ(x , s) Aa
µ(x) =

Ls−1∑
s=0

sign
(

s − Ls − 1
2

)
jaµ(x , s)

jaµ(x , s) = Ψ(x + µ̂, s)P+µτ
aU†

x ,µΨ(x , s)−Ψ(x , s)P−µτ
aUx ,µΨ(x + µ̂, s)

where P±µ ≡
1± γµ

2

Local currents are constructed from boundaries of fifth dimension:

V a
µ (x) = q(x)γµτ

aq(x) Aa
µ(x) = q(x)γµγ5τ

aq(x)

q(x) =
1− γ5

2
Ψ(x ,0) +

1 + γ5

2
Ψ(x ,Ls − 1)

David Schaich (Syracuse) Lattice Strong Dynamics Humboldt, 23 November 2015 36 / 36



Backup: Non-conservation of local currents

Πµν
V−A(Q) = Z

∑
x

eiQ·(x+bµ/2)Tr
[〈
Vµa(x)V νb(0)

〉
−
〈
Aµa(x)Aνb(0)

〉]
Local currents are simply qγµq defined on the domain walls

No Ward identity: Q̂µ

[∑
x eiQ·x 〈V a

µ (x)V a
ν (0)

〉]
6= 0
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Backup: Ward identity for conserved currents

Πµν
V−A(Q) = Z

∑
x

eiQ·(x+bµ/2)Tr
[〈
Vµa(x)V νb(0)

〉
−
〈
Aµa(x)Aνb(0)

〉]
Conserved currents are point-split, summed over fifth dimension

Obey Ward identity, PCAC: Q̂µ

[∑
x eiQ·(x+bµ/2)

〈
Va

µ(x)V a
ν (0)

〉]
= 0
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Backup: Lattice artifacts cancel in mixed correlators
Plot shows divergence of local current in each correlator,[∑

x

eiQ·(x+bµ/2)
〈
Va

µ(x)V a
ν (0)

〉]
· Q̂ν 6= 0 for each ν

Cancellation seems due to conserved currents forming exact multiplet,
also possible with overlap — even staggered (Y. Aoki @ Lattice 2013)
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Backup: Finite-volume diagnostic plot
Arrows show direction of decreasing mass

Expect finite-volume effects to push points up and to the right

Finite-volume effects may be significant for lightest NF = 6 point
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Backup: Spurious S → 0 from finite volume effects
Compare NF = 6 results on 163×32 and 323×64 lattice volumes

L = 16 slopes 4πΠ′
V−A(0) crash to zero as m −→ 0

attributable to spurious parity doubling from finite-volume effects

Simultaneously finite-volume effects freeze MPL ≈ 5.5

L = 32 results show no such effects in MPL,
even for lightest NF = 6 point where MP/FP increases
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Backup: Padé fit Q2-range dependence

Uncorrelated fits to “Padé-(1, 2)” rational function with χ2/dof � 1

ΠV−A(Q2) =
a0 + a1Q2

1 + b1Q2 + b2Q4 =

∑1
m=0 amQ2m

1 +
∑2

n=1 bnQ2n

0.0 0.1 0.2 0.3 0.4 0.5 0.6 QMax
2

0.25

0.30

0.35

0.40

4Π P'H0L

0.0 0.1 0.2 0.3 0.4 0.5 0.6 QMax
2

0.00

0.05

0.10

0.15

0.20

0.25

Χ
2

�dof

Results reported above use Q2
Max = 0.4
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Backup: Twisted boundary conditions for ΠV−A(Q2)

Twisted boundary conditions (TwBCs)
Introduce external abelian field (add phase at lattice boundaries)
Allows access to arbitrary Q2, not just lattice modes 2πn/L

0.05 0.10 0.15 0.20 0.25 Q2

-0.0040

-0.0035

-0.0030

-0.0025

-0.0020

PV - A

Correlations =⇒ TwBCs do not improve Padé fit results for slope
May help connect to chiral perturbation theory,

where we need both small MP and small Q2
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Backup: Chiral perturbation theory for ΠV−A(Q2)

ΠV−A(Q2) in NLO hadronic χPT:

ΠV−A(M2
dd ,Q

2) = −F 2
P −Q2

[
8Lr

10(µ) +
1

24π2

{
log

[
M2

dd
µ2

]
+

1
3

−H

(
4M2

dd
Q2

)}]

H(x) = (1 + x)

[√
1 + x log

(√
1 + x − 1√
1 + x + 1

+ 2
)]

Match with S = −16π2α1 in electroweak chiral lagrangian:

