## Lattice Strong Dynamics for Electroweak Symmetry Breaking

**David Schaich** 

BU Physics and CCS

MIT Lattice Club 20 October 2010

# Motivation and outline

- Physics beyond the standard model may be strongly coupled
- Strongly-coupled gauge theories need not resemble QCD
- Lattice gauge theory can provide non-perturbative information
- Brief review of dynamical electroweak symmetry breaking
  - Basics
  - Problems
  - Solutions?
- New strong dynamics on the lattice
- 3 Lattice Strong Dynamics (LSD) Collaboration results
  - LSD philosophy and simulation details
  - Chiral condensate enhancement
  - S parameter

For references, cf. arXiv:0812.2035 & Lattice 2010 plenary by L. Del Debbio

# (Extended) technicolor in a picture



P. Vranas, LLNL

## (Extended) technicolor in words

- Replace scalar Higgs bosons with new strongly interacting sector
- SU(N<sub>c</sub>) gauge theory with N<sub>f</sub> "technifermions" T
- Chiral symmetry breaking from  $\langle \overline{T}T \rangle |_{\Lambda_{TC}} \sim \Lambda_{TC}^3 \sim (1 \text{ TeV})^3$ also breaks  $SU(2)_L \times U(1)_Y \rightarrow U(1)_{em}$  with  $v \sim F \sqrt{N_D}$
- SM fermions q acquire masses from "extended" interactions



Integrate out ETC gauge bosons at scale  $M_{ETC}$ :  $m_q \sim$ 

$$\frac{\left.\left\langle \overline{T}T\right\rangle \right|_{M_{ETC}}}{M_{ETC}^{2}}$$

## Wasn't technicolor ruled out a decade ago?

Technicolor models face three main challenges:

- The *S* parameter (a problem of TC)
- FCNCs vs. SM fermion masses (a problem of ETC)
- The top quark mass (a really big problem)

# Problem 1: The S parameter (briefly)

S measures BSM contributions to electroweak physics (more later)

- Experimentally,  $S \lesssim 0$
- In TC, two contributions to *S*, **both positive**:
- Techni-hadronic contribution  $\sim 0.3 rac{N_f}{2} rac{N_c}{3}$  ("voodoo QCD")

Pseudo Nambu–Goldstone bosons' contribution

$$\sim rac{1}{12\pi} \left( rac{N_f^2}{4} - 1 
ight) \log \left( rac{M_{
ho_T}^2}{M_{
m PNGB}^2} 
ight)$$

Apparent tension with experiment worsens as  $N_c$ ,  $N_f$  increase

 $(\chi PT)$ 

#### Problem 2: FCNCs vs. SM fermion masses

Integrating out ETC gauge bosons produces four-fermion operators that provide both SM fermion masses and FCNCs



FCNCs required by CKM mixing, limit obtainable SM fermion masses.



 $M_{ETC}$ 

LSD for EWSE

Problem 2: FCNCs vs. SM fermion masses Example:  $(\Delta M_K)|\epsilon_K| \lesssim 8 \times 10^{-19} \text{ TeV} \Rightarrow M_{ETC}^{(s)} \gtrsim 16,000 \text{ TeV}.$ 

Using renormalization group and voodoo QCD  $\gamma(\mu) \sim \mathcal{O}(\alpha(\mu)) \ll 1$ ,

$$\begin{split} \left\langle \overline{T}T \right\rangle \Big|_{M_{ETC}} &= \left\langle \overline{T}T \right\rangle \Big|_{\Lambda_{TC}} \exp\left( \int_{\Lambda_{TC}}^{M_{ETC}} \frac{d\mu}{\mu} \gamma(\mu) \right) \approx \left\langle \overline{T}T \right\rangle \Big|_{\Lambda_{TC}} \sim (1 \text{ TeV})^3 \\ m_s &\sim \frac{\left\langle \overline{T}T \right\rangle \Big|_{M_{ETC}}}{\left( M_{ETC}^{(s)} \right)^2} \lesssim \frac{(1 \text{ TeV})^3}{(10^4 \text{ TeV})^2} \sim 0.1 \text{ MeV} \end{split}$$





