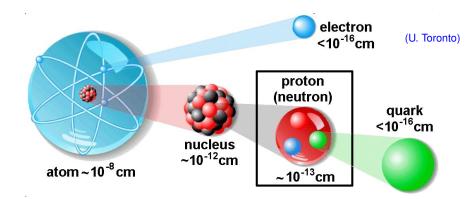
Lattice QCD and Beyond

David Schaich

BU Physics and CCS

CCS Seminar 29 April 2011

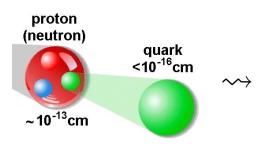

Overview of work done (and being done) with:

R. Babich, R. Brower, M. Cheng, M. Clark, S. Cohen, J. Osborn, C. Rebbi

T. Appelquist, M. Buchoff, G. Fleming, F.-J. Jiang, J. Kiskis, M. Lin, E. Neil, P. Vranas

David Schaich (BU Physics and CCS)

Setting the scene

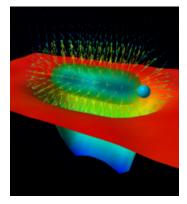

Quantum chromodynamics (QCD)

Fundamental theory of the strong nuclear force describing quarks confined into composite particles by gluon fields

David Schaich (BU Physics and CCS)

What's in a proton?

 $\frac{Mass \text{ of proton}}{Mass \text{ of three quarks}} \approx 100 \Rightarrow \text{ three-quark picture is too simple!}$

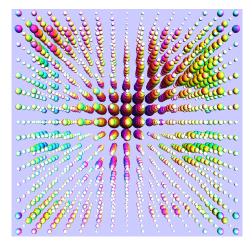

Why is the internal structure of composite particles so complicated?

David Schaich (BU Physics and CCS)

It's a strong interaction!

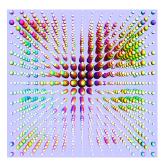
Separating two quarks generates a gluon flux tube acting like a string

With \sim 1 fm separation the string tension is \sim 10 tons


(Derek Leinweber)

Implications

- Strong interaction energy appears as mass via $E = mc^2$
- Standard techniques (perturbation theory) inapplicable


Non-perturbative QCD on a space-time lattice

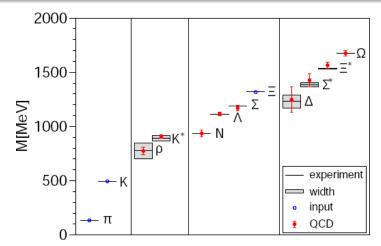
To perform non-perturbative calculations, define the theory on a space-time lattice (Kenneth Wilson, 1974)

(Claudio Rebbi)

Lattice QCD

Numerically evaluate observables from the defining functional integral

$$\langle \mathcal{O} \rangle = \frac{\int \mathcal{D}U \ \mathcal{O}(U) \ e^{-S(U)}}{\int \mathcal{D}U \ e^{-S(U)}}$$


U: four-dimensional field configurations *S*: action giving probability distribution e^{-S}

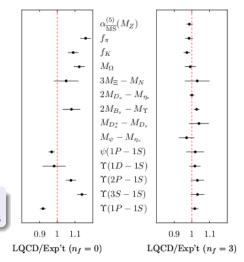
Typical algorithm: hybrid Monte Carlo

- Generate random "momenta" with Gaussian distribution $e^{-p^2/2}$
- Molecular dynamics evolution through fictitious MD "time" to produce new four-dimensional field configuration
- Use MD discretization errors in Metropolis accept/reject step

Recent advances in the state of the art

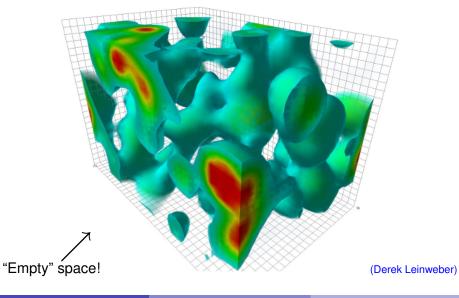
Hardware and software advances improve standard lattice calculations and open up new frontiers for exploration