S(µ,Mds) =
1

12π

[
−192π2

(
Lr

10(µ) +
1

384π2

{
log

[
M2

ds
µ2

]
+ 1

})

+ log
[
µ2

MH

]
− 1

6

]
.
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Backup: Eight-flavor spectrum in dimensionless ratios

Preliminary results
still in lattice units

Scale setting suggests
resonance masses ∼2–3 TeV

Large separation between
Higgs and resonances

Higgs degenerate with pseudo-Goldstones in accessible regime
Dramatically different from QCD-like dynamics,

where MH ≈ 2MP in this regime (dominated by two-pion scattering)

Typical chiral extrapolation integrates out everything except pions,
can’t reliably be applied to these data
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Backup: NLO chiral expansions
For general NF , A = 2− NF + 2N2

F + N3
F

MPaPP = − 2mB
16πF 2

{
1 +

2mB
(4πF )2

[
bPP − 2

NF − 1
N2

F
+

A
N2

F
log
(

2mB
µ2

)]}

M2
P = 2mB

{
1 +

2mB
(4πF )2

[
bM +

1
NF

log
(

2mB
µ2

)]}
FP = F

{
1 +

2mB
(4πF )2

[
bF −

NF

2
log
(

2mB
µ2

)]}
〈
ψψ
〉

=
F 22mB

2m

{
1 +

2mB
(4πF )2

[
bC −

N2
F − 1
NF

log
(

2mB
µ2

)]}

LECs b are all linear combinations of low-energy constants Li

LECs’ dependence on scale µ cancels the corresponding logs
bC includes “contact term” ∼ m/a2

NNLO M2
P coefficients enhanced by N2

F (arXiv:0910.5424)
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Backup: Chiral condensate with chiral fit

“Contact term” ∼ m/a2 clearly dominant (−→ straight lines)
NF = 2 joint NNLOχPT fit including FP , M2

P and
〈
ψψ
〉
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Backup:
〈
ψψ
〉

in three ways for NF = 12
The chiral condensate directly probes chiral symmetry,

but this is explicitly broken by non-zero fermion mass on lattice

“Direct”
〈
ψψ
〉

uses mvalence = msea

Σ measured from
mv = 0 eigenmodes

Partially quenched
with mv → 0

“Contact term” ∼ mv/a2 clearly dominates,
may lead to poorly controlled chiral extrapolation
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Backup: Fermion mass dependence of
〈
ψψ
〉

〈
ψψ
〉

depends on both valence mass mv and sea mass ms

Eigenspectrum ρ(λ) of massless Dirac operator depends only on ms

〈
ψψ
〉

mv ; ms
= mv

∫
ρ(λ,ms)

λ2 + m2
v

dλ+ m5
v

∫
ρ(λ,ms)(
λ2 + m2

v
)
λ4

dλ

+ γ1mvΛ2 + γ2mv +O (1/Λ)

where Λ = a−1 is the UV cutoff (Leutwyler & Smilga)

Quadratic UV divergence complicates chiral extrapolation
Can address with partially-quenched (mv 6= ms) measurements,

to extrapolate mv → 0 with fixed ms

Can also remove mv dependence via Σms = πρ(0,ms) =
〈
ψψ
〉

mv=0; ms

It is a good check that these two approaches agree!
David Schaich (Syracuse) Lattice Strong Dynamics Humboldt, 23 November 2015 36 / 36



Backup: Dependence on gauge coupling for NF = 12

Look at simple ratio MV/MP
plotted against relevant parameter (fermion mass m MP)

Even though βF is formally irrelevant
it has significant effects for MP & 0.2a−1

1
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1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1

M
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/M
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β = 2.8
β = 4.0
β = 5.0
β = 6.0

L=16
L=20
L=24
L=32
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Backup: Thermal transitions to identify SχSB

May distinguish between chirally broken and IR-conformal cases
from scaling ∆βF of finite-temperature transitions as NT increases

Plots show transitions and some RG flow lines
in space of fermion mass m and gauge coupling βF

Contrast only clear near critical surface at m = 0
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Backup: Search for NF = 8 spontaneous χSB

QCD-like scaling at large m & 0.01 does not persist as m decreases

Thermal transitions run into lattice phase before reaching chiral limit

Even large lattice volumes up to 483×24 are insufficient
to establish spontaneous chiral symmetry breaking
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Backup: Search for NF = 8 spontaneous χSB

Extrapolating m → 0 at fixed βF = 4.7 suggests NT & 48 needed
to establish spontaneous chiral symmetry breaking