 $M_{ETC}$ 

## "Walking" Technicolor

Suppose  $\gamma(\mu) \sim 1$ , so that

$$\begin{split} \langle \overline{T}T \rangle \big|_{M_{ETC}} &= \langle \overline{T}T \rangle \big|_{\Lambda_{TC}} \exp\left(\int_{\Lambda_{TC}}^{M_{ETC}} \frac{d\mu}{\mu} \gamma(\mu)\right) \approx \langle \overline{T}T \rangle \big|_{\Lambda_{TC}} \left(\frac{M_{ETC}}{\Lambda_{TC}}\right)^{\gamma} \\ m_{s} &\lesssim 1 \text{ GeV} \end{split}$$

 $\gamma(\mu) \sim 1$  for  $\Lambda_{TC} \lesssim \mu \lesssim M_{ETC}$ implies large, slowly-running ("walking") coupling, small  $\beta$  function.



David Schaich (BU Physics and CCS)

# Walking Technicolor: not just Wishful Thinking?

- Strongly-coupled gauge theories can look very different than QCD
- With many fermions, theory has perturbative IR fixed point; it is in a conformal phase with no spontaneous χSB
- The **conformal window** ranges from loss of asymptotic freedom to some (unknown) critical  $N_f^c < N_f^{AF}$
- With  $N_f \lesssim N_f^c$ , may be approximately conformal (walking!) for some range of

for some range of scales

Visualization of conformal window for  $SU(N_c)$  fermions in fundamental rep:



Strong coupling  $\Rightarrow$  lattice!

# Problem 3: The top quark mass



The top quark mass weighs like a nightmare on the brains of technicolor theorists...

... and is beyond the scope of this talk.

Even with  $\gamma(\mu) \approx 1$ :

$$m_t \sim 0.1 \text{ TeV} \sim rac{\left\langle \overline{T} T 
ight
angle \Big|_{M_{ETC}^{(t)}}}{\left( M_{ETC}^{(t)} 
ight)^2} \lesssim rac{\left\langle \overline{T} T 
ight
angle \Big|_{\Lambda_{TC}}}{\Lambda_{TC} M_{ETC}^{(t)}}$$
 $M_{ETC}^{(t)} \lesssim 10 \text{ TeV}$ 

 $\Rightarrow$ 

# Outline (reminder)

Brief review of dynamical electroweak symmetry breaking

- Basics
- Problems
- Solutions?

#### 2 New strong dynamics on the lattice

Lattice Strong Dynamics (LSD) Collaboration results
 LSD philosophy and simulation details

- Chiral condensate enhancement
- S parameter

# What can the lattice contribute?

A wishlist from Lattice 2010 (S. Chivukula):



To date, most effort has focused on the phase diagram that is, searching for conformal windows

## Searching for conformal windows



## How to search for conformality?

Many methods, cf. Lattice 2010 plenary by L. Del Debbio for more info

- Step scaling: search for fixed point in running coupling Many possible couplings: Schrödinger functional, heavy-quark potential, twisted Polyakov loop or Creutz ratio...
- Spectrum: contrast conformal vs. QCD-like, check scaling with quark mass  $m^{1/(1+\gamma)}$  or lattice size L
- Monte Carlo renormalization group two-lattice matching
- Finite-temperature phase diagram

(deconfinement and chiral transitions)

Eigenvalue distributions

## The challenge: TeV-scale phenomenology



- Beyond classifying theories as QCD-like or (approximately) conformal, need to connect to TeV-scale phenomenology
- *S* parameter, spectrum,  $\langle \overline{\psi}\psi \rangle$ understanding dependence on *N<sub>c</sub>*, *N<sub>f</sub>* and fermion representation



#### (CERN)

# Outline (reminder)

Brief review of dynamical electroweak symmetry breaking

- Basics
- Problems
- Solutions?

2 New strong dynamics on the lattice

Lattice Strong Dynamics (LSD) Collaboration results

- LSD philosophy and simulation details
- Chiral condensate enhancement
- S parameter

# LSD Collaboration

Argonne James Osborn Boston Ron Babich, Richard Brower, Saul Cohen,



Claudio Rebbi, DS

- Fermilab Ethan Neil
- Harvard Mike Clark
- Livermore Mike Buchoff, Michael Cheng, Pavlos Vranas
- UC Davis Joseph Kiskis
  - Yale Thomas Appelquist, George Fleming, Meifeng Lin,

Gennady Voronov

Formed in 2007 to pursue non-perturbative studies of strongly interacting theories likely to produce observable signatures at the Large Hadron Collider.