(BMW Collaboration)

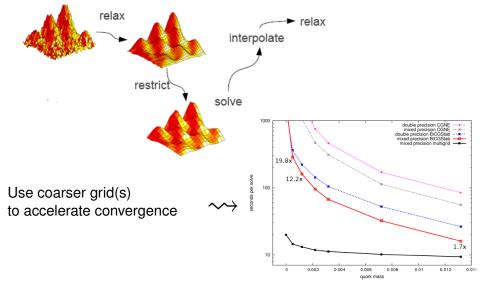

Example: effects of virtual quark pairs

Accounting for virtual quark pairs requires repeatedly inverting large sparse matrices

$$\sum_{\mathbf{y}} \left[D(\mathbf{U}) \right]_{\mathbf{x},\mathbf{y}} \psi_{\mathbf{y}} = \eta_{\mathbf{x}}$$

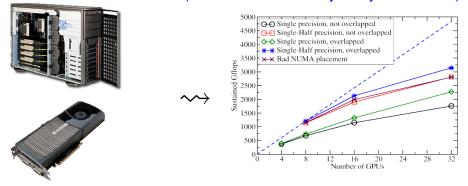

 $D(U) \sim 100 \text{M} \times 100 \text{M}$ matrix

Computationally expensive but crucial to success



(HPQCD, UKQCD, MILC and FNAL collaborations compiled by Peter Lepage)

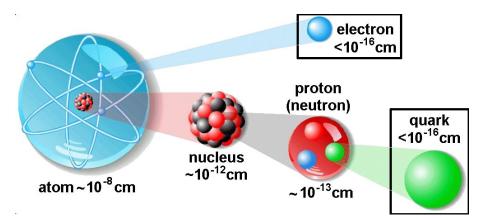
Dynamically generated multi-scale structure...


... motivates multigrid algorithms

(Rob Falgout, James Osborn)

QCD on GPUs

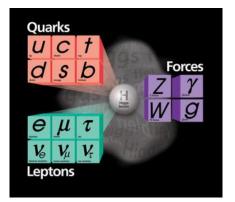
Great strides in applying GPU computing to lattice QCD (discussed earlier this year by Ron Babich)



Current frontier is scaling to many GPUs

May be a taste of things to come in high-performance computing

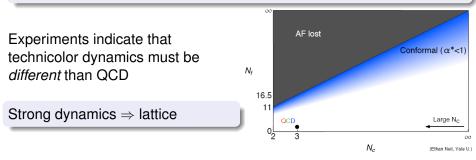
David Schaich (BU Physics and CCS)


Going beyond QCD on the lattice

What explains the masses of elementary (non-composite) particles?

Elementary particle masses

Symmetries of nature appear to require *massless* elementary particles The **Higgs mechanism** hides these symmetries


(Fermilab)

The nature of the Higgs mechanism remains unknown!

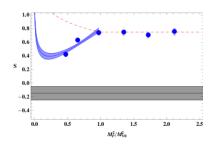
David Schaich (BU Physics and CCS)

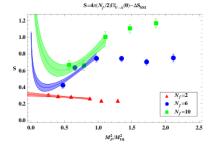
Technicolor

Proposal: The Higgs mechanism involves new strong dynamics (Steven Weinberg 1976/1979, Leonard Susskind 1979)

Challenges

Most attractive models involve


very large (orders of magnitude) separation of scales


We don't know the answer!

Recent result: S parameter

S parametrizes information about the Higgs mechanism

- Experimentally, $S \approx -0.15 \pm 0.10$ (black band)
- In QCD-like theories, S is large and positive (red dotted line)
- We find deviations from QCD-like behavior

Thank you!

Acknowledgements

At BU

Ron Babich, Rich Brower, Michael Cheng, Mike Clark, Saul Cohen, James Osborn, Claudio Rebbi

Elsewhere

Tom Appelquist, Mike Buchoff, George Fleming, Fu-Jiun Jiang, Joe Kiskis, Meifeng Lin, Ethan Neil, Pavlos Vranas

Funding and computing resources