This behavior is extremely different from QCD
but does not necessarily imply IR conformality
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Backup: Sample NF = 8 transition signals

Need NT = 20 to observe chirally broken phase at m = 0.005
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Backup: Order parameters for �
�S4 phase

Staggered lattice actions possess exact single-site shift symmetry
which is spontaneously broken in a novel lattice phase we encountered

Order parameters (any or all µ)

∆Pµ = 〈ReTr �n − ReTr �n+µ〉nµ even

∆Lµ =
〈
αµ,nχnUµ,nχn+µ − αµ,n+µχn+µUµ,n+µχn+2µ

〉
nµ even

��S4 likely non-universal, though other groups see same phase structure
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Backup: Thermal transitions for NF = 12

Behave as expected for an IR-conformal system

Accumulate at zero-temperature bulk transition for small enough m

NT = 12 and NT = 16 transitions are indistinguishable
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Backup: The gradient flow running coupling

In addition to a scale
√

8t0,
the gradient flow defines a scale-dependent running coupling g2

c (L; a)

Recall: The gradient flow
integrates an infinitesimal smoothing operation

Local observables measured after “flow time” t
depend on original fields within r '

√
8t

Perturbatively g2
MS

(µ) ∝ t2E(t) with µ = 1/
√

8t
where E = −1

2Tr [GµνGµν ] is the energy density

Define running coupling g2
c (L; a) by fixing c = L/

√
8t
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Backup: Discrete β function for NF = 8

Continuum extrapolated βs(g2
c ) with scale change s = 3/2

increases monotonically for g2
c . 14

Although βs is even smaller than IR-conformal four-loop MS prediction
any IR fixed point must be at stronger coupling
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Backup: Scale-dependent γeff(λ) from eigenmodes

λ defines an energy scale =⇒ fitting ν(λ) predicts
effective anomalous dimension γeff(λ) at that scale

For IR-conformal systems
UV: Asymp. freedom ⇒ γeff(λ) → 0

corresponding to α(λ) → 3

IR: Fixed point =⇒ γeff(λ) → γ?
m

γ?
m scheme-independent
typically expect γ?

m . 1

Ideally monitor evolution from perturbative UV to strongly coupled IR
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Backup: γeff(λ) from eigenmodes for NF = 8

Fit ν(λ) ∝ λ1+α in a limited range of λ to find 1 + γeff(λ) =
4

1 + α(λ)

ν(λ) computed stochastically

Fit ranges included
in error bands

Only retain regions
where all volumes overlap

All systems have
m = 0 and ρ(0) = 0

Behaves very differently compared to either NF = 12 or QCD

γeff appears to evolve very slowly across a wide range of scales
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Backup: γeff(λ) for chirally broken systems

λ defines an energy scale

Fitting ν(λ) ∝ λ1+α(λ) accesses 1 + γeff(λ) = 4
1+α(λ) at that scale

For chirally broken systems
UV: Asymp. freedom ⇒ γeff(λ) → 0

corresponding to α(λ) → 3

IR:
〈
ψψ
〉
∝ ρ(0) > 0 =⇒ α(λ) → 0
would produce γeff(λ) → 3

but ρ(λ) no longer ∝ λα

Ideally monitor evolution from perturbative UV to chirally broken IR
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Backup: Finite-volume effects in γeff(λ) from ν(λ)

As discussed above,
〈
ψψ
〉
∝ ρ(λ→ 0) > 0 =⇒ γeff ↗ 3,

but scaling ρ(λ) ∝ λα breaks down in this situation

Finite-volume effects can produce a “gap” with ρ(0) = 0
This is a different breakdown of the scaling, leading to γeff ↘ 0

Both of these effects are unphysical
and we remove the finite-volume transients from most γeff plots
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Backup: γeff(λ) for QCD-like NF = 4

Fit ν(λ) ∝ λ1+α in a limited range of λ to find 1 + γeff(λ) =
4

1 + α(λ)

1000 eigenvalues
on each volume

Fit ranges included
in error bands

Only retain results
free from
finite-volume effects

m = 0 except for chirally broken systems at βF = 6.6 and 6.4
where γeff ↗ 2 becomes unphysically large
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Backup: Rescaled γeff(λ) for QCD-like NF = 4

Rescale λ→
(a7.4

a

)1+γeff(λ)
λ to plot with constant lattice spacing

Relative lattice spacings from gradient flow & MCRG matching
Match to one-loop perturbation theory at λ·a7.4 = 0.8

Universal curve
from χSB to

asymp. freedom

Strong test of
method & control
over systematics
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