# LSD Philosophy and Simulation Details

- Start from what we know (QCD) and use it as a baseline  $\Rightarrow$  *SU*(3) gauge theory with *N*<sub>f</sub> =2, 6, 10 fundamental
- Use large (matched) cutoff to observe running  $\Rightarrow \beta = 2.7 (2f);$  2.1 (6f); 1.95 (10f)  $\Rightarrow a^{-1} \approx 3.6 \text{ GeV}^{-1} \approx 5M_{\rho};$  $a \approx 0.06 \text{ fm};$   $L = 32a \approx 1.8 \text{ fm};$   $M_PL \gtrsim 4$
- Exploratory calculations
   ⇒~ 1000 trajectories per point

#### • We don't know the answer

⇒ Use domain wall fermions for chiral and flavor symmetries  $L_s = 16$ :  $m_{res} \approx 3 \times 10^{-5}$  (2f);  $8 \times 10^{-4}$  (6f);  $2 \times 10^{-3}$  (10f)

Anything not yet on the arXiv should be considered PRELIMINARY

## DWF are expensive, even for exploratory calculations



#### $\sim$ 300M core-hours on LLNL BGL, USQCD clusters, NSF Teragrid...

David Schaich (BU Physics and CCS)

LSD for EWSE

# Matching scales



 $N_f = 2$  and  $N_f = 6$  scales all matched at 10% level

# Outline (reminder)

Brief review of dynamical electroweak symmetry breaking

- Basics
- Problems
- Solutions?

2) New strong dynamics on the lattice

Lattice Strong Dynamics (LSD) Collaboration results
 LSD philosophy and simulation details

- Chiral condensate enhancement
- *S* parameter

#### Chiral condensate enhancement: preliminaries

- Search for enhancement through  $\left<\overline{\psi}\psi\right>/F^3$
- Not RG invariant: keep cutoff fixed in physical units
- Focus on the ratio *R* of  $\left<\overline{\psi}\psi\right>/F^3$  between  $N_f=6$  and  $N_f=2$

$$R = \frac{\left(\left\langle \overline{\psi}\psi \right\rangle / F^{3}\right)_{6f}}{\left(\left\langle \overline{\psi}\psi \right\rangle / F^{3}\right)_{2f}} = \frac{\exp\left(\int_{M_{\rho}}^{5M_{\rho}} \left. \frac{\gamma(\mu)}{\mu} \right|_{6f} d\mu\right)}{\exp\left(\int_{M_{\rho}}^{5M_{\rho}} \left. \frac{\gamma(\mu)}{\mu} \right|_{2f} d\mu\right)}$$

*MS* perturbation theory & perturbative conversion to lattice scheme predicts R = 1.27(7)

# Enhancement of $\langle \overline{\psi}\psi\rangle/F^3$ , $N_f = 2$ to $N_f = 6$

Find significant enhancement compared with perturbative R = 1.27(7)



NLO  $\chi$ PT fits,  $N_f = 2$  and  $N_f = 6$ 



• NLO $\chi$ PT fits work for  $N_f = 2$  but not  $N_f = 6$  (lighter  $m_f$  required)

• GMOR 
$$\Rightarrow \frac{\langle \overline{\psi}\psi \rangle}{F_{\pi}^{3}} = \frac{M_{\pi}^{3}}{\sqrt{(2m)^{3}\langle \overline{\psi}\psi \rangle}} = \frac{M_{\pi}^{2}}{2mF_{\pi}} \equiv \mathcal{R} \text{ as } m \to 0$$

• Fit ratios to  $\mathcal{R}\left[1 + \widetilde{m}(\alpha_{XY10} + \alpha_{11}\log\widetilde{m})\right]$  where  $\widetilde{m} \equiv \sqrt{m_2m_6}$ 

## Pseudo Nambu–Goldstone boson mass



• Slope of  $M_P^2$  with *m* significantly larger for  $N_f = 6$ 

• Switch to plotting versus  $M_P^2$ , to provide more physical comparison

#### Vector and axial spectrum



Signs of  $N_f = 6$  parity-doubling as  $M_P^2$  decreases  $\Rightarrow$  implications for *S* parameter?

# Outline (reminder)

Brief review of dynamical electroweak symmetry breaking

- Basics
- Problems
- Solutions?

New strong dynamics on the lattice

Lattice Strong Dynamics (LSD) Collaboration results
 LSD philosophy and simulation details

- Chiral condensate enhancement
- S parameter

#### S parameter: more details

$$\begin{aligned} &\gamma \cdots \gamma = i \ e^{2} \ \Pi_{QQ} \ g^{\mu\nu} + \cdots \\ &\Pi_{VV} = 2\Pi_{3Q} \\ &\Pi_{AA} = 4\Pi_{33} - 2\Pi_{3Q} \\ &\Pi_{AA} = 4\Pi_{AA} \\$$

 $\Delta S_{SM}$  removes the Higgs boson contribution,

also cancels IR divergence from massless  $\pi_{\mathcal{T}}$ 

#### Domain wall currents and correlators

Need to use *conserved* domain wall currents  $V^{\mu a}$  and  $A^{\mu a}$  (point-split, summed over the fifth dimension)

$$\Pi^{\mu\nu}_{V-\mathcal{A}}(Q) = Z \sum_{x} e^{iQ \cdot (x+\widehat{\mu}/2)} \mathrm{Tr} \left[ \left\langle \mathcal{V}^{\mu a}(x) V^{\nu b}(0) \right\rangle - \left\langle \mathcal{A}^{\mu a}(x) \mathcal{A}^{\nu b}(0) \right\rangle \right]$$

- V<sup>νa</sup> and A<sup>νa</sup> are local currents defined on the domain walls
- Conserved currents ensure that lattice artifacts cancel, needed for clean signal
   RBC-UKQCD
- $\langle \mathcal{V}^{\mu a}(x) \mathcal{V}^{\nu a}(0) \rangle$  and  $\langle \mathcal{A}^{\mu a}(x) \mathcal{A}^{\nu a}(0) \rangle$  require  $\mathcal{O}(L_s)$  inversions
- Suffices to use  $\langle \mathcal{V}^{\mu a}(x) V^{\nu a}(0) \rangle$
- Renormalization constant Z computed nonperturbatively Z = 0.85 (2f); 0.73 (6f); 0.71 (10f)

## Ward identities and violations





$$\left[\sum_{x} e^{iQ\cdot(x+\widehat{\mu}/2)} \left(\left\langle \mathcal{V}_{\mu}^{a} V_{\nu}^{a} 
ight
angle - \left\langle \mathcal{A}_{\mu}^{a} \mathcal{A}_{\nu}^{a} 
ight
angle 
ight)
ight] \widehat{Q}_{
u} pprox 0$$



$$\widehat{Q}_{\mu}\left[\sum_{x}e^{iQ\cdot x}\left\langle V_{\mu}^{a}(x)V_{\nu}^{a}(0)
ight
angle 
ight]
eq0$$



 $\left[\sum_{x} e^{iQ\cdot x} \left( \left\langle V_{\mu}^{a} V_{\nu}^{a} \right\rangle - \left\langle A_{\mu}^{a} A_{\nu}^{a} \right\rangle \right) \right] \widehat{Q}_{\nu} \neq 0$ 



LSD for EWSB

### Correlator data and fits



Independent fits to (1, 2) Padé,  $Q^2 < 0.4$ 

Fits stable with  $\chi^2 \ll 1$ as  $Q^2$  fit range varies

$$\frac{a_0 + a_1 Q^2}{1 + b_1 Q^2 + b_2 Q^4} = \left[ -F_0^2 + \frac{Q^2 F_1^2}{M_1^2 + Q^2} - \frac{Q^2 F_2^2}{M_2^2 + Q^2} \right]_{F_0^2 = F_1^2 - F_2^2}$$

Fit results for  $\Pi'_{V-A}(0)$ ,  $N_f = 2$  and  $N_f = 6$ 

#### 2f in red 6f in blue



### $\Delta S_{SM}$ with $m_f > 0$

- ΔS<sub>SM</sub> cancels IR divergence from massless π<sub>T</sub>
- With  $m_f > 0$ , need IR cutoff  $4M_P^2 > 0$  on  $\Delta S_{SM}$  spectral integral
- For  $N_f = 2$ ,  $\Delta S_{SM}$  and  $\pi_T$  continue to cancel as  $m_f \rightarrow 0$
- For  $N_f > 2$ , extra  $N_f^2 4$  pseudo Nambu–Goldston bosons receive masses from other interactions
- Set reference Higgs mass  $M_{H}^{ref} = \lim_{m \to 0} M_V \equiv M_{V0} \sim 1$  TeV

$$\Delta S_{SM} = \frac{1}{4} \int_{4M_P^2}^{\infty} \frac{ds}{s} \left[ 1 - \left(1 - \frac{M_{V0}^2}{s}\right)^3 \Theta(s - M_{V0}^2) \right]$$

Numerically,  $\Delta S_{SM} \lesssim$  0.04, at most 10% reduction

S parameter,  $N_f = 2$  and  $N_f = 6$ 



#### Recap

- Physics beyond the standard model may be strongly coupled
- Strongly-coupled gauge theories need not resemble QCD
- Lattice gauge theory can provide non-perturbative information

For SU(3) gauge theory with  $N_f = 6$  compared to  $N_f = 2$ The LSD Collaboration has found:

- Significant enhancement of the condensate  $\left<\overline{\psi}\psi\right>/F^3$
- S parameter smaller than naïve scaling

Further studies underway:

•  $N_f = 10$ 

- Dirac operator eigenvalue spectrum
- Effects of finite volume, topology

• *SU*(2)

**•** . . .

OPE for Π<sub>V-A</sub>

# Bonus slides!

# Experiments find $S \lesssim 0$

Extract S from global fit to experimental data for

- Z decay partial widths and asymmetries
- Deep inelastic neutrino scattering

- $\blacktriangleright M_W/M_Z$
- Atomic parity violation

1.00  $\Gamma_7, \sigma_{had}, R_1, R_2$ asymmetries 0.75 scattering 0.50 F 158 0.25 0.00 -0.25 -0.50 all: M., = 117 GeV -0 75 all: M., = 340 GeV all: M. = 1000 GeV -1.00 -0 0.00 0.25 0.50 1 25 S

Result:  $S \leq 0$ 

(PDG)

## Anomalous dimension

From "rainbow approximation" to "gap" (Schwinger–Dyson) equation

Assume spontaneous chiral symmetry breaking when

$$lpha(\mu) \geq rac{\pi}{\mathbf{3C_2(r)}} \equiv lpha_{\chi SB}$$

When  $\alpha(\mu) = \alpha_{\chi SB}$ , this gives  $\gamma(\mu) = 1$ 

#### Perturbative Yang–Mills $\beta$ function

For  $SU(N_c)$  Yang–Mills theory with  $N_f$  fermions in representation r

$$\beta(g) = \beta_0 g^3 + \beta_1 g^5 + \beta_2 g^7 + \cdots$$
  

$$\beta_0 = -\frac{1}{(4\pi)^2} \left( \frac{11}{3} N_c - \frac{4}{3} N_f C(r) \right)$$
  

$$\beta_1 = -\frac{1}{(4\pi)^4} \left[ \frac{34}{3} N_c^2 - \left( \frac{13}{3} N_c - \frac{1}{N_c} \right) N_f C(r) \right]$$

$$C(N) = \frac{1}{2}$$
  $C(Adj) = N_c$   $C_2(N) = \frac{d(Adj)}{d(N)}C(N) = \frac{N_c^2 - 1}{2N_c}$ 

#### Domain wall fermions



## NLO $\chi$ PT for general $N_f$

$$\begin{split} \frac{M_P^2}{2m} &= B \left\{ 1 + \frac{2mB}{(4\pi F)^2} \left[ \alpha_m + \frac{1}{N_f} \log\left(\frac{2mB}{(4\pi F)^2}\right) \right] \right\} \\ F_P &= F \left\{ 1 + \frac{2mB}{(4\pi F)^2} \left[ \alpha_F - \frac{N_f}{2} \log\left(\frac{2mB}{(4\pi F)^2}\right) \right] \right\} \\ \left\langle \overline{\psi}\psi \right\rangle &= F^2 B \left\{ 1 + \frac{2mB}{(4\pi F)^2} \left[ \alpha_C - \frac{N_f^2 - 1}{N_f} \log\left(\frac{2mB}{(4\pi F)^2}\right) \right] \right\} \end{split}$$

α<sub>C</sub> includes "contact term" mΛ<sup>2</sup> ~ ma<sup>-2</sup>
 NNLO M<sup>2</sup><sub>P</sub> coefficients enhanced by N<sup>2</sup><sub>f</sub>

(Bijnens & Lu, 2009)

#### Goldstone decay constant



Joint NNLO $\chi$ PT fit to  $N_f = 2 F_P, M_P^2, \langle \overline{\psi}\psi \rangle$ 

#### Chiral condensate



Joint NNLO $\chi$ PT fit to  $N_f = 2 F_P$ ,  $M_P^2$ ,  $\langle \overline{\psi}\psi \rangle$ Linear term clearly dominant Very preliminary  $N_f = 10$  condensate enhancement



P. Vranas, LLNL

#### Vector and axial decay constants



#### Conserved and local domain wall currents

Conserved currents:

$$\mathcal{V}^{\mu a}(x) = \sum_{s=0}^{L_s-1} j^{\mu a}(x,s) \qquad \qquad \mathcal{A}^{\mu a}(x) = \sum_{s=0}^{L_s-1} \operatorname{sign}\left(s - \frac{L_s-1}{2}\right) j^{\mu a}(x,s)$$

$$j^{\mu a}(x,s) = \overline{\Psi}(x+\widehat{\mu},s)rac{1+\gamma^{\mu}}{2} au^{a}U^{\dagger}_{x,\mu}\Psi(x,s) 
onumber \ -\overline{\Psi}(x,s)rac{1-\gamma^{\mu}}{2} au^{a}U_{x,\mu}\Psi(x+\widehat{\mu},s)$$

Local currents:

$$egin{aligned} V^{\mu}(x) &= \overline{q}(x) \gamma^{\mu} au^a q(x) & A^{\mu}(x) &= \overline{q}(x) \gamma^{\mu} \gamma^5 au^a q(x) \ & q(x) &= P_L \Psi(x,0) + P_R \Psi(x,L_s-1) \end{aligned}$$

## Single-pole approximations to $\Pi_{V-A}$



*S* in  $\chi$ PT, for  $N_f = 2$ 

$$S = \frac{1}{12\pi} \left( \frac{\overline{\ell}_5}{f_5} + \log \left[ \frac{m_\pi^2 \frac{v^2}{f_\pi^2}}{M_H^2} \right] - \frac{1}{6} \right)$$

 $\overline{\ell}_5$  is extracted from

Gasser & Leutwyler, 1984

$$\Pi_{V-A}^{\perp}(q^2) = -F_{\pi}^2 + q^2 \left[ \frac{1}{24\pi^2} \left( \overline{\ell}_5 - \frac{1}{3} \right) + \frac{2}{3} (1+x) \overline{J}(x) \right]$$
$$\overline{J}(x) = \frac{1}{16\pi^2} \left( \sqrt{1+x} \log \left[ \frac{\sqrt{1+x}-1}{\sqrt{1+x}+1} \right] + 2 \right), \quad x \equiv 4M_{\pi}^2/q^2$$

- As discussed above,  $\chi PT$  inapplicable for  $N_f = 6$
- General- $N_f$  corrections for  $\overline{\ell}_5$  not yet known
- Must take only two flavors to the chiral limit,

any others remain massive

#### Comparing Padé and OPE, $N_f = 2$

As  $Q^2 
ightarrow \infty$ ,



## Corrections to the first Weinberg sum rule, $N_f = 2$



 $Q^4$  term in numerator of (2, 2) Padé is small

$$\frac{a_0 + a_1 Q^2 + a_2 Q^4}{1 + b_1 Q^2 + b_2 Q^4} = \left[ -F_0^2 + \frac{Q^2 F_1^2}{M_1^2 + Q^2} - \frac{Q^2 F_2^2}{M_2^2 + Q^2} \right]$$